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ABSTRACT

Medical imaging studies increasingly use longitudinal images
of individual subjects in order to follow-up changes due to
development, degeneration, disease progression or efficacy of
therapeutic intervention. Repeated image data of individuals
are highly correlated, and the strong causality of information
over time lead to the development of procedures for joint seg-
mentation of the series of scans, called 4D segmentation. A
main aim was improved consistency of quantitative analysis,
most often solved via patient-specific atlases. Challenging
open problems are contrast changes and occurance of sub-
classes within tissue as observed in multimodal MRI of infant
development, neurodegeneration and disease. This paper pro-
poses a new 4D segmentation framework that enforces con-
tinuous dynamic changes of tissue contrast patterns over time
as observed in such data. Moreover, our model includes the
capability to segment different contrast patterns within a spe-
cific tissue class, for example as seen in myelinated and un-
myelinated white matter regions in early brain development.
Proof of concept is shown with validation on synthetic image
data and with 4D segmentation of longitudinal, multimodal
pediatric MRI taken at 6, 12 and 24 months of age, but the
methodology is generic w.r.t. different application domains
using serial imaging.

1. INTRODUCTION

Longitudinal analysis of MR images has great potential to
reveal the development patterns of brain growth, deviation
from normal trajectories, monitoring disease progress and/or
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effects of therapeutic intervention, and studies of neurode-
generation in aging. Accurate and consistent segmentation
of longitudinal image sequences is a key processing step to
better understand even subtle temporal changes of anatomy.
Recent work demonstrated that joint segmentation of serial
imaging can lead to improved analysis of spatiotemporal pat-
terns of change since 4D procedures optimally use the in-
herent correlation of repeated scans of individual subjects.
Current methodologies still show significant challenges re-
lated to temporal variations in image appearance due to differ-
ences in scanner calibrations, global or local tissue changes
related to development or aging, and appearance variations
related to disease. Reuter et al. [1] introduce a FreeSurfer
longitudinal analysis framework based on unbiased within-
subject tempalte creation to reduce variability of segmenta-
tion in each time point. Kim et al. [2] focus on brain mat-
uration and related contrast changes and developed a spatial
intensity growth map (IGM) that compensates for the white
matter intensity appearance inhomogeneity. Shi et al. [3] take
advantage of the fact that MRI presents improved tissue con-
trast at older age and proposed the use of a subject-specific
tissue probability atlas to guide segmentation at earlier time
points. Xue et al. [4] propose an image-adaptive clustering,
spatiotemporal smoothness contraints, and image warping to
jointly segment same subject serial MRI. The clustering ob-
jective function treats the spatially and temporally adaptive
smoothness constraints in a similar manner despite significant
differences across space and time. Prastawa et al. [5] present
a framework for construction of subject-specific longitudi-
nal anatomical models including joint segmentation, registra-
tion and personalized atlas building, with individual Gaussian
mixture model per time point to account for temporal contrast
differences. Regularization over time is achieved via kernel
smoothing of the longitudinal subject-specific tissue proba-
bility atlas.

Whereas most previously reported methods focused on
improving consistency of segmentation of serial image data
of same types of contrast to tackle random variations, this
paper provides a new solution to explicitly model temporal
brain tissue appearance changes inherent to biological vari-
ations as seen in development, degeneration or disease pro-



gression. Assuming co-registered sets of images, our method
models voxel-wise time-related intensity changes through the
entire time series of individual subjects and is designed to pro-
cess longitudinal multimodality data such as shown in [6]. We
define an objective function on the temporal intensity change
model and solve 4D segmentation via nonlinear optimization.
The driving application is the segmentation of multimodal
brain MRI during the first 2 years of life, with the well known
challenges of reversal and disappearance of white and gray
matter contrast, spatial tissue appearance inhomogeneities,
and rapidly changing regional maturation of non-myelinated
to myelinated white matter. Proof of concept is shown on
both simulated longitudinal data and clinical longitudinal
pediatric brain MRI. However, the proposed method is not
limited to pediatric imaging but to all scenarios where serial
images show large contrast changes and inhomogeneities.

2. METHOD

Let us consider a longitudinal MRI sequence of a single sub-
ject, acquired at multiple time points ¢ € {1,--- ,T} and as-
sume that all images are co-registerd via pre-processing not
discussed as part of this work. Each image I' = {I'(x) :
x € R3} in the sequence has anatomical structures charac-
terized by total C' categories. Voxel-wise segmentation re-
quires well-separated modes in multi-modal intensity distri-
butions. One common problem we meet in longitudinal im-
age segmentation of MRI in scenarios of brain changes is
that some time points show well-separated intensity distribu-
tions whereas others do not. Another problem is the presence
of regional tissue inhomogeneities or even existence of sev-
eral property types related to biological changes, significantly
changing over the time series and appearing homogeneous at
certain time points. In this case, several modes in the intensity
distribuions of a tissue category at a few time point merge to
a single mode at another time point. Fig. 1 illustrates the key
ideas of our intensity modeling to conquer these problems.

2.1. Intensity Change Model

Assuming aligned images and smooth temporal growth, the
intensities of a voxel at location z through all time points
should show a systematic relationship. Ideally, intensities
would be more similar for voxels at neighboring time points
than further apart. In reality, this may not be the case due to
types of changes discussed previously, motivating the use of
an intensity adjustment in addition to an ideal smooth model
fit. To model temporal relationships via intensity similarities,
we define an intensity change ¢’ (z) of original voxel intensi-
ties I'(x) at every time point ¢ and location z. After adjust-
ment, the new intensity I* (2)4-¢" () at time point ¢; should
be similar to the new intensity I'/ () + ¢"/ (z) at time point
t;. We use a similarity metric which satisfies closer similarity
with smaller time distance |¢; —¢;|, i.e. smaller intensities dif-

original I'(z)

Fig. 1. Overview of 4D intensity modeling. Columns from
left to right represent time ¢1, to and t3. The first two rows
are the original images and their intensity distributions; the
last two rows are the adjusted images and new intensity dis-
tributions. ¢’ (z) is the intensity change of voxel z at time
t. K(t;,t;) is similarity kernel between ¢; and t;. Notice at
time ¢;, after intensity adjustment, two categories represented
by yellow and red merge into one category represented by red.

ference d*%) (z) = ||(I" (x)}+¢" (2)) — (I" (2)+6" () |2
between time point ¢; and ¢;, where || - || is the Ly norm.

Modeling intensity similarity will be achieved by mini-
mizing the 4D intensity change objective function

D(@'(x) =Y Y K(ti,t;) Y (a9 (x))*, (1)

where K (t;,t;) represents regularization over time, here with
a Gaussian kernel like K (¢;,t;) = exp(—@). Notice
that the optimization for D(¢(2)) is 0 in the case that all
image intensities are the same after intensity adjustments. To
avoid unlimited degrees of freedom for intensity changes, we
define constraints with heuristics to be adjusted to the given
application domains. To constrain the intensity change ¢" (x),

we apply an L, penalty for ¢’ (z),
Ri(¢'(z)) = Y_[4'(2)]. )

In principle, one could achieve different intensity change con-
straints for each time point by defining different weights of
R1(¢"(z)), e.g. with different time spacing. Another penalty
to intensity change is spatial smoothness, here modeled by the
Lo norm of the gradients

Ra(¢'(2)) =D IVe'(2)]*. 3)



The proposed intensity change modeling can deal with
both challenges cited above, low contrast changing into
higher contrast with well-separated distributions, and inho-
mogeneities even including multi-modal distributions chang-
ing into homogeneous unimodal distributions.

2.2. Joint 4D Segmentation

At each time ¢, we model each class ¢ € {1,--- ,C} by anor-
mal distribution with parameters ®! = {u%, X!}, Integrating
the intensity change model into a longitudinal 4D segmen-
tation, the probability density of adjusted voxel intensity
I'(x)+ @' () attributed to class c is p(I'(z) + @' (z) |t =
c; O = N(I'(z)+ ¢'(x); ©), where Tt € {c|c =

.,C} is the random variable representing the class ¢ of
voxel at position x and time ¢, and AV is the normal density
function.

Given a prior probability that voxel x belongs to class ¢
at time ¢ as p(I',, = ¢) via the image atlas A’ (z), the overall
probability density of voxel intensity I*(z)+ ¢"(z) at posi-
tion x and time ¢ can be calculated by the law of total prob-
ability: p(I'(z)+¢'(x); ©) = 3 p(Il, = ¢)p(I'(x) +
$(2) [Tt = c; ©L) = ¥ AL@) N(I'(2) + ' (2); ©),
which is a mixture of normal distributions.

Assuming all voxel intensities of a longitidinal image se-
quence are statistically independent over time and space, the
probability density (likelihood function) of entire image se-
quence intensity given the mixture of normal model becomes

L(©,) =p(I+¢;© HHP (I'(2)+ ' (z); ©)
= LI A M@+

where I, ¢ is the notation for all images intensities and their
changes, and © is representing all parameters of normal dis-
tributions over time.

We define our 4D segmentation objective function, which
maximizes the likelihood of Eq. 4 and minimizes the intensity
change objective defined in Eq. 1, with two the constraints of
equations 2 and 3 as follows:

F(¢'(2).©L) = ~log L(©, ¢> + aD(qbt(x))
+ AR @)+ yRals @), O

where «, ; and ~y are positive parameters. To optimize the
segmentation objective function, we use an adaptive gradient
descent method to get the optimal ¢’ () and ©’, parameters.
Finding segmentation is achieved by calculating the posterior
probabilities p(T%, = ¢| I'(z) + ¢'(x); OL).

3. RESULTS AND DISCUSSION

“4)
¢'(x); ©),

For synthetic data and clinical data, we use existing proba-
bilistic adult and infant population atlas for white matter, gray
matter, csf and remainder classes.

3.1. Synthetic Longitudinal Data

We build a synthetic data including 3 time points using Brain-
Web’s anatomical model of the normal brain as ground truth.
To simulate the myelination process of early brain develop-
ment, we split white matter of the ground truth into myeli-
nated (top) and unmyelinated (bottom) parts at the first time
point, as an example for a bimodal distribution within one
tissue class. We apply a Gaussian filter with large o to blur
each class, and use the normalized blurred results as the prior
probability maps p’.(z).

The simulated images were generated as I'(z) = ),
pl(z) dt, where di, ~ N'(ut,¥t), i.e. we draw samples from
normal distributions and generate simulated image intensities
as weighted sums of samples based on the probability maps
pL(x). We apply statistics from past pediatric imaging re-
search to set parameters p’, Xt (see Fig. 2 for synthetic data
and atlas).

Fig. 2. Synthetic data (columns 1-3 from left for time points
1-3; rows 1-2 for modalities 1-2) and Atlas used (column 4
from left-side, rows 1-2 for white and gray matter).

Fig. 3 shows segmentation results and generated intensity
changes of the proposed 4D segmentation framework. The
intensity change images illustrate a clear compensation for
the original images intensities to deal with low contrast. In
addition, the two types of white matter, which have different
intensity levels and two modes in the intensity distributions,
merge into one single tissue type with one single mode. We
also compare our proposed 4D segmentation results with a
conventional EM segmentation at individual time points to
the ground truth. Our proposed segmentation results in sig-
nificantly improved segmentation in particular at the first and
second time points (see Table 1).

3.2. Clinical Longitudinal Data

Our new method is also applied to image data from an on-
going clinical infant autism study, here with preliminary tests
on 5 subjects with longitudinal multimodal T1w/T2w MRI
scanned at 6, 12 and 24 months of age. Wheras the seg-
mentation of the 1 year old scans could be improved as sum-
marized in [2], the segmentation of the 6month old still pre-
sented a challenge due to very low contrast, spatial inhomo-



Fig. 3. Segmentation of synthetic data (columns 1-3 from
left for time points 1-3; row 1 for conventional EM method,
row 2 for proposed 4D segmentation) and intensity change of
proposed 4D segmentation (column 4, row 2 for modalities 1
at time point 1).

EM/4D tp tn fp fn correct
t1 .08/.09 | .85/.89 | .05/.02 | .02/.00 || .93/.98
t2 .09/.09 | .87/.90 | .03/.01 | .01/.00 || .96/.99
t3 .09/.09 | .89/.90 | .01/.01 | .01/.00 || .98/.99

Table 1. Quantitative comparison between conventional EM
and our proposed 4D segmentation to ground truth of white
matter (shown as EM/4D): tp, tn, fp, fn for true positve, true
negative, false positive, false negative; correct = tp + tn; tl,
t2, t3 for time points 1-3.

geneities and appearance of myelinatend and non-myelinated
white matter regions. Moreover, this paper aims at a joint 4D
segmentation of all time points rather than independent seg-
mentations of repeated scans per subject. Fig. 4 shows the
input MRI data after nonlinear co-registration, and Fig. 5 il-
lustrates the segmentation results for independent time point
segmentation (top) and joint 4D segmentation (bottom). A
qualitative assessment shows significant improvement of seg-
mentations of the 6 and 12 month’s scans, but quantitative val-
idation via eventually existing manual expert segmentations
will be necessary to support this observation.

Fig. 4. Clinical pediatric scans: columns 1-3 from left: 6, 12
and 24 months of age; rows 1-2 for T1w and T2w axial views.

Fig. 5. Segmentation of clinical data: columns 1-3 from left-
side for 6, 12 and 24 months of age; rows 1 for conventional
EM method, row 2 for proposed 4D segmentation.

Whereas this work assumes existing intra-subject nonlin-
ear registration of images across time points, which is much
less challenging than inter-subject registration due to high
self-similarity of same-subject anatomies, future work will
integrate the proposed 4D segmentation based on the new in-
tensity change modeling with co-registration, similar to the
framework by [5].
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