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Figure 1: Three images of the Lawrence-Livermore National Laboratory (LLNL) simulation of a Richtmyer-Meshkov instability (time
step 270; iso-value 16) at different level-of-detail (LOD)levels. While data is loaded asynchronously in the background it is possible to
fully interact with the scene. A kd-tree based LOD structureis used to bridge loading times while allowing interactive ray tracing of up
to four frames per second on a custom PC.

Abstract
The visualization of iso-surfaces from gridded volume data is an important tool in many scientific applications.
Today, it is possible to ray trace high-quality iso-surfaces at interactive frame rates even on commodity PCs.
However, current algorithms fail if the data set exceeds a certain size either because they are not designed for
out-of-core data sets or the loading times are too high because there is too much overhead involved in the out-of-
core (OOC) techniques. We propose a kd-tree based OOC data structure that allows to ray trace iso-surfaces of
large volumetric data sets of may giga bytes at interactive frame rates on a single PC. A LOD technique is used to
bridge loading times of data that is fetched asynchronously in the background. Using this framework we are able
to ray trace iso-surfaces between 2 and 4 fps on a single dual-core Opteron PC at640×480 resolution and an
in-core memory footprint that is only a fraction of the entire data size.

Categories and Subject Descriptors(according to ACM CCS): I.3.2 [Graphics Systems]: Stand-alone systems; I.3.6
[Methodology and Techniques]: Graphics data structures and data types; I.3.7 [Three-Dimensional Graphics and
Realism]: Ray tracing;

1. Introduction and Previous Work

A very important tool for exploring special properties of a
volumetric scalar field is the rendering of iso-surfaces. Iso-
surfaces show the distribution of a desired iso-valuec within
the volume data set. They consist of all points that satisfy the
trivariate functionf (x,y,z) = c. Interactive post-processing
applications should allow the user to select an arbitrary num-
ber of iso-values, alter them on-the-fly, navigate free in the
scene (zoom, rotate, pan), and allow to change freely shad-
ing and illumination parameters.

Primary acquisition sources for volumetric data sets are
(among others) Computed Tomography (CT) and Mag-
netic Resonance Imaging (MRI) scanners [HJ04] as well
as computational simulations like field and fluid simulations
[MCC∗99]. The volumetric data sets we are considering in
this work consist of single scalar values organized on recti-
linear grids.

1.1. Iso-Surface Rendering

In order to visualize an iso-surface it either has to be ex-
tracted entirely [LC87, Gib98], e.g. a triangle mesh is built
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as an approximation to the iso-surface, or the iso-surface is
directly rendered without an intermediate geometric repre-
sentation either by projection [Wes90, MSHC99, CRZP04,
NM05], graphics hardware (including special-purpose hard-
ware) [EKE01,RGW∗03,RPSC99] or ray tracing techniques
[PSL∗98a,DPH∗03,WFM∗05].

Today, the visualization of iso-surfaces is typically the do-
main of rasterization hardware that renders efficiently ex-
tracted triangle meshes. The latest generation of graphics
hardware is able to render several million shaded triangles
per second and highly optimized systems like InterViews3D
[HB04, HPB05] exploiting hardware acceleratedocclusion
culling andLOD can efficiently render massive models like a
complete Boeing 777 with more than 350 million triangles at
realtime frame rates. However, current graphics boards have
still some limitations i.e. the limited memory available and
the constrained programming model. Due to that, complex
scenarios including points, surfaces, and volume data plus
even advanced shading effects like shadows or reflections
are very difficult to render. Additionally, current algorithms
are usually limited to rendering a single object of a single
type. All of this limitations can be tackled by one or an other
way but many individual techniques are necessary leading to
a complex system design.

Algorithms that project the voxels onto the image plane,
i.e. splatting, are also not appropriate for a flexible out-of-
core iso-surface rendering system. Splatting algorithms gen-
erate in generalblurry images due to the usage of blending
kernels in image space [HJ04, SM00]. Recent approaches
(e.g. [CRZP04]) that can produce high-quality images are
not able to deliver interactive frame rates even for smaller
data sets due to high computational costs. Additionally, it is
at least non-trivial to render scenes with different primitives,
e.g. polygonal-and iso-surfaces, simultaneously. The same
holds also forobject-orderbased ray casting approaches
like [MJC02, NMHW02] that project cells, ormacro-cells,
onto the image-plane and perform ray marching through the
(macro-)cell for all the covered pixels.

Software based ray tracing on the other hand is extremely
flexible, has access to the global scene description, and can
handle different rendering primitives in a simple plug ’n’
play fashion. Additionally, surface-shader effects, once im-
plemented, operate across all primitives because they are
(mostly) independent of ray tracing and intersection com-
putations.

1.2. Massive Model Visualization

DeMarle et al. presented in [DPH∗03] an interactive out-of-
core iso-surface ray tracing engine. They exploit a PC cluster
to ray trace iso-surfaces from volume data sets that are too
large to fit into the main memory of a single PC. The core
rendering engine is basically a port of Parker et al’s *-Ray
engine [PSL∗98b, PPL∗99, PMS∗99]. The *-Ray ray tracer

is considered as one of the first interactive ray tracing sys-
tems and runs on a parallel shared memory SGI Onyx 2000
with typically 128 – 256 processors. For gridded volumes,
the ray tracer uses a hierarchical min/max grid acceleration
structure and a three level bricking approach with a very low
memory overhead for the acceleration structure. For a single
time-step of the LLNL data set only 8.5 MB of memory were
needed for the multi-level grid data structure. Their applica-
tion uses a typical client/server approach similar to Wald et
al’s distributed OpenRT [Wal04] rendering system. A mas-
ter system divides the image into rectangular tiles and dis-
tributes the tasks to the render nodes on a per tile basis. If
a node is a multi-processor system the render task is broken
down into sub tasks i.e. scan-lines. ADataServer on each
node is used as an abstraction layer for data management.
The DataServer is shared between all processors using
semaphoresandshared memory. If a ray touches a brick, it
must request the brick from theDataServer, which loads
the data from the network if the data is not present locally.
However, in order to achieve interactive rendering perfor-
mance a cluster setup with 32 render nodes had to be used.

Wald and Dietrich et al. showed in [DWS05, WDS04]
how to efficiently ray trace large-scale polygonal models,
i.e. a complete Boeing 777, on a scalable shared-memory
architecture as well as on commodity PCs. In order to ren-
der such massive models with several hundred million tri-
angles on commodity PCs with limited memory, an out-
of-core on-demandloading scheme was exploited. During
each traversal step of their kd-tree acceleration structure a
request is send to amemory-management unit(MMU) to
check whether the next required kd-tree node is already in
main-memory. If not, the request is placed in a priority-
queue. A separate loader thread fetches the requested data
asynchronously from the hard drive and marks the data as
present in the MMU. Two different render modes were pro-
posed. The first exploits so calledproxieswhich are pre-
rendered approximations of the model, at several LOD lev-
els, that are used until all data is loaded. A proxy is basically
a six-sided box where for each face a color is computed dur-
ing pre-processing. Whenever, a kd-tree node is not in mem-
ory the appropriate color of the proxy is chosen. This prox-
ies are similar to the ones used by Gobbetti et al. in their Far
Voxels approach [GM05] who use this approximations for
an efficient visualization of massive models using standard
graphics hardware. The disadvantage of this proxy methods
is that the geometry as well as the shading and illumina-
tion parameters cannot be altered because this information
is capturedin the proxies during pre-processing. Addition-
ally, the pre-processing of such data is very time consuming.
The pre-processing time for a single iso-surface of the LLNL
data set takes more than six hours on a 32 CPU cluster and
requires approximately 16GB on the hard disc [GM05]. The
second proposed method does not rely on any pre-processed
LOD structures and just colors pixels red when the next
node to be traversed is not in memory. This avoids the pre-
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processing of the proxies, while on the other hand, no mean-
ingful visualization is possible until most of the visible data
has been loaded. Wald exploits the second method for large
iso-surface ray tracing [WFM∗05].

Although it is possible to interact with the scene while
not all data is loaded this method has several drawbacks.
At first, since for each traversal step a request to the MMU
is send, the boundary cell – a cell that contains a piece of
the iso-surface – enumeration is thwarted and second their
depth-first-searchorder of the kd-tree nodes is not optimal
and such too many non-relevant data is loaded. For a par-
ticular view it might take up to 20 minutes for the LLNL
data set until all relevant data are loaded. This is not tolera-
ble even when the loaded data can be rendered at interactive
frame rates.

QSplat [RL00] is a multi-resolution point rendering al-
gorithm that exploits hierarchical bounding spheres (HBS)
data structure for visibility culling, level-of-detail control,
and rendering. For rendering a pixel, the HBS are traversed
until the size of a bounding sphere is smaller than a pre-
defined threshold or a leaf is reached. Then the data asso-
ciated with this node are splat onto the screen whereby the
size of the splat depends on a defined diameter. For shading a
pre-processed quantizedshading normalis used. An exten-
sion [RL01] allows to render large data sets in a streaming
fashion over a network. To do so, a bit-mask is used to de-
termine which parts of the HBS are present on the client. If
a node, that is not loaded yet, is requested, this request is
placed in a queue prioritized by the depth of the node in the
hierarchy. A separate loader-thread handles the communica-
tion with a data server and is responsible for the actual data
loading and bit-mask management. This is similar to Wald et
al’s. MMU technique [WDS04] for for handling out-of-core
data sets.

Recently, Knoll et al. [KWPH06] showed how to exploit
octrees for interactive iso-surface rendering. To do so, the
volume data is losslessly compressed using a branch-on-
need octree [WV92]. This octree is then also used as accel-
eration structure for on-the-fly iso-surface ray tracing. In a
later extension Knoll et al. [AKW06] added a LOD scheme
and packet traversal to increase the ray tracing performance
of the octree. Their latest results show that for time slice 270
of the LLNL data set interactive frame rates between 1.1 and
4.7 fps can be achieved on an Intel CoreDuo machine. Ad-
ditionally, the octree-compressed data set has only a size of
approximately 2.5GB.

1.3. Method Overview

In our approach we combine some of the previous mentioned
techniques to get a highly flexible and fast rendering system
that only requires a single commodity PC to allow for in-
teractive iso-surface ray tracing of large data sets with short
loading times. The main goal is to start immediately with

the exploration of the data set without the need to wait for
all, maybe multiple GB, of data. To do so, we first build
a LOD hierarchy of the volume. This LOD data is solely
used for rendering while not all data from the finest LOD
level is present. Then, for each LOD level we create an im-
plicit min/max kd-tree (Section2) and merge them together
such that we obtain a single kd-tree that is valid for all LOD
levels. This kd-tree and the LOD data are then decomposed
into treeletsand saved together in apage-baseddata struc-
ture (Section3.1). During rendering, a separate thread loads
all relevant treelets from the hard disc that are required for
rendering the desired iso-surfaces in a breadth-first-search
(bfs) order (Section3.2). Whenever a new LOD level is com-
pletely loaded, the render threads are notified such that they
can use a finer LOD for the next frame.

2. Implicit Min/Max KD-Trees

Kd-trees have proven to be an efficient acceleration structure
for ray tracing polygonal scenes [Hav01,Wal04,RSH05] as
well as volumetric data [SF90,WFM∗05].

In [WFM∗05] Wald et al. utilize implicit min/max kd-
trees for iso-surface ray tracing. In this context the term
implicit has two meanings. At first due to the usage of the
min/max values entire sub-trees can be culled during ray
traversal when they cannot contain the iso-surface. There-
fore the min/max kd-tree implicitely represents different kd-
trees for all different iso-values. Second, for rectilinear grid
structures the kd-tree nodes in the tree are not stored but are
implicitly given by the grid structure.

Using this implicit structure, all information that is actu-
ally required for kd-tree traversal can be store in small ta-
bles for each level of the kd-tree i.e. the splitting dimension
and position. There is also no need for a leaf indicator since
all leaf nodes are stored in the last level of the (complete)
kd-tree. All that remains to be stored are the min/max val-
ues in the kd-tree nodes. A further significant memory sav-
ing can be accomplished if the min/max values at the leaf
nodes are not stored, and instead are computed on the fly
from the cell’s voxels. This is tolerable since this computa-
tions have to be performed only at leaf nodes. Although other
data structures, i.e. octrees [KWPH06] require less memory
we decided to use kd-trees anyway as they are simpler to
implement while offering at the same time better ray tracing
performance and still require only a reasonable amount of
memory.

3. The Out-of-Core Data Structure

3.1. Building the Out-of-Core Data Structure

The first step in our approach is to build a LOD hierarchy of
the volume data set. Since we do not know in advance which
iso-values are interesting for the user, we use a simple 3D
Gauss-filter kernel to scale down the data set and do not try
to preserve the topology of iso-surfaces.
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LOD Hierarchy KD-Tree per LOD-Level Combined KD-Tree Treelet-Decomposition

...

memory page

...bit-table

Figure 1: The pre-process pipeline: At first we create a LOD hierarchy from the volume data. Then, for each LOD data set a
min/max kd-tree is built. Afterwards we join all LOD kd-trees into a single one. This kd-tree is finally decomposed into sub-trees
of a certain hight and together with the corresponding LOD data of the sub-tree stored in a treelet array on the hard-disc. While
rendering, a bit-table keeps track of what treelets are already fetched intomain-memory.

Then for each LOD level (including the original volume
data) a min/max kd-tree is built. These kd-trees are then
merged into a single one such that we have a min/max kd-
tree that is valid for rendering all LOD levels. To do so, just
the min/max intervals of the nodes have to be adjusted by
joining the corresponding min/max intervals. This merging
is necessary because the LOD filter shifts the range of values
and thus the kd-tree of the original data may not be valid for
all LOD volumes.

Once we have the merged min/max kd-tree, we decom-
pose this tree and the LOD volume data into treelets (see
Figure2). A treelet consists of a sub-tree of the min/max kd-
tree with a fixed heightN (e.g. 63 nodes forN = 6), a cor-
responding block of LOD voxels (similar to [BPTZ99]), or
voxels from the original data set at the last treelet level, an ID
that identifies the treelet, and the number of voxels in each
dimension (see Figure2). All sub-trees have the same height
except maybe the top-most sub-tree. Note that the number of
LOD levels correlates with the hight of the sub-trees. If we
have e.g. four levels of treelets, then we have also four LOD
levels.

IDVoxel DataMin/Max Values Padding

(2N-1) * (sizeof(voxel)/2) 8w*b*h*sizeof(voxel)

w,b,h
24

Figure 2: The structure and memory requirements of a
treelet. Min/max values, voxel data, an ID, and the dimen-
sions of the voxel data are grouped together. If the size of
a treelet is small enough multiple treelet structures can be
placed in one page on the hard disc. Width w, breadth b, and
height h of the voxel block include an outer layer of voxels
for calculating central differences for shading.

These treelets are saved in a page-based data structure that
allows a fast loading from the hard disc. Page-based means
that treelets will be stored with the size of amemory-page
on the hard disc. The size of the page is given by the op-

erating system and is in our case 4k bytes. This page based
treelet approch is similar to the blocklets approach by Bajaj
et al. [BPTZ99] and Zhang et al. [ZN03]. If the treelets do
not have the size of a page, the data will be padded to page
size, or the next multiple of page size if the treelet is larger
than one page. If the size of a treelet is small enough multiple
treelets can be placed in one page. All treelets of a particu-
lar LOD level are stored consecutive in breadth-first-search
order.

In order to allow a proper shading, not only the voxel data
of the corresponding voxel region are placed in a treelet but
also an outer layer of voxels such that the central difference
can be calculated for estimating gradients. To decrease the
memory requirement further the min/max values are quan-
tized to half of the original bit resolution. The additional
traversal operations that are caused by a reduced efficiency
of the sub-tree culling decreases the overall rendering per-
formance typically in the range of five to ten percent.

3.2. Traversal and Treelet Loading

Our kd-tree traversal scheme is the same as in Wald et al’s.
[WFM∗05] approach (see [WFM∗05,Wal04] for a thorough
discussion). However, our out-of-core approach allows for
faster traversal performance while rendering.

3.2.1. Traversal

Every traversal step and every access to voxel data at the leaf
nodes requires a MMU request (see Section1.2) in Wald’s
approach which slows down the overall rendering perfor-
mance and loading time until all relevant data is fetched from
the hard disc. With our new approach only one MMU re-
quest per treelet is required. Figure3 sketches the traversal
algorithm.

Another advantage is that we know the height of the sub-
tree in a treelet. This fact can be used to remove a conditional
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Treelet = Load First Treelet
Start Loader Thread
while(1)
{

Traverse KD-Tree Sub-Tree in Treelet

if(CurrentTreeletLevel < LoadedLevels)
{

Treelet = Calculate Next TreeletAddr
Continue

}

hit = Intersect Treelet
if (hit) Shade Pixel
Return

}

Figure 3: Traversal pseudo-code: The first treelet is loaded
from the hard disc and one loader thread is started before
rendering. Afterwards, for each ray the traversal starts with
the first treelet and traverses as much LOD levels as have
been already loaded. The loader thread updates the max-
imum traversal depth for the render threads whenever the
necessary treelets of a new LOD level are loaded. After
traversal the usual ray iso-surface intersection and shading
takes place with the current treelet data.

(leaf-node check) in the innermost traversal loop and thus
reduces the traversal costs considerably.

3.2.2. Treelet Loading

For loading the required data from the hard disc we exploit a
similar memory-management-unit (MMU) technique as Di-
etrich and Wald et al. [DWS05,WDS04,WFM∗05].

The MMU has to perform two tasks: The first task is to
load all treelets that are required for rendering a desired iso-
surface withoutblocking readsand second to notify the ren-
der threads whenever all necessary treelets of a new LOD
level are loaded.

To do so, the MMU creates a loader thread that manually
fetches the data required for the current iso-value so that the
loading process does not stall the render threads. The loader
thread sweeps over the treelets, which are stored in breadth-
first-search manner, and checks the min/max intervals of the
leaf nodes of the kd-tree sub-trees. If the iso-value is within
the min/max interval both children will be loaded and after-
wards marked as present in a bit-table. For every memory-
page this bit-table has an entry that is covered by themmaped
(memory mapped) file with treelets. Before the sweep pro-
cess starts the first treelet is loaded separately to assure that
it is available. The bit list is necessary because we have to
know in LOD level+1 which treelets have been loaded in

the previous level and thus do not touch unneeded data on
the hard disc.

4. Results

In order to evaluate the efficiency of our out-of-core data
structure we measured performance numbers for two data
sets: Time-step 270 of the LLNL Richtmyer-Meshkov insta-
bility with a voxel resolution of 20482× 1920 as well as a
synthetic data set Attractor (see Figure4).

Figure 4: Example images of our test scenes: LLNL and At-
tractor rendered with progressive soft-shadows and phong
shading between 1.2 and 1.9 fps at640×480 image resolu-
tion and a single ray traversal.

The Attractor volume consists of three different 3D-
attractors and a voxel resolution of 20483. Both data sets use
a 8-bit data values. The test system is a dual-core Opteron
275 (2.2GHz) PC with 8GB main memory and all measure-
ments are performed with two render threads. Image reso-
lution is always 640× 480 pixel and for shading a simple
diffuse surface-shader is used.

4.1. Treelet-Size Influence

As described in Section3.1 we decompose the LOD data
and min/max kd-tree into a treelet hierarchy. The number
of treelet levels influences the required disc space, in-core
RAM for a particular iso-surface, loading time, and render-
ing performance. Table1 shows some results when we in-
crease the height of the treelets, and thus reduce the number
of levels in the treelet hierarchy. The pre-processing time in
Table1 includes loading/writing the data from/to hard disc,

Treelet Pre-process Disc Working Loading
Height Time (h) Space (GB) Set (GB) Time (Min) FPS

3 17 292 16.0 120 1.0
6 3 66 10.0 30 1.8
9 1 33 6.1 5 2.5

Table 1: Performance numbers for the LLNL data set with
increasing treelet heights. If we increase the treelet height,
the pre-processing time, the required in-core memory for
rendering a particular iso-surface, and the loading time of
the relevant data decrease significantly. At the same time the
rendering performance almost doubles.
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LOD creation, min/max kd-tree building, and merging. In
our experiments we found that a treelet height of nine yields
the best overall performance numbers. With larger treelets,
some numbers i.e. the required in-core RAM increase again.

4.2. Overall Rendering Performance

The overall rendering performance is presented in Table2
(see Figures4, 5). As the fps numbers show we always
achieve interactive rendering performance. These numbers
indicate the fps for the finest level in our hierarchy. The
rendering of coarser LOD levels is faster and drops down
with every finer LOD level. Furthermore, the required in-

Loading Working FPS
Scene Iso Time (Min) Set (GB) LQ HQ

LLNL (zoom) 16 5 6.1 2.7 1.3
LLNL (overview) 16 5 6.1 2.3 1.2
Attr (zoom) 25 4 2.1 3.1 1.6
Attr (overview) 25 4 2.1 3.5 1.9

Table 2: Overall rendering performance for our two test
scenes (Figures4, 5) for low (LQ) and high quality (HQ)
rendering. As the results show, independent from the view-
point at least interactive frame rates can be achieved. The
loading time is the time until all relevant data from the finest
level are loaded.

core memory is reasonable, especially if we consider that
we use quantized min/max values in the treelets. This means
that we not only load the treelets for a single iso-surface but
all treelets for a quantized “bucket”.

4.3. Comparison

In comparison to the approach of DeMarle et al. [DPH∗03]
we achieve almost the same rendering performance using
only a single PC rather then a 32 PC cluster setup. This re-
duces the hardware requirements significantly.

In addition, we achieve very fast loading times due to
the linear memory-page loading from hard disc. Wald et
al’s [WFM∗05] out-of-core method requires for the LLNL
data set approximately 18 minutes until all relevant data
are loaded (see Section1.2). However, only the visible data
are loaded and if the camera position changes loading starts
again. This is in contrast to our method were we load all rel-
evant data for an iso-surface independent of visibility. Fur-
thermore, our in-core footprint is smaller: 6.1GB in our sys-
tem compared to 8.0GB in Wald’s approach (for all views).

An additional plus is the faster kd-tree traversal. Due to
our simple out-of-core scheme we are able to achieve ap-
proximately twice the rendering performance of Wald’s ap-
proach.

Compared to the approach of Knoll et al. [KWPH06,
AKW06] we have a higher rendering performance but on

the other side require more memory due to the usage of a
kd-tree rather than octree. Nevertheless, both approaches are
orthogonal to each other. Both approaches could be com-
bined to a single system either by adding their compression
scheme and LOD usage to our system or by extending their
approach with the out-of-core approach.

5. Conclusions and Future Work

We have presented a fast out-of-core iso-surface rendering
system that is able to render giga-byte data sets at interactive
frame rates on commodity PCs. As the results show we out-
perform the current state-of-the-art iso-surface ray tracing
systems in terms higher rendering performance and shorter
loading times. Additionally, the out-of-core scheme allows
for immediate starting the exploration of the data set and
the in-core memory requirements are smaller than the origi-
nal data set size. Finally the hardware requirements are still
reasonable although we need considerably more hard-disc
memory compared to [KWPH06].

To further improve the usability of our system, we will
extend our approach in various ways. Currently we only use
a single-ray traversal and analyze different traversal strate-
gies for kd-trees to support larger ray bundles similar to
[WBS06, LYTM06] for BVH’s. Our focus in that direction
is to support secondary rays as cheap as possible i.e. if rays
have no common origin. A first attempt with the algorithm of
Reshetov et al. [RSH05] was not successful since rendering
performance degenerated too fast with an increasing number
of secondary rays due to their ray-frustum approach.

In order to reduce the in-core and hard-disc memory foot-
print of our approach we want to exploit lossless multi-
resolution compression schemes e.g. wavelets, and addition-
ally avoid the storage of min/max values in each kd-tree
level. Furthermore, we want to incorporate the time-domain
for such massive models.
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