
Adaptive XML Shredding:

Architecture, Implementation, and Challenges

Juliana Freire� and Jérôme Siméon

Bell Laboratories
600 Mountain Avenue, Murray Hill, NJ 07974, USA

{juliana,simeon}@research.bell-labs.com

1 Introduction

As XML data becomes central to business-critical applications, there is a grow-
ing need for efficient and reliable XML storage. Two main approaches have been
proposed for storing XML data: native and colonial systems. Native systems
(e.g., [9, 20]) are designed from the ground up specifically for XML and XML
query languages. Colonial systems (e.g., [5, 7, 19]), on the other hand, attempt
to reuse existing commercial database systems (DBMS) by mapping XML into
the underlying model used by the DBMS. Colonial systems can thus leverage
features, such as concurrency control, crash recovery, scalability, and highly op-
timized query processors available in the DMBS, making them an attractive
alternative for managing XML data. However, several technical challenges need
to be addressed in terms of architecture, algorithms, and implementation of these
systems. In this paper, we described how these issues are addressed in the context
of colonial systems that use relational databases as the underlying DBMS.

The mismatch between the XML and the relational models implies that one
must first shred an XML tree-structured document so that it fits into flat re-
lational tables. Therefore, a mechanism is needed to determine the appropriate
storage configuration. Once a mapping is selected, the system must provide sup-
port for loading the XML data into the database, and to translate queries over
the original document into queries over the mapped data. There are different
approaches for these problems. For example, while commercial relational sys-
tems require users to manually define mappings [14, 15], techniques have been
proposed to automatically derive XML-to-relational mappings that adopt either
a fixed shredding strategy [19, 11] or that derive the best shredding for a given
application [5, 4]. Different techniques have also been proposed for query trans-
lation [10, 6].

Although individual problems pertaining to colonial XML storage systems
have been studied in isolation, to the best of our knowledge, the design and
implementation of a complete colonial system has not been described in the lit-
erature. In this paper, we discuss the design and implementation of LegoDB [5],
a colonial XML data management system. In particular, we present the complete
� Current address: juliana@cse.ogi.edu.

S. Bressan et al. (Eds.): EEXTT and DIWeb 2002, LNCS 2590, pp. 104–116, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Adaptive XML Shredding: Architecture, Implementation, and Challenges 105

TABLE Show
(Show_id INT,

type STRING,
title STRING,
year INT,
box_office INT,
video_sales INT,
seasons INT,
description STRING)

TABLE Review
(Reviews_id INT,

tilde STRING,
reviews STRING,
parent_Show INT)

TABLE Show
(Show_id INT,
type STRING,
title STRING,
year INT,
box_office INT,
video_sales INT,
seasons INT,
description STRING)

TABLE NYT_Reviews
(Reviews_id INT,
review STRING,
parent_Show INT)

TABLE Reviews
(Reviews_id INT,
tilde STRING,
review STRING,
parent_Show INT)

TABLE Show_Part1
(Show_Part1_id INT,

type STRING,
title STRING,
year INT,
box_office INT,
video_sales INT)

TABLE Show_Part2
(Show_Part2_id INT,

type STRING,
title STRING,
year INT,
seasons INT,
description STRING)

TABLE Reviews
(Reviews_id INT,

tilde STRING,
review STRING,
parent_Show INT)

(1) (2) (3)

Fig. 1. Three storage configurations for the movie database

architecture of the system, its implementation, and the describe underlying al-
gorithms.

The paper is organized as follows. Section 2 motivates the need for adaptive
XML shredding. Section 3 presents the general architecture of a colonial system
that supports adaptive shredding. Sections 4, 5 and 6 describe the components
of such an architecture and their implementation in the LegoDB system.

2 The Need for Adaptive Shredding

In this section, we motivate the need for adaptive shredding through a scenario
inspired from the Internet Movie Database (http://www.imdb.com), which pro-
vides access to information about movies and television shows. A fragment of
Document Type Definition (DTD) corresponding to this document is illustrated
below.

<!ELEMENT imdb (show*, director*, actor*)>
<!ELEMENT show (title, year, reviews*,

((box_office, video_sales)
|(seasons, description, episode*)))>

<!ATTLIST show type CDATA #REQUIRED>

<!ELEMENT title (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT review (#PCDATA)>
....

An IMDB document contains a collection of shows, movie directors and ac-
tors. Each show can be either a movie or a TV show. Movies and TV shows have
some information in common (e.g., title and year of production), but they also
contain information that is specific to each (e.g., movies have a box office and
video sales, TV shows have seasons).

There are many different ways to store data that conforms with the IMDB
DTD in a relational database. Figure 1 shows three alternatives. The first con-
figuration results from inlining as many elements as possible in a given table,

106 Juliana Freire and Jérôme Siméon

roughly corresponding to the shared strategy proposed in [19]. The second con-
figuration is obtained from the first by partitioning the Reviews table into two
tables (one that contains New York Times reviews, and another for reviews
from other sources). Finally, the third configuration is obtained from the first
by splitting the Show table into Show Part1 for movies, and Show Part2 for TV
shows.

Even though a given configuration can be efficient for one application, it may
lead to poor performance for others. Thus, it is not possible to select the best
configuration in isolation, without taking the application characteristics and cost
into account. As an illustration, consider the following XQuery [3] queries:

Q1: Q2:
for $v in imdb/show for $v in imdb/show return $v
where $v/year = 1999
return ($v/title, $v/year, Q4:

$v/nyt_reviews) for $v in imdb/show
return <result>

Q3: { $v/title, $v/year,
for $v in imdb/show (for $e in $v/episode
where $v/title = c3 where $e/guest_director = c4
return $v/description return $e) }

</result>

Queries Q1 and Q2 are typical of a publishing scenario as in [10] (i.e., to send
a movie catalog to an interested partner). Queries Q3 and Q4 contain selection
criteria and are typical of interactive lookup queries, such as the ones issued
against the IMDB Web site itself. We then define two workloads, W1 = {Q1 :
0.4, Q2 : 0.4, Q3 : 0.1, Q4 : 0.1} and W2 = {Q1 : 0.1, Q2 : 0.1, Q3 : 0.4, Q4 : 0.4},
where each workload contains a set of queries and an associated weight that
reflects the importance of each query for the application.

Figure 2 shows the estimated costs for each query and workload, as returned
by the LegoDB optimizer for each configuration in Figure 1 (costs are normalized
by the costs of mapping 1). Only the first of the three storage mappings shown
in Figure 1 can be generated by previous heuristic approaches. However, this
mapping has significant disadvantages for either workload we consider. First,
due to its treatment of union, it inlines several fields which are not present in
all the data, making the Show relation wider than necessary. Second, when the
entire Show relation is exported as a single document, the records corresponding
to movies need not be joined with the Episode tables, but this join is required by
the first two configurations. Finally, the large Description element need not be

Configuration 1 Configuration 2 Configuration 3

Q1 1.00 0.83 1.27

Q2 1.00 0.50 0.48

Q3 1.00 1.00 0.17

Q4 1.00 1.19 0.40

W1 1.00 0.75 0.75

W2 1.00 1.01 0.40

Fig. 2. Performance of Different Configurations

Adaptive XML Shredding: Architecture, Implementation, and Challenges 107

inlined unless it is frequently queried. The principle behind adaptive shredding is
to automatically explore a space of possible relational configurations, and select
the configuration that leads to the lowest cost for evaluating the application
workload.

3 Principles and Architecture

A colonial XML storage system has two main components: storage design and
run-time. The main task of the design component is to generate a target rela-
tional schema to store the input XML document. In adaptive shredding systems
such as LegoDB, this component is rather complex. It takes into account informa-
tion about the target application to both generate a space of possible mappings
and evaluate the effectiveness of the derived mappings.

Figure 3(a) shows the architecture of the design component in LegoDB. The
LegoDB storage engine takes as inputs: an XML Schema, an XQuery workload,
and a set of sample documents. As output, it produces an efficient relational
configuration (a set of relational tables) as well as a mapping specification. The
modules of the storage design components are described below.

StatiX The first task in the system is to extract statistical information about
both the values and structure of the input XML document. This information
is used to derive precise relational statistics that are needed by the relational
optimizer to accurately estimate the cost of the query workload. In LegoDB, this
is done by the StatiX module, described in Section 5.
Schema Normalization The statistics together with the XML Schema are
sent to the Schema Normalization module, which produces a physical schema
(p-schema). P-schemas extend XML Schemas with statistical information, and

Translation Module
mapping specification

tuples SQL query/results

XQuery Result
XML

efficient configuration

Storage Design

mapping specification

efficient configuration

specification
mapping

Schema
Normalization

Relational Optimizer

Transformation
Schema

Loader

Run−time Support

document
XML

StatiX

XML Schema

P−schema

P−schema

cost

XML document

XML data statistics

XQuery workload

RDBMS
statistics and SQL
workload

(b)

Query Translation

(a)

Relational tables,

Fig. 3. Design and Run-Time Architectures

108 Juliana Freire and Jérôme Siméon

have a structure such that each type defined in the schema can be directly
mapped into a relational table (see Section 4).
Schema Transformation The system searches for an efficient relational con-
figuration by repeatedly transforming p-schemas, i.e., generating new p-schemas
that are structurally different, but that validate the same documents. Each new
p-schema corresponds to a possible relational configuration. XML Schema trans-
formations and search algorithms are discussed in Section 6.
Translation Module For each p-schema, the Translation Module generates
a corresponding relational schema, translates the XQuery workload into SQL,
and derives the appropriate relational statistics.
Relational Optimizer LegoDB uses a standard relational optimizer for cost
estimation as a black box. As a result, it is possible to use LegoDB with differ-
ent databases whose optimizers have different cost-models. The quality of the
derived configurations depends on the accuracy of the estimates computed by
the optimizer.

The design module produces a specification for the mapping that has the
lowest cost among the alternatives explored by LegoDB. This specification is then
used by the Loader and Query Translation modules (see Figure 3(b)) to create
and populate the corresponding tables in the RDBMS, and answer application
queries.

Loader Given a mapping specification and an XML document, the Loader
module populates the target relational database. As described in Section 4.3, the
Loader extends an XML Schema validating parser to generate tuples a document
is validated.
Query Translator The Query Translation module, described in Section 4.2 is
used to perform query translation on behalf of the target XML application.
Note that other tools for mapping XQuery to SQL (e.g., [10]) could be used in
LegoDB.

4 XML-to-Relational Translation

4.1 Mapping Schemas

LegoDB [5] generates a space of possible schema mappings by repeatedly trans-
forming the original XML Schema, and for each transformed schema, applying
a fixed mapping from XML Schema into relations. In this section, we describe
how the fixed mapping is implemented. Details of the schema transformations
and search algorithm are given in Section 6.

In order to guarantee the existence of a fixed mapping, we define the notion of
physical schema (p-schema). In a p-schema, each type name defines a structure
that can be directly mapped to a relation. More precisely, this structure must
be such that it contains only (possibly nested) singleton elements with a simple
value; (possibly nested) optional elements with a simple value; and all complex
regular expressions may only contain type names. This last condition ensures

Adaptive XML Shredding: Architecture, Implementation, and Challenges 109

that complex regular expressions, such as union and repetition, do not contain
actual values. As a result, a schema that verifies such criteria can be mapped to
relations by creating a table for each type, and creating a column in that table for
each element with a simple value. In the examples that follow, for simplicity, we
use the type notation from the XQuery type system, described in [8]. A formal
definition of p-schemas and the corresponding grammar appear in [5].

We now sketch the normalization algorithm used to generate a p-schema
from an XML Schema. The algorithm is applied top-down on the structure of
the type, and for each type in the original schema. For a type definition define

type X { T }, where X is the name of the type, and T is the structure defining
that type, the normalization algorithm is first applied on T. This returns a new
type T’ along with a set of new type definitions define type X1 { T1 } ... define
type Xn { Tn }, where all of the type T’, T1, ..., Tn are normalized. A given type
structure T is normalized, recursively, as follows:

– If the type is an atomic type (e.g., string), return the type unchanged.
– If the type is an (optional) element declaration, then return the element decla-
ration with its content normalized.
– If the type is a sequence of two types, return the sequence of their normalized
types.
– If the type is a repetition (e.g., element a*), then insert a new type name with
the normalized content of the original type (e.g., X1* with define type X1 {
element a }).
– If the type is a union (e.g., element a | element b), then create a new type
name for each component of the union with the contents of the original type
normalized (e.g., X1 | X2 with define type X1 { element a } and define type

X2 { element b }).

After the original schema is normalized, transformations can be applied on
the resulting p-schema. These transformations always result in a p-schema which
can then be mapped into a relational configuration. The algorithm to map a p-
schema into a set of relations is as follows:

– Create one relation RX for each type name X;
– For each relation RX, create a key that stores the id of the corresponding
element;
– For each relation RX, create a foreign key parent PX to all the relations RPX
such that PX is a parent type of X;
– Create a column in Ra for each element a inside the type X that contains a value;
– If the data type is contained within an optional type then the corresponding
column can contain a null value.

4.2 Mapping Queries

The LegoDB prototype implements a simple version of query translation for
a fragment of XQuery which consists of: simple path navigation, selections, joins,

110 Juliana Freire and Jérôme Siméon

and nested queries. More sophisticated query mapping techniques such as the
ones proposed in [10, 6] can be integrated into the system.

Translating an XQuery query into SQL requires analysis of the XPath ex-
pressions contained in the query and information about the schema mapping in
order to determine the relational tables and columns to be accessed. In LegoDB,
the mapping of XQuery to SQL is done in two phases. The first phase rewrites
an XQuery XQ in a normal form XQnf . For example, the query:

for $show in document("www.imdb.com/imdb.xml")/show
where $show/year >= 2000
return $show/title, $show/reviews, $show/box_office

is normalized into:

let $imdbdoc := document("www.imdb.com/imdb.xml")
for $show in $imdbdoc/show, $v_title in $show/title,

$v_box in $show/box_office, $v_year in $show/year,
$v_reviews in $show/reviews

where $v_year >= 2000
return ($v_title, $v_reviews, $v_box)

XQnf is then translated into an equivalent SQL query for the given p-schema:

– SELECT clause. For each variable v in the XQuery return clause, if v refers
to a type in the p-schema, all attributes of the corresponding table are added
to the clause. Otherwise, if v refers to an element with no associated type, the
corresponding attribute is added to the clause.
– FROM clause. For each variable v mentioned in the XQuery (in both where

and return clauses), if v refers to a type T in the p-schema, the corresponding
table RT is added to the clause.
–WHERE clause. Conditions in where clause are translated in a straightforward
manner, by replacing variable occurrences with the appropriate column name.
In addition, for each variable in the XQuery, if the path expression defining the
variable includes elements in that are mapped into separate tables, a condition
must be added to enforce the key/foreign-key constraint.

For example, given the third configuration in Figure 1, the query mapping
algorithm generates the following SQL Query:

SELECT S1.title, S1.box_office, R.Reviews id
FROM Show Part1 S1, Reviews R
WHERE S1.Show Part1 id = R.parent_Show AND S1.year >= 2001

4.3 Mapping Data

After a mapping is selected by LegoDB, the next step is to create the database
tables and load the XML documents. LegoDB extends an XML Schema validat-
ing parser to generate tuples as documents are validated.1 Validation is a basic
1 In LegoDB, both data loading and statistics gathering are performed during docu-
ment validation (see Section5).

Adaptive XML Shredding: Architecture, Implementation, and Challenges 111

operation for XML documents. The most important property we use from XML
Schema validation is the notion of type assignment: during validation each node
in the XML tree is assigned a unique type name from the schema. Since the
mappings are type-based, and one relation is created per type, the parser out-
puts a tuple for each instance of type encountered during validation. We describe
below the process used in the current prototype to generate insert statements
that populate the target database.

– Validation is performed top down starting at the root of the document.
– For each type name in the schema, a structure that represents a tuple is kept in
memory to store the current part of the type which is validated. This structure
is created based on the fixed mapping described in Section 4.
– Each time validation reaches a value that corresponds to an attribute of a tuple,
the tuple is populated accordingly.
– When the tuple is full, it is flushed on disk as an insert statement.
– This process is repeated until the document is fully validated.

Note that currently this phase is done in LegoDB using a batch file. It is also
possible to directly populate the database using ODBC, or to use more efficient
bulk-loading facilities.

5 Statistics and Cost Estimation

LegoDB uses a standard relational optimizer [18] for cost estimation. But in
order to derive accurate cost estimates, the optimizer needs accurate statistics.
In LegoDB, the StatiX module is responsible for gathering statistics about the
input XML document. As described in [12], it is important that these statistics
capture both value and structural skews present in the data, and that they
contain enough information so that accurate relational statistics can be derived
as transformations are applied to the XML Schema.

Similar to data loading, statistics gathering is performed simultaneously with
document validation. StatiX gathers statistics on a per-type basis. As a document
is validated, globally unique identifiers (IDs) are assigned to all instances of the
types defined in the schema; and together with these ID assignments, the system
keeps track of the cardinality of each edge in the XML Schema type graph.
Using this information, structural histograms constructed which use the IDs to
summarize information about how elements are connected. Note that, while
StatiX uses histograms in a novel way to summarize structural information,
histograms are also used in a more traditional sense: value histograms can be
built for types that are defined in terms of base types (e.g., Integer).

Statistics gathering proceeds as follow. First, each distinct type in the XML
Schema is assigned a unique type ID off-line. Then, for each type ID, we maintain
a structure which contains: (1) a counter for the next available ID for that type,
and (2) a set of all parent IDs that have been processed for that type. During
document validation, the validation function is given the current parent ID.
Whenever a new instance of the type is encountered, it is assigned a local ID

112 Juliana Freire and Jérôme Siméon

using the sequential counter associated with the type, and the current parent
ID is added to the parent set for the corresponding type. The global ID of the
element is then simply obtained by concatenating the associated type id and
its local id. The modified part of the standard validation procedure is given in
pseudo-code below.

/* Type struct is a~counter plus parent types */
type TypeStructure = { counter : integer; parents : [ID] }

/* We maintain a~type structure for each type */
AllTypes := [(typename,type_structure)]

/* Maintains the type structure and returns the new type ID */
fun add˙to˙type(T : Type, ParentID : ID)
{ TS := find˙type˙structure(AllTypes,T); /* get the type structure for T */

NewID := build˙id(T, TS.counter); /* creates new ID */
TS.counter := TS.counter+1; /* increments the counter */
TS.parents := add(ParentID, TS.parents) /* adds parent ID */
return NewID; }

/* Here is a~part of the validation function */
fun validate˙sequence (S : Sequence, R : RegExp, ParentID : ID)
{ Deriv := derivatives(R); /* computes the derivatives */

Node := first(S); /* get the first node */
(NodeType,R’) := match(Deriv,Node); /* find the node type for the node */

CurrentID := add˙to˙type(NodeType, ParentID); /* get the ID of the node */

validate˙node(Node,NodeType,CurrentID); /* Validate the children of the node */
validate˙sequence(rest(S), R’, ParentID); /* validates the rest */ }

The structural information gathered during validation can be summarized
using standard histogram techniques. A variety of histogram constructions have
been described in the literature [17] – the most common are equi-width his-
tograms, wherein the domain range covered by each histogram bucket is the
same, and equi-depth histograms, wherein the frequency assigned to each bucket
is the same. Since it has been shown in [16] that equi-depth histograms result
in significantly less estimation error as compared to equi-width histograms, we
have implemented the former in StatiX.

6 Searching

In this section, we describe how a space of alternative shreddings is constructed
and techniques to search for the best shredding for a given application.

6.1 Transforming P-schemas

There are many different schemas that validate a given document. For instance,
different but equivalent regular expressions (e.g., (a(b|c*)) ((a,b)|(a,c*)))
can describe the contents of a given element. In addition, the presence or absence
of a type name does not change the semantics of the XML Schema.

By transforming regular expressions that define XML elements, and by adding
and removing types, LegoDB derives a series of equivalent schemas. These schemas

Adaptive XML Shredding: Architecture, Implementation, and Challenges 113

have distinct type structures that when mapped into relations using the fixed
type-to-relation mapping (Section 4), lead to distinct relational configurations.
There is large number of possible transformations that can be applied to XML
Schemas, and we describe some below. For a more comprehensive discussion on
transformations used in LegoDB, the reader is referred to [5].

Inlining/Outlining. In an XML Schema, associating a type name to a given
nested element (outlining) or nesting its definition directly within its parent
element (inlining) does not change the semantics of the schema, i.e., the modified
schema validates the same set of documents. However, rewriting an XML Schema
in that way impacts the mapped relational schema by inlining or outlining the
corresponding element within its parent table. Inlining is illustrated below:

define type TV {
element seasons { int },
type Description,
type Episode*

}
define type Description {
element description { string }

}

→

define type TV {
element seasons { int },
element description { string },
type Episode*

}

At the relational level, this rewriting corresponds to the following transformation:
TABLE TV
(TV_id INT,

seasons STRING,
parent_Show INT)

TABLE Description
(Description_id INT,

description STRING,
parent_TV INT)

→

TABLE TV
(TV_id INT,

seasons STRING,
descrip-

tion STRING,
parent_Show INT)

Note that inlining is the basis for the strategies proposed in [19]. It reduces
the need for joins when accessing the content of an element, but at the same
time it increases the size of the corresponding table and the cost of retrieving
individual tuples. In the example above, the benefits of inlining or outlining
description element within the TV type depend both on the access frequency for
this element in the workload as well as its length.

Union Factorization/Distribution. Union types are often used to add some de-
gree of flexibility to the schema. As queries can have different access patterns
on unions, e.g., access either parts together or independently, it is essential that
appropriate storage structures are derived. LegoDB uses simple distribution laws
on regular expressions to explore alternative storage structures for union. The
first law ((a,(b|c)) == (a,b | a,c)) allows distribution of a union within a reg-
ular expression. The second law (a[t1|t2] == a[t1]|a[t2]) allows to distribute
a union over an element (crossing element boundaries). For example, in Figure 1,
applying these two laws on configuration 1 leads to configuration 3. The union
transformations highlight the advantages of working directly at the XML Schema
level. The horizontal partitioning of the relational schema derived from the con-
figuration (3) in Figure 1 would not be easily found by a relational physical-
design tool, since the information about the set of attributes involved in the
union would not be available in the relational setting.

114 Juliana Freire and Jérôme Siméon

6.2 Searching for the Best Shredding

By repeatedly applying schema transformations, LegoDB generates a space of al-
ternative p-schemas and corresponding relational configurations. Since this space
can be very large (possibly infinite), it is not feasible to perform an exhaustive
search. As shown in Algorithm 6.1, LegoDB uses a greedy heuristic to prune the
search space. The algorithm begins by deriving an initial configuration pSchema
from the given XML Schema xSchema (line 3). Next, the cost of this configu-
ration, with respect to the given query workload xWkld and the data statistics
xStats is computed using the function GetPSchemaCost which will be described
in a moment (line 3). The greedy search (lines 5-16) iteratively updates pSchema
to the cheapest configuration that can be derived from pSchema using a single
transformation. Specifically, in each iteration, a list of candidate configurations
pSchemaList is created by applying all applicable transformations to the current
configuration pSchema (line 7). Each of these candidate configurations is eval-
uated using GetPSchemaCost and the configuration with the smallest cost is
selected (lines 8-14). This process is repeated until the current configuration can
no longer be improved. Note the use of the function ApplyT ransformations,
which applies the schema transformations described above.

Algorithm 6.1 Greedy Heuristic for Finding an Efficient Configuration

Procedure GreedySearch
Input: xSchema : XML Schema,

xWkld : XML query workload,
xStats : XML data statistics

Output: pSchema : an efficient physical schema
1 begin

minCost = ∞;
pSchema = GetInitialPhysicalSchema(xSchema)
cost = GetPSchemaCost(pSchema, xWkld, xStats)

5 while (cost < minCost) do
minCost = cost
pSchemaList = ApplyTransformations(pSchema)
for each pSchema’ ∈ pSchemaList do
cost’ = GetPSchemaCost(pSchema’, xWkld, xStats)

10 if cost’ < cost then
cost = cost’
pSchema = pSchema’

endif
endfor

15 endwhile
return pSchema

end.

GetPSchemaCost computes the cost of a configuration given a pSchema,
the XML Query workload xWkld, and the XML data statistics xStats. First,
pSchema is used to derive the corresponding relational schema (Section 4). This
mapping is also used to translate xStats into the corresponding statistics for the
relational data (Section 5), as well as to translate individual queries in xWkld
into the corresponding relational queries in SQL (Section 4). The resulting rela-

Adaptive XML Shredding: Architecture, Implementation, and Challenges 115

tional schema and the statistics are taken as input by a relational optimizer to
compute the expected cost of computing a query in the SQL workload derived
as above; this cost is returned as the cost of the given pSchema.

Note that the algorithm does not restrict the kind of optimizer used (trans-
formational or rule-based, linear or bushy, etc. [13]); although, obviously, the
optimizer should reflect the actual costs in the target relational system. As a re-
sult, different database systems that use different optimizers and cost-models
can easily be connected to LegoDB. Also note that physical design tools such as
DB2 Advisor [21] and Microsoft’s Tuning Wizard [2, 1] are complementary to
LegoDB.

The first prototype of LegoDB implements a greedy search over inline and
outline transformations, and experiments show this strategy is both efficient and
effective in practice [5].

7 Discussion

In this paper, we discussed the main issues involved in building a colonial XML
storage system based on adaptive shredding. We presented the architecture of
LegoDB, described the implementation of its various components, and the under-
lying algorithms. The prototype implementation described here has been demon-
strated at VLDB 2002 [4].

Initial experiments have shown that LegoDB is able to derive efficient rela-
tional configurations in a reasonable amount of time. We are currently investigat-
ing alternative search strategies that, in addition to inlining and outlining, also
considers other transformations (e.g., union distribution, repetition split, etc).
When additional transformations are considered, there is an explosion in the size
search space, and a simple greedy strategy may miss interesting configurations.

In our prototype, we use the optimizer developed by Roy et al [18] to obtain
cost estimates. In a real application, the optimizer should reflect the actual costs
in the target relational system. We are currently investigating how to connect
LegoDB to commercial RDBMS so that cost estimates can be obtained from
these systems.

Acknowledgments

We would like to thank Jayant Haritsa, Maya Ramanath, Prasan Roy and Philip
Bohannon for their invaluable contributions to the LegoDB project.

References

[1] S. Agrawal, S. Chaudhuri, and V.R. Narasayya. Automated selection of mate-
rialized views and indexes in SQL databases. In Proc. of VLDB, 2000. 115

[2] S. Agrawal, S. Chaudhuri, and V.R. Narasayya. Materialized view and index
selection tool for microsoft sql server 2000. In Proc. of SIGMOD, 2001. 115

116 Juliana Freire and Jérôme Siméon

[3] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, J. Siméon, and
M. Stefanescu. XQuery 1.0: An XML query language. W3C Working Draft,
June 2001. 106

[4] P. Bohannon, J. Freire, J. Haritsa, M. Ramanath, P. Roy, and J. Siméon. Legodb:
Customizing relational storage for xml documents. In Proc. of VLDB, 2002. 104,
115

[5] P. Bohannon, J. Freire, P. Roy, and J. Siméon. From XML schema to relations:
A cost-based approach to XML storage. In Proc. of ICDE, 2002. 104, 108, 109,
113, 115

[6] M. J. Carey, J. Kiernan, J. Shanmugasundaram, E. J. Shekita, and S.N. Subra-
manian. XPERANTO: Middleware for publishing object-relational data as xml
documents. In Proc. of VLDB, 2000. 104, 110

[7] A. Deutsch, M. Fernandez, and D. Suciu. Storing semi-structured data with
STORED. In Proc. of SIGMOD, 1999. 104

[8] D. Draper, P. Fankhauser, M. Fernandez, A. Malhotra, K. Rose, M. Rys,
J. Siméon, and P. Wadler. The XQuery 1.0 formal semantics, March 2002.
W3C Working Draft. 109

[9] Excelon. http://www.exceloncorp.com. 104
[10] M. Fernandez, W.C. Tan, and D. Suciu. Silkroute: trading between relations

and XML. Computer Networks, 33(1-6):723–745, 2000. 104, 106, 108, 110
[11] D. Florescu and D. Kossmann. A performance evaluation of alternative mapping

schemes for storing XML in a relational database. Technical Report 3680, INRIA,
1999. 104

[12] J. Freire, J. Haritsa, M. Ramanath, P. Roy, and J. Siméon. Statix: Making XML
count. In Proc. of SIGMOD, 2002. 111

[13] G. Graefe and W. J. McKenna. The volcano optimizer generator: Extensibility
and efficient search. In Proc. of ICDE, 1993. 115

[14] IBM DB2 XML Extender. http://www-3.ibm.com/software/data/db2/
extenders/xmlext/library.html. 104

[15] Oracle XML DB. http://technet.oracle.com/tech/xml. 104
[16] G. Piatetsky-Shapiro and C. Connell. Accurate estimation of the number of

tuples satisfying a condition. In Proc. of SIGMOD, 1984. 112
[17] Raghu Ramakrishnan and Johannes Gehrke.

Database Management Systems. McGraw-Hill, 2000. 112
[18] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible algo-

rithms for multi query optimization. In Proc. of SIGMOD, 2000. 111, 115
[19] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton.

Relational databases for querying XML documents: Limitations and opportuni-
ties. In Proc. of VLDB, 1999. 104, 106, 113

[20] Tamino. http://www.softwareag.com/tamino. 104
[21] G. Valentin, M. Zuliani, D.C. Zilio, G.M. Lohman, and A. Skelley. Db2 advisor:

An optimizer smart enough to recommend its own indexes. In Proc. of ICDE,
2000. 115

	Adaptive XML Shredding: Architecture, Implementation, and Challenges
	Introduction
	The Need for Adaptive Shredding
	Principles and Architecture
	StatiX
	Schema Normalization
	Schema Transformation
	Translation Module
	Relational Optimizer
	Loader
	Query Translator

	XML-to-Relational Translation
	Mapping Schemas
	Mapping Queries
	Mapping Data

	Statistics and Cost Estimation
	Searching
	Transforming P-schemas
	Searching for the Best Shredding

	Discussion
	Acknowledgments
	References

