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A B S T R A C T  
The availability of summary data for XML documents has many 
applications, from providing users with quick feedback about their 
queries, to cost-based storage design and query optimization. StatiX 
is a novel XML Schema-aware statistics framework that exploits 
the structure derived by regular expressions (which define elements 
in an XML Schema) to pinpoint places in the schema that are likely 
sources of structural skew. As we discuss below, this information 
can be used to build concise, yet accurate, statistical summaries for 
XML data. StatiX leverages standard XML technology for gath- 
ering statistics, notably XML Schema validators, and it uses his- 
tograms to summarize both the structure and values in an XML 
document. In this paper we describe the StatiX system. We develop 
algorithms that decompose schemas to obtain statistics at different 
granularities and discuss how statistics can be gathered as docu- 
ments are validated. We also present an experimental evaluation 
which demonstrates the accuracy and scalability of our approach 
and show an application of these statistics to cost-based XML stor- 
age design. 

1. I N T R O D U C T I O N  
XML has become an important medium for data representation 

and the volume of XML-based data processing is increasing at a 

rapid pace. Accordingly, there is a growing need for designing 
systems that efficiently store and query XML data. A critical com- 
ponent in such systems is the result estimator, which estimates the 
eardinalities of the results of user queries. Its importance arises 
from the fact that estimated cardinalities serve as inputs in many 
aspects of XML data management systems: from cost-based stor- 
age design and query optimization, to providing users with early 
feedback about the expected outcome of their queries and the asso- 
ciated computational effort. 

In this paper, we consider the problem of developing efficient 
and accurate XML query result estimators. Specifically, we present 
a system called StatiX that addresses this issue in the context of 
documents described with XML Schema [23], and user queries pre- 
sented in XQuery [5]. 

Design Issues. A large body of literature is available for result es- 
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timators in traditional database systems (e.g., [21]). These estima- 
tors are typically based on collecting summary statistics about the 
data elements, such as minimum value, maximum value, number o f  
unique values, etc., and computing estimates based on these statis- 
tics. In the newly-developing XML world, however, the design of 
result estimators becomes more complex due to the following rea- 
sons: 

The flexibility allowed by the use of regular expressions to 
define elements in the XML data model typically results in 
data that has highly skewed structure--therefore, assump- 
tions of uniform distribution that are sometimes resorted to 
in traditional DBMS may result in unacceptably high errors 
when applied to XML data. 

• XML documents are often broad and tall--that is, the equiv- 
alent document tree features both large fanouts and deep nest- 
ing in the element structures. (A good example of such a 
structure is XMark [26], a recently announced XML bench- 
mark). Queries on such documents typically feature path 
expressions that cover sub-trees of the document. Evaluat- 
ing these queries requires a large number of "joins", much 
larger than those handled in typical database applications. 
This increases the scope for inaccurate estimates since it is 
known that errors propagate rapidly through multi-way join 
queries [12]. 

Proposals for XML result estimators have appeared in the recent 
literature [14, 6, 1, 17]. Because these approaches provide statis- 
tical information in the context of schemaless semistructured data 
and need to process and summarize the whole document structure, 
they can be expensive both in terms of space and memory con- 
sumption. Secondly, they support only limited classes of queries. 
For example, [1] is restricted to simple (non-branching) path ex- 
pressions in the document tree and cannot handle equality predi- 
cates or queries that involve reference chasing. Similarly, [6] can- 
not efficiently handle value range selections, e.g., a query such as 
1991 < Year  < 2000. Finally, the proposals involve either usage 
of specialized data structures, or expensive processes for system 
initialization, or costly maintenance for document updates. (See 
Section 6 for a more detailed discussion on related work.) 

The StatiX System. Our new system, StatiX, attempts to address 
the above-mentioned shortcomings of the state-of-the-art in XML 
result estimators. In particular, its design is founded on the follow- 
ing core principles: 

• X M L  S c h e m a - b a s e d  s tat i s t ics  co l l ec t ion:  In a growing num- 
ber of data-oriented applications, the use of schemas is be- 
coming commmonplace. (See [ 15] for descriptions of several 
applications and standardized XML Schemas.) We capitalize 
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on this industry trend by employing XML Schema types as 
the basis for statistics gathering, and this enables StatiX to 
produce concise, yet accurate, summaries of XML data. 

Histogram-based statistics maintenance: A large variety 
of mechanisms are available for representing statistical sum- 
maries. We have specifically selected histograms for this 
purpose--the use of histograms enables StatiX to maintain 
scalable and symmetric summaries of both the structures of 
the types as well as the values in the data. 

Basing statistics on XML Schema types facilitates the re-use of 
standard XML technology, namely, validating parsers, for statis- 
tics gathering. Another advantage of type-based statistics is that 
the granularity of statistics gathering can be easily tuned through 
schema transformations (e.g., delete, add, merge types) that change 
the types but retain the tag structure (i.e., the same documents can 
be validated by the transformed schemas). 

Using histograms to store structural summaries elegantly cap- 
tures the data skew prevalent in XML documents. Histograms are 
attractive because they are simple to implement, have been well- 
studied, and proven to be effective for selectivity estimation [18, 
19]. In addition, they provide a flexible means to adjust to mem- 
ory requirements (more or fewer buckets can be used depending on 
the available memory). Moreover, because histograms are already 
widely used in relational database engines, our framework can be 
easily integrated with these systems--in fact, we can re-use stan- 
dard histogram-based estimation algorithms available in relational 
optimizers. 

Finally, StatiX is able to handle a large class of XQuery queries, 
including tree-pattern queries that involve reference chasing, selec- 
tions over value ranges, and ancestor-descendent paths. 

Contributions. Our main contributions in this paper are: 

a novel statistics framework for XML, based on histograms 
and XML Schema, that provides concise summaries and ac- 
curate estimates for a significant subset of XQuery; 

a description of how to modify an XML Schema validating 
parser to perform statistics gathering; 

exploitation of XML Schema transformations in order to ob- 
tain statistics at different granularities; 

demonstration of the effectiveness of StatiX in a real appli- 
cation, namely, cost-based relational storage design for XML 
data, which cannot be handled by previous approaches to size 
estimation; 

experimental results indicating that gathering statistics adds 
acceptable overhead and that StatiX summaries lead to accu- 
rate estimates. 

Organization. The remainder of the paper is organized as follows: 
An overview of the StatiX system architecture is provided in Sec- 
tion 2, and the statistics gathering algorithm is presented in Sec- 
tion 3. In Section 4, we explain how StatiX can be utilized in con- 
junction with cost-based approaches to XML storage design. Then, 
in Section 5, we present experimental results that demonstrate the 
effectiveness of our approach. Related work is reviewed in Sec- 
tion 6. We conclude in Section 7 with a summary of our results and 
directions for future research. 

type Show = 
show [ title [ String ], 

Sh0w_year, 
Aka*, 
Review*, 
( box office [ Integer ] I 

(seasons [ Integer ] , 
Episode* ) 

) ] 

type Show4ear = 
year [ Integer ] 

type Review = 

review [ String ] 

type Aka = 
aka [ String ] 

type Episode = 
episode [ Aka{0,2} ], 

guest_dir [ String ]* ] 

Figure h XML Schema for Movie Data 

2. THE STATIX FRAMEWORK 
In this section, we use an example to illustrate the importance 

of detailed statistical information in order to accurately estimate 
sizes of XML queries. We then describe the StatiX model and the 
architecture of the system. 

2.1 Motivating Example 
The XML schema in Figure 1, inspired from the Internet Movie 

Database [11], describes information about shows. ~ All shows have 
a title, a release year, zero or more alternative titles (aka's), and 
zero or more reviews. If the show is a movie, it also has the box 
office proceeds, or if it is a TV show, it has the number of seasons 
during which the show was broadcast, and information about zero 
or more episodes. Sample data reflective of real-world information 
that conforms with this schema is shown in Figure 2 (the IDs in 
the figure are not part of the document and are only included for 
illustrative purposes, as discussed later in this section). 

Estimating Cardinalities of XML Queries. Note that, because 
XML allows deeply nested structures, evaluating path expression 
queries may require a large number of joins. This increases the 
risk for inaccurate estimates since it is known that errors propagate 
rapidly through multi-way join queries [12]. In addition, the struc- 
ture of XML Schema defines dependencies among elements that 
are crucial for cardinality estimation. In our example, the schema 
specifies that episodes should have at most 2 aka  elements, and 
that all shows with an episode must have a seasons element. This 
kind of structural dependency yields non-uniform distributions that 
are likely to increase the risk for inaccurate estimates. 

Take for example the following query, which lists the titles, akas, 
and reviews of shows that were broadcast after 1991: 

FOR $s in document ( ' 'myshows .xml' ' )/show, 
$e in $s/episode, $a in $e/aka, $r in $s/review 

WHERE $s/year > 1991 
RETURN $s/title, $a, $r 

Applying the access relation rewriting strategy [13] to transform 
the navigation in the query into join operations over the types de= 
fined in the schema, the original XQuery can be represented by the 
following relational algebra expression: 

7r t l t t~ ,~ t¢  . . . . .  i ~ w  {true~>1991 {Show txl Episode txl Aka M Review}} 

1In this paper, for simplicity, we use the XML schema notation for 
types from the XML Query Algebra [8]. 
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<imdb> 
<show> < t - - I D = I - - >  

<title> Fugitive, The </title> 
<year> 1993 </year> 
<aka> Auf der Flucht </aka> <!--ID=12--> 
<review> best action movie of the decade... 

</review> <l--ID=30--> 
<review> Ford and Jones at their best... 

</review> <[--ID=3J--> 
<review> top notch action thriller... 

</review> <!--ID=32--> 
<review> Solid action and great suspense... 

</review> <!--ID=33--> 
<box office> 183752965 </box_office> 

</showy 

<show> <[--ID=2--> 
<title> X Files, The </title> 
<year> 1994 </year> 
<seasons> 8 </seasons> 
<review> spooky ... </review> <!--lD=34--> 
<episode> 

<aka> Ghost in the Machine </aka> <!--ID=13--> 
</episode> 

</show> 

<show> <I--ID=3--> 
<title> Seinfeld </title> 
<year> 1990 </year> 
<seasons> 9 </seasons> 
<review> The best comedy series ever! 

</review> < ! - - I D = 3 5 - - >  
<episode> 

<aka> Soup Nazi, The </aka> <t--ID=14--> 
<aka> Soup, The </aka> <t--ID=15--> 

</episode> 
<episode> 

<aka> Chinese Woman, The </aka> <t--ID=16--> 
</episode> 
<episode> 

<aka> Good Samaritan, The </aka> <t--ID=IZ--> 
<guest_director> Alexander, Jason </guest_director> 

</episode> 
<episode> 

<aka> Gum, The </aka> <!--ID=18--> 
</episode> 
<episode> 

<aka> Airport, The </aka> <t--ID=19--> 
</episode> 

</show> 

<show> <!--ID=4--> 
<title> Dalmatians </title> 
<year> 1998 </year> 
<review> Cute and entertaining 

</review> < l - - I D = 3 6 - - >  
<review> please, no 103 dalmatians! 

</review> <[--ID=37--> 
<box office> 50000000 </box_office> 

</show~ 

<show> < ! - - I D = 5 - - >  
<title> N Sync: Live </title> 
<year> 2000 </year> 
<seasons> 0 </seasons> 

</show> 
</imdb> 

Figure 2: Sample Movie Data 

From the data of Figure 2, we can infer that the actual size of the re- 
sult is 1. Had we used a simplistic uniform distribution assumption, 
the estimate would have been a highly inaccurate 17. This simple 
example shows that a naive approach to XML statistics does not 
work, and that more detailed information about the structure must 
be captured in a statistical model in order to derive accurate esti- 
mations. 

2.2 The StatiX System 
StatiX leverages information available in an XML Schema to 

generate concise summaries that capture both the structural skew 
as well as information about the values in an XML document. As a 
result, StatiX is able to provide accurate estimates for a large class 

] XML Schema 

Schema 
Transformer~, 

Normalization ) 

( Application-Specific'~ 
Transformations ) 

I Transformed 
XML Schema 

XML > I Schema Validator I StatiX 
Document L. Summary 

Figure 3: Statistics Collection in StatiX 

of XQuery queries. The diagram in Figure 3 depicts the two main 
components of StatiX: the XML Schema Validator, that simulta- 
neously validates the document against the schema and gathers the 
associated statistics; and the XML Schema Transformer, which 
enables statistics collection at different levels of granularity. In 
what follows, we give an overview of these components and de- 
scribe which and how statistics are gathered in StatiX. 

2.2.1 XML Schema Validator 
While in practice the XML Schema Validator comes into play 

only after the XML Schema Transformer has completed its rewrit- 
ings, for ease of exposition we will describe the validator first. As 
mentioned earlier, the validator has two functions: validation of 
the source XML document against its XML Schema description, 
and the simultaneous collection of statistics for this schema. The 
validator gathers statistics on a per-type basis. As illustrated in 
Figure 2, globally unique identifiers (IDs) are assigned to all in- 
stances of the types defined in the schema 2 (a similar ID assignment 
scheme is also implemented in [6], however, they assign an ID to 
each element in the data). Together with these ID assignments, 
structural histograms are constructed which use the IDs to sum- 
marize information about how elements are connected--the his- 
tograms support the estimation of the cardinality of each edge in 
the XML Schema type graph. 

For the example presented above, a sample StatiX summary is 
given in Figure 4. Note that one histogram is created for each type 
in the schema. For example, for the type Review, StatiX stores the 
range of IDs for the instances of Review in the document, as well 
as the ranges of Show IDs that join with reviews in PARENT HIS- 
TOGRAM Show (under type Review). This histogram indicates 
that 4 reviews join with shows with IDs in the range [1,2), 1 review 
joins with shows with IDs in the range [2,3), and the remaining 
3 reviews join with shows with IDs in the range [3,5). Note that 
all ranges (i.e., ID domains, value domains, and bucket ranges) in 
StatiX summaries represent intervals closed on the left and open on 
the right. 

While StatiX uses histograms in a novel way to summarize struc- 
tural information, histograms are also used in a more traditional 
sense: value histograms can be built for types that are defined in 
terms of base types (e.g., Integer). In our example schema, infor- 
mation is stored about the distribution of years within shows: 3 

2In the schema of Figure 1, type names are shown in sans  serif. 
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DEFINE STAT Show { 
CARDINALITY { 5 } 
ID_DOMAIN ( 1 TO 6 } } 

DEFINE STAT Show_year { 
VALUE DOMAIN { 1990 TO 2001 } 
BUCKE¥ ~BER { 2 } 
BUCKETS { 

FROM 1990 TO 1995 COUNT 3, 
FROM 1995 TO 2001 COUNT 2 } } 

DEFINE STAT Review { 
CARDINALITY { 8 }- 
ID DOMAIN { 30 TO 38 } 
PARENT HISTOGRAM Show { 

BUCKET N-UMBER { 3 } 
BUCKETS { 

FROM 1 TO 2 COUNT 4, 
FROM 2 TO 3 COUNT 1, 
FROM 3 TO 5 COUNT 3} } } 

DEFINE STAT Aka { 
CARDINALITY { 8 } 
ID DOMAIN { 12 TO 20 } 
PARENT HISTOGRAM Show_Episode { 

BUCKET W~BER { 3 } 
BUCKETS { 

FROM 1 TO 2 COUNT i, 
FROM 2 TO 6 COUNT 0, 
FROM 6 TO 1 2  COUNT 7} } } 

DEFINE STAT Episode { 
CARDIMALITY { 6 } 
ID DOMAIN { 6 TO 12 } 
PARENT HISTOGRAM Show { 

BUCKET NUMBER { 2 } 
BUCKETS { 

FROM 2 TO 3 COUNT i, 
FROM 3 TO 4 COUNT 5} } } 

Figure 4: Statistics Summary for Movie Data 

shows were released in [1990,1995), and 2 during [1995,2001). 3 
The combination of structural and value-based information al- 

lows StatiX to provide accurate estimates for a large class of XQuery 
queries. For example, using standard histogram multiplication over 
the StatiX summary of Figure 4, the estimated size of the query in 
our example is 4, which is significantly closer to the correct an- 
swer (i.e., 1) than the size estimated under the uniform distribution 
assumption (i.e., 17). 

An explanation regarding how cardinalities are computed in the 
above example is in order: for simplicity and uniformity, we take 
it to be the cardinality of the number of records that appear in the 

flattened version of the output of the XML query. A similar ap- 
proach to counting results is taken in the OODBMS literature [13]: 
Another detail is that for queries that mention tags which do not 
have an associated type, we check whether the tag has a value his- 
togram: if the histogram is available, it is used in the computation, 
otherwise, by default, a uniform distribution is assumed. 

Handling Shared Types, A crucial feature of the structural his- 
tograms is that they naturally distinguish different occurrences of 
the same type in the schema (i.e., types with multiple parents). In 
our example, the type Aka occurs under both Show and Episode. 
The corresponding histogram (in Figure 4, PARENT HISTOGRAM 
Show_Episode), stores this information by maintaining three buck- 
ets for the parent IDs of Aka: the first bucket contains the range of 
show IDs; the last contains the range of episode IDs; and the mid- 
dle accounts for the gap between the values of the show and episode 
IDs. 4 

aln the current system, users may indicate for which tags value 
histograms must be built by creating new types for these tags. 
4Note that empty buckets need not be explicitly stored--they are 
shown here only for clarity of presentation. 

Two important points are worthy of note. First, different gran- 
ularities can be used for the different sections in the histogram, 
e.g., if there are many more shows than episodes, more buckets 
can be used to represent shows than to represent episodes. This 
finer-grained information would be useful when there is a selection 
predicate preceding a join that restricts the join to a subset of the 
identifiers in the parent type. Second, there is no mandatory re- 
quirement that IDs for a given type be contiguous, but when they 
are not contiguous, more buckets may be needed to capture their 
distribution. In the remainder of this paper, for simplicity, we will 
assume that all ID ranges are contiguous and disjoint across types. 

In Section 3, we describe our implementation of the Validator, 
how statistics are gathered and how a standard XML validating 
parser is extended to generate both structural and value histograms. 

2.3 X M L  Schema Transformer  
The ability to specify types is an important feature of XML Sche- 

ma which is not present in DTDs. In XML Schema, there is a 
distinction between elements (e.g., t i t l e  [ S t r i n g ]  indicates 
a title element whose content is a string value) and types (e.g., 
Show)--the latter do not appear in the document, but are used 
during validation as annotations. A variety of transformations, de- 
scribed in more detail below, can be applied which change the way 
that annotations are performed but do not alter the set of valid doc- 
uments. We utilize this feature, by applying the appropriate set of 
transformations in the XML Schema Transformer module, to tune 
the granularity of the statistics gathering process so as to suit the 
requirements of individual applications. 

In the remainder of this section, we illustrate a few representative 
transformations and explain how they impact the statistics gather- 
ing process. (A concrete example on how these transformations can 
be adapted to a given application are given in Section 4, where we 
describe the use of StatiX in cost-based storage design for XML.) 

2.3 .1  T r a n s f o r m a t i o n s  

Consider once again the XML schema of Figure 1. A possible 
transformation that can be applied to this schema is to distribute the 
union in the definition of Show creating two new types as follows 
(see Figure 5(a)): Show1 corresponds to movies (which have box 
office proceeds) and Show2 corresponds to TV shows (which have 
seasons and episodes). When statistics are gathered under this new 
schema, separate ranges of IDs are assigned to the different kinds 
of shows, making it possible to distinguish the occurrences of the 
children of Show. That is, under the transformed schema, it is 
possible to know exactly how many reviews are associated with 
movies and how many reviews are associated with TV shows. This 
is illustrated in the StatiX summary fragment shown in Figure 5(b). 

Another useful, yet simple, transformation is to associate type 
names with tags. For example, a new type can be created for the tag 
guest_dir: type GuestOirector = guest_dir [String]. 
The presence of this new type implies that statistics are gathered 
about how these values are distributed among episodes. Given this 
additional information, precise estimates can be given for queries 
such as "Find the guest directors o f  (TV) shows later than 1991 
that were broadcast for  more than 10 seasons ". 

Apart from the above transformations, other possible transfor- 
mations include [2]: (1) merging duplicate definitions; (2) deleting 
a type by inlining its definition within the definition of its parent; 
(3) splitting shared types; and (4) unrolling repetitions (e.g., a* can 
be rewritten as a?,a*). 5. By combining these transformations, many 
different schemas, and consequently, many different summaries can 
be derived that are appropriate for different applications. As we 

5 See [2] for detailed definitions of these transformations 
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type Show = Show1 I Show2 

t y p e  Show1 = 
show [ title[ String ], 

Year,  
A k a * ,  
Rev iew* ,  
box_office [ Integer ] ] 

type Show2 = 
show [ title[ String ], 

Year, 
A k a * ,  
Rev iew* ,  
(seasons [ Integer ], 
Episode* ) ] 

(a) Transformed schema 

DEFINE STAT Show1 { 
C~DINALITY { 2 } 
IDDO~IN{1 TO3 } } 

DEFINE STAY Show2 { 
C~DZNALIT¥ { 3 } 
IDD0~IN { 3 TO6 } } 

DEFINE STAT Review { 
CARDINALITY { 8 } 
ID DO.IN { 30 TO 38 } 
PARENT HISTOGRAM Show%Show2 { 

BUCKET NUMBER { 2 } 
BUCKETS { 

FROH i TO 3 COUNT 6, 
FROM~ TO6 COUNT2 } } } 

(b) StatiX summary for transformed schema 

Figure 5: Transformed Schema and Associated Statistics 

discuss in Section 4, in cost-based XML storage design, transfor- 
mations can be applied to further decompose specifically the subset 
of the schema that is relevant to the input workload. 

2.3.2 Memory Issues 
Transformations that add types clearly lead to more detailed statis- 

tics, but they also increase the amount of memory required for the 
StatiX summary since histograms are kept for each type. Ifa  budget 
is set for memory, a ceiling in the number of types can be easily set 
and transformations are applied only until that ceiling is reached. 
That is, in contrast to the expensive reductive process followed by 
the previous literature, wherein large disk-based representations are 
whittled down to memory-resident structures (see Section 6 for de- 
tails), a constructive approach is taken in StatiX. Note, however, 
that establishing the optimal set of types and histograms for a given 
memory budget is clearly a computationally intensive optimization 
problem. 

Most transformations have no real impact on the algorithmic 
complexity of the statistics gathering process, although they might 
alter the overheads of statistics collection. This is because adding 
or deleting a type only means that statistics will or will not be gath- 
ered for the particular pattern defined by the type. However, this is 
not true for transformations that add ambiguity and lead to schemas 
that are not proper XML Schemas--in XML Schema, types are de- 
fined so that there is no ambiguity to ensure that validation can be 
done with one look-ahead token and in linear time. 

Union distribution, which we had discussed earlier in Figure 5, 
is a good example of an ambiguity-causing transformation. This 
is because when we distribute the union in Show and create the 
new types Show1 and Show2, both these new types have the same 
tag, show. The presence of ambiguity in the transformed schemas 
requires non-trivial extensions to standard validating parsers, in- 

cluding the incorporation of sophisticated machinery such as tree 
automata [20] and may significantly increase the complexity of  
statistics gathering. In our future work, we plan to investigate how 
to minimize the impact of ambiguity on the validation process. 

2.3.3 Schema Normalization 
An important detail that was not mentioned in the above discus- 

sion is that, in practice, as a prelude to applying the transforma- 
tions, the user-supplied XML Schema is first normalized. Schema 
normalization, as defined in [2], is composed of the following set 
of schema transformations: 

1. New types are introduced for all tags that are part of  repeti- 
tions or that are optional, e.g., 

t y p e  Episode = 
episode [ Aka{0,2} ], 

guest_dir [String] * ] 

is transformed to 
t y p e  Episode = 

e p i s o d e  [ A k a { 0 , 2 }  ] ,  
GuestDirector* ] 

t y p e  GuestDirector  = 
guest_dir [ String ] 

2. New types are introduced for all complex structures that oc- 
cur within unions and repetitions, e.g., 

type Show = 
show [ .... 

( box office [ Integer ] I 
(seasons [ Integer ] , 
Episode* ) 

) ] 

is transformed to 
type Show = 

show [ .... 
( Movie I TVShow ) 

t y p e  Movie = b o x _ o f f i c e  [ I n t e g e r  ] 
t y p e  TVShow = 

seasons [ Integer ] , 
Episode* 

These complex structures (i.e., optional elements, union, rep- 
etition) are a major source of structural skew in the data. By 
ensuring types are defined for these complex structures, nor- 
malization provides a controlled way to gather detailed statis- 
tics which capture this skew. Having these detailed statistics 
is important because not all transformations (e.g., union dis- 
tfibution and repetition unrolling) preserve the accuracy of 
the statistics. Therefore, if we initially generate statistics at 
the finest type granularity, it is possible to retain the accu- 
racy in spite of subsequent transformations. This issue is 
illustrated in Section 4. 

3. S T A T I S T I C S  G A T H E R I N G  
StatiX exploits XML Schema validation in order to collect statis- 

tics. In this section, we first give a brief overview of how schema 
validation works, along with a few complexity results. We then ex- 
plain how StatiX modifies the validation process in order to collect 
statistics. Experimental results obtained with our implementation 
of the StatiX validator are given in Section 5. 

3.1 StatiX and XML Schema Validation 
Schema validation [23] is the process by which an XML docu- 

ment is checked against a given XML schema. By exploiting the 
necessary schema validation process, StatiX is able to amortize the 
cost of statistics collection. Another benefit of this approach is 
that StatiX can extend existing implementations of XML parsers 
and XML Schema validators [25, 9]. Our initial prototype of the 
statistics collector was built on top of Galax [9], a freely available 
schema validator. 
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DTDs and XML Schemas impose certain restrictions on the reg- 
ular expressions they allow in order to achieve determinism, and 
techniques to generate deterministic tree automatas directly from 
DTDs or XML schema have been proposed [3, 4]. Checking wheth- 
er a given tree belongs to the language defined by this automata, 
i.e., performing validation, can then can be executed in linear time 
in the size of the data. Other kinds of tree automatas are more 
expressive but can result in exponential computations [20]. The 
validation algorithm we use leverages these restrictions in order to 
perform validation by directly using a deterministic top-down tree 
automata. 

When the validation process is successfial, it results in a type 
assignment for nodes or sequences in the XML document. This 
type assignment is the basis for statistics generation in StatiX. Intu- 
itively, we just Proceed with schema validation and count the num- 
ber of occurrences of each type. It is important to note that because 
of the determinism, there is always a unique way to perform this 
type assignment, and this ensures the consistency of the statistics 
gathering process. 

3.2 Identifier Assignment 
In order to gather information about how different elements re- 

late to each other, StatiX assigns unique IDs to type instances in 
the document. Ideally, the assignment should be such that for each 
type, the ranges of the IDs covered by its instances are (a) inter- 
nally contiguous, and (b) disjoint from that of other types. These 
goals are approximated as follows: Offline, each type in the XML 
Schema is assigned a unique type ID. Then, for each type, we main- 
tain the following structure during validation: (a) a counter for the 
next available type ID; (b) the set of all parent IDs that have been 
processed for that type. (This is possible because the validation 
process is performed top down and a parent is always processed 
before its children.) Every time a new instance of a type is encoun- 
tered, it is assigned a local ID using the counter associated with the 
type, and its parent liD is added to the parent set for the correspond- 
ing type. The global ID of the element is obtained by concatenat- 
ing the associated type ID and its local ID. Note that even though 
types in the schema can form a graph, XML documents are always 
trees--as a result, the top-down validation approach naturally deals 
with shared types (for instance, the shared type Aka in Figure 4). 

Currently, we fix the size of counters to be two bytes, thereby 
permitting up to 65536 elements per type. In the event a counter at- 
tains its maximum, we can safely bail out of this problem by assign- 
ing a new unique ID to the type and resetting the local counter-- 
subsequent instances of the type in the document are assigned IDs 
based on these new values. Note that this process may result in 
non-contiguous ID ranges for a type. 

3.3 Histogram Construction 
Once validation is completed and information has been gathered 

about the parent IDs for each type, we proceed to construct a more 
concise representation using histograms. A variety of histogram 
constructions have been described in the literature [19, 18]--the 
most common are equi-width histograms, wherein the domain range 
covered by each histogram bucket is the same, and equi-depth his- 
tograms, wherein the frequency assigned to each bucket is the same. 
Since it has been shown in [16] that equi-depth histograms result 
in significantly less estimation error as compared to equi-width his- 
tograms, we have implemented the former in StatiX (for details of 
the construction process, please refer the afore-mentioned litera- 
ture). 

4. APPLICATION TO COST-BASED 
XML-TO-RELATIONAL MAPPING 

The LegoDB cost-based XML-to-relational storage mapping en- 
gine was recently described in [2], representing a departure from 
prior approaches that were largely based on heuristics [22, 7]. The 
LegoDB system generates relational configurations that are eft/- 
cient for a given application. Given inputs consisting of (a) an 
XML Schema, (b) XML data statistics, and (c) an XML query 
workload, it examines a space of possible ways to decompose the 
XML document into relations. LegoDB exploits the type structure 
of XML Schemas to generate a space of alternative relational con- 
figurations. A fixed mapping is defined that maps XML Schema 
types into tables. By repeatedly applying XML-specific schema 
rewfitings that alter the type structure of the schema (but retain 
the document structure) followed by this fixed mapping into rela- 
tions, LegoDB generates a space of possible relational configura- 
tions. Each configuration is composed of." 

• a relational schema, derived from the transformed schema 
using the fixed type-to-relation mapping; 

• a statistical summary for  each relation in the schema, derived 
from the given XML data statistics; 

• an SQL workload, derived from the given XQuery workload 
and the relational schema. 

LegoDB uses a traditional relational optimizer (e.g., [ 10]) to es- 
timate the cost of the derived relational configurations and selects 
the configuration with the lowest cost. The cost of a configuration 
is computed as the cost of processing its SQL workload on its rela- 
tional schema on the basis of its statistical summary. Note that the 
optimizer is used as a black box in this process and is completely 
unaware of the XML ancestry of its inputs. 

Clearly, the accuracy of the optimizer's cost estimates, and hence 
the efficacy of LegoDB, crucially depends on the accuracy of the 
statistics. If the statistics cause the optimizer to over- or under- 
estimate the cost of alternative configurations, desirable choices 
may be discarded and substituted with poor configurations. As 
such, for LegoDB, we need a result estimator that is able to com- 
pute accurate statistics for different relational configurations. In 
principle, LegoDB could derive these statistics for each new con- 
figuration by loading the XML source data into relations and then 
analyzing the contents of these relations. However, this is not a fea- 
sible alternative since the solution does not scale--a large number 
of distinct relational configurations are considered, and process- 
ing each configuration in the described manner can become pro- 
hibitively expensive, especially for large documents. 

A more scalable approach is the following: First compute the sta- 
tistical summary for the initial XML Schema. Then, as and when 
a new alternative XML Schema is generated by the LegoDB map- 
ping engine 

• incrementally derive the statistical summary for this XML 
Schema, and 

• translate this derived statistical summary to statistics for the 
associated relational schema. 

The previous sections have explained how StatiX can be used 
to build an accurate fine-grained statistical summary for the initial 
XML Schema. In the remainder of this section, we describe how 
StatiX is used in LegoDB. 

Gathering XML Statistics An important requirement for LegoDB 
is that the XML statistical summary should contain enough infor- 
mation that allows precise relational statistics to be derived for each 
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t y p e  Show = Show1 I Show2 

t y p e  Show1 = 
show [ title[ String ], 

Year, 
Review*, 
Movie ] 

t y p e  Show2 = 
show [ title [ String ], 

Year, 
Review*, 
TVShow ] 

t y p e  Review = 
review [ String ] 

(a) Normalized schema 

DEFINE STAY Show1 { 
CARDINALITY { 2 } 
ID_DO~I. { 1 TO 3 } } 

DEFINE STAY Show2 { 
e~DIN~ITY { 3 } 
IDDO~IN{ 3 TO6 } } 

DEFINE STAT Review { 
CARDINALITY { 8 } 
ID DO~UUN { 30 TO 3S } 
PARENT HISTOGRAM Showl_Show2 { 

BUCKET NUMBER { 2 } 
BUCKETS { 

FROM 1 TO 3 COUNT 5, 
FROM3 TO6 COUNT 3 } } } 

(b) StatiX summary for normalized schema 

type Show = 
show [ title[ String ], 

Year, 
Review*, 
box office [ Integer ] 
(seasons [ Integer ], 
Episode* ) ] 
] 

t y p e  Review = 
r e v i e w  [ String ] 

(c) Merged schema 

DEFINE STAY Show { 
CARDINALITY { 5 } 
ID DOMAIN { 1 TO 6 } } 

DEFINE STAY Review { 
C~DINALITY { s } 
ID DOr~IN { 30 TO 3s } 
PARENT HISTOGRAM Show { 

BUCKET m~BER { 1 } 
BUCKETS { 

FROMi TO6 eOUNY 8 } } } 

(d) StatiX summary for merged schema 

Figure 6: Schema Transformation and Statistics Derivation 

configuration examined by the system. The schema normalization 
procedure of StatiX (described in Section 2.3.3) delivers the XML 
Schema at thefinest type granularity, and collecting the statistics 
with respect to this schema allows StatiX to derive the accurate 
statistics for any configuration generated by the LegoDB search en- 
gine without looking at the data. 

An example of this process is presented in Figure 6. The ini- 
tial normalized XML Schema and the associated StatiX summary 
are shown in Figures 6(a) and 6(b), respectively. During the search 
process LegoDB applies a series of transformations, that may in- 
elude, for example, merging the types Show1 and Show2, and 
inlining the definitions of Movie and TVShow, which would lead 
to the schema of Figure 6(c). For this new schema, it is possible 
to construct an accurate structural histogram for the merged type 
Show, as shown in Figure 6(d), using only the information in the 

summary for the initial schema (Figure 6(b)). This is achieved by 
simply (a) adding up the cardinalities and combining the domains 
of Show1 and Show2, and (b) combining the buckets in the parent 
histograms of Review. 

Note that, in contrast, had the statistics been collected for the 
XML Schema with the merged type Show, and a subsequent rewrit- 
ing had split it into Show1 and Show2, it would have been im- 
possible to construct the accurate histograms for the new edges 
Showl-Review and Show2-Review. This is because, although 
we are given the histogram for Show-Review, the partition of the 
Show ids into Show1 and Show2 is not well defined. 

Deriving Relational Statistics Since StatiX provides type-based 
statistics for a given XML Schema, mapping this statistical sum- 
mary to relational statistics follows the fixed type-to-relation map- 
ping defined in LegoDB [2]. The relational statistics generated con- 
tain: 

a trivial (single bucket) histogram covering the domain of the 
type for the ID column (the primary key); 6 

a histogram translated from the value histogram for each col- 
umn that represents a base-type sub-element; and 

for the foreign key column, a histogram that is constructed 
by merging the PARENT HISTOGRAMs of the types which 
correspond to the foreign key. 

5.  E X P E R I M E N T S  

We have evaluated the performance of StatiX on a variety of 
XML documents coveting a range of sizes, document character- 
istics and application domains. We report results here for two rep- 
resentative datasets: the XMark benchmark [26], which creates 
deeply nested documents that model an Internct auction site, and 
the Internet Movie Database (IMDB) [11], which has a mostly fiat 
structure and contains information about movies. 7 

The performance was evaluated with regard to the following met- 
tics: 

• The overhead imposed by statistics collection on the valida- 
tion process, 

• The space occupied by the statistical summaries, and 

• The accuracy of the cardinality estimates. 

The above metrics were evaluated for a variety of schemas in- 
cluding the original XML Schema, its normalized version, as well 
as the schemas obtained after various transformations. Our ex- 
periments were conducted on a PIII-750 MHz machine, running 
Redhat Linux 6.2, with 2 GB main memory and 18 GB local SCSI 
disk. 

5 .1  S t a t i s t i c s  C o l l e c t i o n  

For a range of XMark document sizes going from 100KB to 
100MB, Figure 7 shows the added overhead of statistics collec- 
tion for three different versions of the XMark schema: normalized 
(consisting of 125 types); split-item wherein the type correspond- 
ing to i t e m  is split to eliminate its shared occurrences (resulting 
in 132 types); and split-all wherein all shared types in the schema 
are split (resulting in 1887 types). The algorithmic complexity of 
validation is linear in the size of data and thus, it is not impacted 

6Multiple buckets may be used if the IDs are not contiguous. 
rWe created the XML Schemas for both XMark, for which only a 
DTD is available, and IMDB, for which no DTD is provided. 
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Figure 7: Overheads for Statistics Collection 

by the number of types in the schema. Statistics gathering, on the 
other hand, does depend on the number of types, as Figure 7 shows. 
A major source of overhead in our prototype are the structures that 
are built (and maintained) by Galax [9] to construct the histograms; 
these structures are not optimized for large documents. However, 
with careful tuning or by using sampling-based techniques, this can 
be improved. 

For comparative purposes, we also evaluated the "Twigs" [6] ap- 
proach (described in more detail in Section 6) with respect to the 
time taken to build the summary structures. The Twigs software 
(which was provided to us by its authors) excutes in two phases: 
First, a preprocessing phase in which the XML document is parsed 
and stored into a format suitable to generate the summary structure; 
and, second, a building phase, where the summary structure is ac- 
tually constructed. We ran Twigs on a 10MB document as well as a 
50MB XMark document. The preprocessing phase took a consider- 
able amount of time--around l0 minutes for the 10MB document 
and over an hour for the 50MB document. The building phase, 
on the other hand, took about 90 seconds for the 10MB document 
and 450 seconds for the 50MB document. The summary contained 
1000 nodes with a signature size of I0. 

In contrast, the worst case performance of StatiX, correspond- 
ing to the "Split All" schema (Figure 7(c)), takes approximately 70 
seconds for processing the 10MB document and 500 seconds for 
the 50MB document--note that these figures include the entire set 
of operations: parsing, validation and statistics collection. 

5.2 Summary Sizes 
The sizes of the StatiX summaries are directly proportional to the 

number of incoming edges into complex types (ctypes), number of 
base types for which statistics are gathered (btypes), and the size 
of the histograms which is determined by the number (nbuckets) 
and size (bsize) of buckets: 

summary_s i ze  = ~ i (c t ypes i  * nbucketsi • bsizei)+ 
~ j  (btypesj • nbucketsj  • bsizej)  

where i ranges over the IDs of complex types and j over the IDs 
for the base types. For example, with the 100MB XMark docu- 
ment, a normalized schema, and 30 buckets per histogram (in our 
implementation, each bucket consumes 8 bytes), the total summary 
size was only 25KB, whereas for the split-all schema it was around 
200KB. This clearly shows that StatiX summaries are extremely 
concise as compared to the documents whose statistics they are rep- 
resenting. 

It is important to note here that in previous approaches, the space 
space overhead is proportional to the size of the data. With StatiX, 
however, the overhead is proportional to the size of the schema 
since it is based on the number of types. As schemas are typically 
much smaller than the data, major savings can be realized with our 
approach. For comparative purposes, we evaluated the memory 
consumption of Twigs on the 10MB XMark document and found 
that even for this relatively small-sized document it took about dou- 
ble the space required by StatiX (as we discuss below, StatiX is able 
to derive estimates that are more accurate even with a significantly 
smaller summary). We can expect that this difference would only 
grow larger with increase in document size. 

5.3 Estimation Accuracy 
To assess the estimation accuracy of StatiX, we ran a variety of 

queries against the 100MB version of XMark (using the normal- 
ized schema) and against a 44MB version of the IMDB dataset. 
We describe these results, obtained using 30 buckets per histogram, 
below. As an indicator of the amount of skew encountered in the 
data we also evaluated the estimates that would have been obtained 
from a uniform distribution modeling approach. 

XMark Dataset. The list of XMark queries used in our experi- 
ments is given in Table 1 (please refer to [26] for details of the 
XMark document structure). Some of these queries are derived 
from the query set supplied with the benchmark, while others were 
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m 

X2 
X3 
X4 
X5 
X6 
X7 

- ~ - p t i o n  
all buyers of European items 
all bidders for European items 
names of  sellers who sold an item 
names of  people and their emails 
list of  item ids and buyer's ids in closed auctions 
names of people with homepages 
names and descriptions of australian items 

Table 1: XMark  Benchmark  Query List 
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Figure 8: Accuracy of StatiX vs Uniform for XMark queries 

constructed by us. Note that queries X 1, X2 and X3 feature value- 
based joins, while X4, X5, X6 and X7 only involve tree patterns 
(the joins are structure-based). The number of joins in each of  the 
queries is listed below: 

• X4, X6 :2  joins involving 3 types 

• X7:3  joins involving 4 types 

• X5 :4  joins involving 5 types 

• X3:5  joins involving 6 types 

• X1, X2:8  joins involving 9 types. 

Figure 8 shows the cardinality estimates for the above queries 
using StatiX and uniform distribution, as well as the actual query 
sizes. It is gratifying to note here that the StatiX estimates are all 
within reasonable error margins and, in fact, for most of  the queries, 
the estimate contains virtually no error. These results become even 
more attractive when taken in conjunction with the fact that the 
StatiX summaries are very small in size. For example, with queries 
X6 and X7, where StatiX has virtually no error, Twigs, which uti- 
lized double the storage (see above), had 3% and 53% error, re- 
spectively. 

We also note in Figure 8 that using a uniform distribution as- 
sumption results in large errors. An important factor that con- 
tributes to these errors is the structural skew that arises as a con- 
sequence of shared types. For example, query X5 requires the fol- 
lowing join: Closed_auction N Itemref t~ Buyer. But since both 
closed and open auctions have Itemrefs, the uniform estimator as- 
sumes that 50% of Itemrefs would join with Closed_auction--as 
the 11.5% error indicates, this assumption does not hold for the 
XMark dataset. These errors are magnified when (a) the queries 
involve types with greater number of  parents, e.g., queries X4 and 
X6 involve the type Name which is shared among 3 types, lead- 
ing to errors greater than 70%; and (b) the queries involve multiple 
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Figure 10: StatiX Accuracy for the IMDB dataset 

shared types, e.g., query X7 includes the types Item (shared among 
6 types) and Name (shared among 3 types), leading to an estimate 
that is 7 times larger than the actual query size. 

Let us now examine the queries X1 and X3, whose pictorial rep- 
resentation is shown in Figure 9. Note that these two queries are 
quite similar, but whereas the StatiX estimate for X3 is precise, the 
estimate for X1 is of fby  10.4%. This can be explained as follows: 
In query X 1, the type Item (and consequently id) is shared among 
6 parents (i.e., Europe, North America, etc.). When the join is per- 
formed between Itemref and Item, StatiX estimates the cardinality 
correctly. However, as it does not keep track of  the correlation be- 
tween the id values and Item values, when the selection to filter out 
European items of  closed auctions is subsequently applied, error is 
introduced in the estimate. In contrast, for query X3, because the 
types of  the join attributes are not shared, StatiX derives precise 
estimates. 

IMDB Dataset. We now move on to evaluating the accuracy of  
StatiX on the IMDB dataset. For this dataset, we focus on the sub- 
set of  the schema that covers movies and alternative titles (aka 's)--  
a movie can have from zero to an unlimited number of  aka's. This 
subset has a total of  113,269 movie elements and 47,756 aka ele- 
ments. The skewness of  this data is indicated by the fact that of the 
113,269 movies, only 30,506 have at least one aka, while 9 movies 
have 26 aka's. 

In Figure 10, we show cardinality estimates for the following 
queries over the IMDB data: Q 1 :Find title, year, and pairs ofakas 
for all shows; and Q2:Find title, year, and pairs o f  akas for shows 
released later than 1990. These are tree-pattern queries and require 
a 3-way join (show t~ aka t~ aka). Notice that under uniform distri- 
bution assumption, the cardinality over-estimates are unacceptably 
high: 12 times for Q 1 and 147 times for Q2. In marked contrast, us- 
ing the structural histograms in the StatiX summary, the estimates 
for Q 1 are far better--within 1% of the actual size. For Q2, how- 
ever, which includes the conditional check for year > 1990, struc- 
tural histograms alone are not sufficient to generate a precise esti- 
mate: in the absence of information about the distribution of year 
values across shows, uniform distribution is assumed for these val- 
ues, resulting in the large error (12 times over-estimate). However, 
when a value histogram (with 5 buckets) is added for the year ele- 
ment, the error becomes significantly reduced. 

6. R E L A T E D  W O R K  
A variety of  proposals for XML result estimators have appeared 

in the recent literature [14, 6, 1, 24, 17]. McHugh and Widom 
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Figure 9: Pictoral Representation of XMark Queries Xl and X3 

[14] proposed a scheme wherein statistics about all subpaths p of 
length _< k that occur in the XML document are explicitly stored 
(k is a tunable parameter). These statistics are sufficient to give 
accurate answers for queries that involve path expressions of length 
_< k + 1. For queries with longer paths, the statistics of the k-length 
subpaths occurring in the query are combined to estimate the result 
cardinalities. 

In [6], Chen et al propose a scheme that captures correlations 
between paths, resulting in accurate estimation of the so-called 
twig or tree queries. Their strategy consists of gathering counts 
for frequently occurring twiglets in the data, and then assigning 
each twiglet a "set hash" signature that captures the correlations 
between the subpaths in the data tree. Query selectivity is then es- 
timated by combining the hash signatures of the twiglets occurring 
in the query. While this work is restricted to tree-structured data, 
the more general problem of handling queries on graph-structured 
XML documents, involving chasing through references (i.e., idrefs), 
is addressed in [17]. 

Aboulnaga et al [1] propose and evaluate two memory-efficient 
data structures for estimating sizes of simple path expressions (as 
opposed to twigs): a summarized path tree, which collapses the tree 
corresponding to the original XML document by deleting or coa- 
lescing low-frequency nodes; and a summarized path table, which 
stores the counts of all frequently occurring paths of length _< k. 

While the above proposals represent novel and ingenious ap- 
proaches to the estimator problem, they have some limitations. No- 
tably, they focus on sehemaless semistructured data--i.e., the XML 
source document comes in an "as is" condition. However, in a 
growing number of data-oriented applications, the use of schemas 
is commonplace. (See [15] for descriptions of several applica- 
tions and standardized XML Schemas.) As we have described, 

this schema information can be used to improve the quality of the 
statistics as well as reduce their storage overheads. Wu et al [24] 
proposed a method that does take schema information into account. 
They defined position histograms that capture the ancestor-descen- 
dent relationships among nodes in the document. Even though 
these histograms can be used to efficiently answer path queries con- 
taining the descendent construct, they are not able to capture skew 
that is derived by other important structural constraints (e.g., union, 
repetition) present in typical XML Schemas. 

Another limitation of previous works is that they support a lim- 
ited class of  XML queries. For example, [1] is restricted to simple 
(non-branching) path expressions in the document tree and cannot 
handle equality predicates or queries that involve reference chas- 
ing. [6] cannot efficiently handle value range selections, e.g., a 
query such as 1991 _< Year  <_ 2000, cannot be handled un- 
less converted to separate sub-queries for each of 1991, 1992,. . .  , 
2000. Note that this conversion requires domain knowledge about 
the legal data values in the range. Further, the translation into sub- 
queries and the subsequent estimation by integration of the indi- 
vidual sub-query results is likely to be expensive. [24] constructs 
a separate position histogram for each distinct predicate--this ap- 
proach has limited scalability and may be infeasible for ad-hoc 
query workloads. 

Except for [17], existing approaches for XML estimators per- 
form summarization by reduction of fully-specified structures. For 
example, in [1], the complete path-tree for the entire document is 
built on disk and then whittled down to an in-memory structure. 
This may entail considerable disk activity during the reduction pro- 
cess. Instead, the alternative approach of  construction adopted by 
StatiX, wherein the statistics are built up until the memory budget 
is exhausted, is more sealable and less resource-intensive. 
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In some cases, specialized data-structures such as suffix-trees [6, 
1] and data-guides [14] have been employed to host the statistical 
information--these structures are relatively complicated to imple- 
ment. Our choice, on the other hand, of histograms as the statistics- 
maintaining structure results in a simple and scalable implementa- 
tion. 

Lastly, in some of the schemes, the addition of new nodes in the 
document graph may have global side-effects--that is, necessitate 
changes in several locations in the statistics-maintaining structure. 
For example, in [6], the addition of a node may require the updat- 
ing of all signatures occurring in the path leading to the node. Such 
side-effects do not occur with StatiX, however, since the histograms 
are schema-based, not document-based; therefore, it is only the his- 
tograms associated with the types of the added nodes whose values 
may have to be updated. 

7. CONCLUSIONS 
In this paper, we have defined an XML statistics model and pre- 

sented StatiX, a system that implements this model. StatiX lever- 
ages the XML Schema data model, schema rewriting transforma- 
tions, and histograms to provide simple, concise, flexible, and scal- 
able data summaries for query selectivity estimation, a critical input 
in database configuration and usage. 

The advantages of our approach over the prior art include han- 
dling a wider spectrum of queries, localized impact of document 
updates, and a constructive approach to memory utilization. Fur- 
ther, from an implementation perspective, statistics gathering is in- 
tegrated with a standard XML validation module, making it attrac- 
tive for hosting in current systems. 

Experiments with large data sets and complex queries, including 
those derived from XMark, against a relational backend indicate 
that StatiX provides highly accurate query selectivity estimates, 
especially as compared to simplistic uniform distribution assump- 
tions. The computational overhead due to statistics collection is 
also quite reasonable, considering that this collection is a one-time 
operation--our normalization process ensures that statistics for all 
rewritten schemas can always be derived from the initial statistics. 
Further, our overheads are considerably smaller in magnitude than 
those incurred by previous approaches. 

Currently, StatiX only supports XQuery queries that can be trans- 
lated into SPJs. In future work, we plan to add support for both 
aggregates and recursion. Other issues that we intend to explore 
include usage of sampling to reduce the overhead of statistics col- 
lection, and the efficient handling of the ambiguity caused by trans- 
formations such as union distribution. 
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