
StatiX: Making XML Count

Juliana Freire 1 Jayant R. Haritsa = Maya Ramanath ~ Prasan Roy' J6r6me Sim6on '
'Bell Labs ~lndian Institute of Science

{juliana,prasan,simeon}@research.bell-labs.com { haritsa,maya} @dsl. serc.iisc.ernet.in

A B S T R A C T
The availability of summary data for XML documents has many
applications, from providing users with quick feedback about their
queries, to cost-based storage design and query optimization. StatiX
is a novel XML Schema-aware statistics framework that exploits
the structure derived by regular expressions (which define elements
in an XML Schema) to pinpoint places in the schema that are likely
sources of structural skew. As we discuss below, this information
can be used to build concise, yet accurate, statistical summaries for
XML data. StatiX leverages standard XML technology for gath-
ering statistics, notably XML Schema validators, and it uses his-
tograms to summarize both the structure and values in an XML
document. In this paper we describe the StatiX system. We develop
algorithms that decompose schemas to obtain statistics at different
granularities and discuss how statistics can be gathered as docu-
ments are validated. We also present an experimental evaluation
which demonstrates the accuracy and scalability of our approach
and show an application of these statistics to cost-based XML stor-
age design.

1. I N T R O D U C T I O N
XML has become an important medium for data representation

and the volume of XML-based data processing is increasing at a

rapid pace. Accordingly, there is a growing need for designing
systems that efficiently store and query XML data. A critical com-
ponent in such systems is the result estimator, which estimates the
eardinalities of the results of user queries. Its importance arises
from the fact that estimated cardinalities serve as inputs in many
aspects of XML data management systems: from cost-based stor-
age design and query optimization, to providing users with early
feedback about the expected outcome of their queries and the asso-
ciated computational effort.

In this paper, we consider the problem of developing efficient
and accurate XML query result estimators. Specifically, we present
a system called StatiX that addresses this issue in the context of
documents described with XML Schema [23], and user queries pre-
sented in XQuery [5].

Design Issues. A large body of literature is available for result es-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD '2002 June 4-6, Madison, Wisconsin, USA
Copyright 2002 ACM 1-58113-497 -5/02/06 ...$5.00.

timators in traditional database systems (e.g., [21]). These estima-
tors are typically based on collecting summary statistics about the
data elements, such as minimum value, maximum value, number o f
unique values, etc., and computing estimates based on these statis-
tics. In the newly-developing XML world, however, the design of
result estimators becomes more complex due to the following rea-
sons:

The flexibility allowed by the use of regular expressions to
define elements in the XML data model typically results in
data that has highly skewed structure--therefore, assump-
tions of uniform distribution that are sometimes resorted to
in traditional DBMS may result in unacceptably high errors
when applied to XML data.

• XML documents are often broad and tall--that is, the equiv-
alent document tree features both large fanouts and deep nest-
ing in the element structures. (A good example of such a
structure is XMark [26], a recently announced XML bench-
mark). Queries on such documents typically feature path
expressions that cover sub-trees of the document. Evaluat-
ing these queries requires a large number of "joins", much
larger than those handled in typical database applications.
This increases the scope for inaccurate estimates since it is
known that errors propagate rapidly through multi-way join
queries [12].

Proposals for XML result estimators have appeared in the recent
literature [14, 6, 1, 17]. Because these approaches provide statis-
tical information in the context of schemaless semistructured data
and need to process and summarize the whole document structure,
they can be expensive both in terms of space and memory con-
sumption. Secondly, they support only limited classes of queries.
For example, [1] is restricted to simple (non-branching) path ex-
pressions in the document tree and cannot handle equality predi-
cates or queries that involve reference chasing. Similarly, [6] can-
not efficiently handle value range selections, e.g., a query such as
1991 < Year < 2000. Finally, the proposals involve either usage
of specialized data structures, or expensive processes for system
initialization, or costly maintenance for document updates. (See
Section 6 for a more detailed discussion on related work.)

The StatiX System. Our new system, StatiX, attempts to address
the above-mentioned shortcomings of the state-of-the-art in XML
result estimators. In particular, its design is founded on the follow-
ing core principles:

• X M L S c h e m a - b a s e d s tat i s t ics co l l ec t ion: In a growing num-
ber of data-oriented applications, the use of schemas is be-
coming commmonplace. (See [15] for descriptions of several
applications and standardized XML Schemas.) We capitalize

1 8 1

on this industry trend by employing XML Schema types as
the basis for statistics gathering, and this enables StatiX to
produce concise, yet accurate, summaries of XML data.

Histogram-based statistics maintenance: A large variety
of mechanisms are available for representing statistical sum-
maries. We have specifically selected histograms for this
purpose--the use of histograms enables StatiX to maintain
scalable and symmetric summaries of both the structures of
the types as well as the values in the data.

Basing statistics on XML Schema types facilitates the re-use of
standard XML technology, namely, validating parsers, for statis-
tics gathering. Another advantage of type-based statistics is that
the granularity of statistics gathering can be easily tuned through
schema transformations (e.g., delete, add, merge types) that change
the types but retain the tag structure (i.e., the same documents can
be validated by the transformed schemas).

Using histograms to store structural summaries elegantly cap-
tures the data skew prevalent in XML documents. Histograms are
attractive because they are simple to implement, have been well-
studied, and proven to be effective for selectivity estimation [18,
19]. In addition, they provide a flexible means to adjust to mem-
ory requirements (more or fewer buckets can be used depending on
the available memory). Moreover, because histograms are already
widely used in relational database engines, our framework can be
easily integrated with these systems--in fact, we can re-use stan-
dard histogram-based estimation algorithms available in relational
optimizers.

Finally, StatiX is able to handle a large class of XQuery queries,
including tree-pattern queries that involve reference chasing, selec-
tions over value ranges, and ancestor-descendent paths.

Contributions. Our main contributions in this paper are:

a novel statistics framework for XML, based on histograms
and XML Schema, that provides concise summaries and ac-
curate estimates for a significant subset of XQuery;

a description of how to modify an XML Schema validating
parser to perform statistics gathering;

exploitation of XML Schema transformations in order to ob-
tain statistics at different granularities;

demonstration of the effectiveness of StatiX in a real appli-
cation, namely, cost-based relational storage design for XML
data, which cannot be handled by previous approaches to size
estimation;

experimental results indicating that gathering statistics adds
acceptable overhead and that StatiX summaries lead to accu-
rate estimates.

Organization. The remainder of the paper is organized as follows:
An overview of the StatiX system architecture is provided in Sec-
tion 2, and the statistics gathering algorithm is presented in Sec-
tion 3. In Section 4, we explain how StatiX can be utilized in con-
junction with cost-based approaches to XML storage design. Then,
in Section 5, we present experimental results that demonstrate the
effectiveness of our approach. Related work is reviewed in Sec-
tion 6. We conclude in Section 7 with a summary of our results and
directions for future research.

type Show =
show [title [String],

Sh0w_year,
Aka*,
Review*,
(box office [Integer] I

(seasons [Integer] ,
Episode*)

)]

type Show4ear =
year [Integer]

type Review =

review [String]

type Aka =
aka [String]

type Episode =
episode [Aka{0,2}],

guest_dir [String]*]

Figure h XML Schema for Movie Data

2. THE STATIX FRAMEWORK
In this section, we use an example to illustrate the importance

of detailed statistical information in order to accurately estimate
sizes of XML queries. We then describe the StatiX model and the
architecture of the system.

2.1 Motivating Example
The XML schema in Figure 1, inspired from the Internet Movie

Database [11], describes information about shows. ~ All shows have
a title, a release year, zero or more alternative titles (aka's), and
zero or more reviews. If the show is a movie, it also has the box
office proceeds, or if it is a TV show, it has the number of seasons
during which the show was broadcast, and information about zero
or more episodes. Sample data reflective of real-world information
that conforms with this schema is shown in Figure 2 (the IDs in
the figure are not part of the document and are only included for
illustrative purposes, as discussed later in this section).

Estimating Cardinalities of XML Queries. Note that, because
XML allows deeply nested structures, evaluating path expression
queries may require a large number of joins. This increases the
risk for inaccurate estimates since it is known that errors propagate
rapidly through multi-way join queries [12]. In addition, the struc-
ture of XML Schema defines dependencies among elements that
are crucial for cardinality estimation. In our example, the schema
specifies that episodes should have at most 2 aka elements, and
that all shows with an episode must have a seasons element. This
kind of structural dependency yields non-uniform distributions that
are likely to increase the risk for inaccurate estimates.

Take for example the following query, which lists the titles, akas,
and reviews of shows that were broadcast after 1991:

FOR $s in document (' 'myshows .xml' ')/show,
$e in $s/episode, $a in $e/aka, $r in $s/review

WHERE $s/year > 1991
RETURN $s/title, $a, $r

Applying the access relation rewriting strategy [13] to transform
the navigation in the query into join operations over the types de=
fined in the schema, the original XQuery can be represented by the
following relational algebra expression:

7r t l t t~ ,~ t¢ i ~ w {true~>1991 {Show txl Episode txl Aka M Review}}

1In this paper, for simplicity, we use the XML schema notation for
types from the XML Query Algebra [8].

182

<imdb>
<show> < t - - I D = I - - >

<title> Fugitive, The </title>
<year> 1993 </year>
<aka> Auf der Flucht </aka> <!--ID=12-->
<review> best action movie of the decade...

</review> <l--ID=30-->
<review> Ford and Jones at their best...

</review> <[--ID=3J-->
<review> top notch action thriller...

</review> <!--ID=32-->
<review> Solid action and great suspense...

</review> <!--ID=33-->
<box office> 183752965 </box_office>

</showy

<show> <[--ID=2-->
<title> X Files, The </title>
<year> 1994 </year>
<seasons> 8 </seasons>
<review> spooky ... </review> <!--lD=34-->
<episode>

<aka> Ghost in the Machine </aka> <!--ID=13-->
</episode>

</show>

<show> <I--ID=3-->
<title> Seinfeld </title>
<year> 1990 </year>
<seasons> 9 </seasons>
<review> The best comedy series ever!

</review> < ! - - I D = 3 5 - - >
<episode>

<aka> Soup Nazi, The </aka> <t--ID=14-->
<aka> Soup, The </aka> <t--ID=15-->

</episode>
<episode>

<aka> Chinese Woman, The </aka> <t--ID=16-->
</episode>
<episode>

<aka> Good Samaritan, The </aka> <t--ID=IZ-->
<guest_director> Alexander, Jason </guest_director>

</episode>
<episode>

<aka> Gum, The </aka> <!--ID=18-->
</episode>
<episode>

<aka> Airport, The </aka> <t--ID=19-->
</episode>

</show>

<show> <!--ID=4-->
<title> Dalmatians </title>
<year> 1998 </year>
<review> Cute and entertaining

</review> < l - - I D = 3 6 - - >
<review> please, no 103 dalmatians!

</review> <[--ID=37-->
<box office> 50000000 </box_office>

</show~

<show> < ! - - I D = 5 - - >
<title> N Sync: Live </title>
<year> 2000 </year>
<seasons> 0 </seasons>

</show>
</imdb>

Figure 2: Sample Movie Data

From the data of Figure 2, we can infer that the actual size of the re-
sult is 1. Had we used a simplistic uniform distribution assumption,
the estimate would have been a highly inaccurate 17. This simple
example shows that a naive approach to XML statistics does not
work, and that more detailed information about the structure must
be captured in a statistical model in order to derive accurate esti-
mations.

2.2 The StatiX System
StatiX leverages information available in an XML Schema to

generate concise summaries that capture both the structural skew
as well as information about the values in an XML document. As a
result, StatiX is able to provide accurate estimates for a large class

] XML Schema

Schema
Transformer~,

Normalization)

(Application-Specific'~
Transformations)

I Transformed
XML Schema

XML > I Schema Validator I StatiX
Document L. Summary

Figure 3: Statistics Collection in StatiX

of XQuery queries. The diagram in Figure 3 depicts the two main
components of StatiX: the XML Schema Validator, that simulta-
neously validates the document against the schema and gathers the
associated statistics; and the XML Schema Transformer, which
enables statistics collection at different levels of granularity. In
what follows, we give an overview of these components and de-
scribe which and how statistics are gathered in StatiX.

2.2.1 XML Schema Validator
While in practice the XML Schema Validator comes into play

only after the XML Schema Transformer has completed its rewrit-
ings, for ease of exposition we will describe the validator first. As
mentioned earlier, the validator has two functions: validation of
the source XML document against its XML Schema description,
and the simultaneous collection of statistics for this schema. The
validator gathers statistics on a per-type basis. As illustrated in
Figure 2, globally unique identifiers (IDs) are assigned to all in-
stances of the types defined in the schema 2 (a similar ID assignment
scheme is also implemented in [6], however, they assign an ID to
each element in the data). Together with these ID assignments,
structural histograms are constructed which use the IDs to sum-
marize information about how elements are connected--the his-
tograms support the estimation of the cardinality of each edge in
the XML Schema type graph.

For the example presented above, a sample StatiX summary is
given in Figure 4. Note that one histogram is created for each type
in the schema. For example, for the type Review, StatiX stores the
range of IDs for the instances of Review in the document, as well
as the ranges of Show IDs that join with reviews in PARENT HIS-
TOGRAM Show (under type Review). This histogram indicates
that 4 reviews join with shows with IDs in the range [1,2), 1 review
joins with shows with IDs in the range [2,3), and the remaining
3 reviews join with shows with IDs in the range [3,5). Note that
all ranges (i.e., ID domains, value domains, and bucket ranges) in
StatiX summaries represent intervals closed on the left and open on
the right.

While StatiX uses histograms in a novel way to summarize struc-
tural information, histograms are also used in a more traditional
sense: value histograms can be built for types that are defined in
terms of base types (e.g., Integer). In our example schema, infor-
mation is stored about the distribution of years within shows: 3

2In the schema of Figure 1, type names are shown in sans serif.

183

DEFINE STAT Show {
CARDINALITY { 5 }
ID_DOMAIN (1 TO 6 } }

DEFINE STAT Show_year {
VALUE DOMAIN { 1990 TO 2001 }
BUCKE¥ ~BER { 2 }
BUCKETS {

FROM 1990 TO 1995 COUNT 3,
FROM 1995 TO 2001 COUNT 2 } }

DEFINE STAT Review {
CARDINALITY { 8 }-
ID DOMAIN { 30 TO 38 }
PARENT HISTOGRAM Show {

BUCKET N-UMBER { 3 }
BUCKETS {

FROM 1 TO 2 COUNT 4,
FROM 2 TO 3 COUNT 1,
FROM 3 TO 5 COUNT 3} } }

DEFINE STAT Aka {
CARDINALITY { 8 }
ID DOMAIN { 12 TO 20 }
PARENT HISTOGRAM Show_Episode {

BUCKET W~BER { 3 }
BUCKETS {

FROM 1 TO 2 COUNT i,
FROM 2 TO 6 COUNT 0,
FROM 6 TO 1 2 COUNT 7} } }

DEFINE STAT Episode {
CARDIMALITY { 6 }
ID DOMAIN { 6 TO 12 }
PARENT HISTOGRAM Show {

BUCKET NUMBER { 2 }
BUCKETS {

FROM 2 TO 3 COUNT i,
FROM 3 TO 4 COUNT 5} } }

Figure 4: Statistics Summary for Movie Data

shows were released in [1990,1995), and 2 during [1995,2001). 3
The combination of structural and value-based information al-

lows StatiX to provide accurate estimates for a large class of XQuery
queries. For example, using standard histogram multiplication over
the StatiX summary of Figure 4, the estimated size of the query in
our example is 4, which is significantly closer to the correct an-
swer (i.e., 1) than the size estimated under the uniform distribution
assumption (i.e., 17).

An explanation regarding how cardinalities are computed in the
above example is in order: for simplicity and uniformity, we take
it to be the cardinality of the number of records that appear in the

flattened version of the output of the XML query. A similar ap-
proach to counting results is taken in the OODBMS literature [13]:
Another detail is that for queries that mention tags which do not
have an associated type, we check whether the tag has a value his-
togram: if the histogram is available, it is used in the computation,
otherwise, by default, a uniform distribution is assumed.

Handling Shared Types, A crucial feature of the structural his-
tograms is that they naturally distinguish different occurrences of
the same type in the schema (i.e., types with multiple parents). In
our example, the type Aka occurs under both Show and Episode.
The corresponding histogram (in Figure 4, PARENT HISTOGRAM
Show_Episode), stores this information by maintaining three buck-
ets for the parent IDs of Aka: the first bucket contains the range of
show IDs; the last contains the range of episode IDs; and the mid-
dle accounts for the gap between the values of the show and episode
IDs. 4

aln the current system, users may indicate for which tags value
histograms must be built by creating new types for these tags.
4Note that empty buckets need not be explicitly stored--they are
shown here only for clarity of presentation.

Two important points are worthy of note. First, different gran-
ularities can be used for the different sections in the histogram,
e.g., if there are many more shows than episodes, more buckets
can be used to represent shows than to represent episodes. This
finer-grained information would be useful when there is a selection
predicate preceding a join that restricts the join to a subset of the
identifiers in the parent type. Second, there is no mandatory re-
quirement that IDs for a given type be contiguous, but when they
are not contiguous, more buckets may be needed to capture their
distribution. In the remainder of this paper, for simplicity, we will
assume that all ID ranges are contiguous and disjoint across types.

In Section 3, we describe our implementation of the Validator,
how statistics are gathered and how a standard XML validating
parser is extended to generate both structural and value histograms.

2.3 X M L Schema Transformer
The ability to specify types is an important feature of XML Sche-

ma which is not present in DTDs. In XML Schema, there is a
distinction between elements (e.g., t i t l e [S t r i n g] indicates
a title element whose content is a string value) and types (e.g.,
Show)--the latter do not appear in the document, but are used
during validation as annotations. A variety of transformations, de-
scribed in more detail below, can be applied which change the way
that annotations are performed but do not alter the set of valid doc-
uments. We utilize this feature, by applying the appropriate set of
transformations in the XML Schema Transformer module, to tune
the granularity of the statistics gathering process so as to suit the
requirements of individual applications.

In the remainder of this section, we illustrate a few representative
transformations and explain how they impact the statistics gather-
ing process. (A concrete example on how these transformations can
be adapted to a given application are given in Section 4, where we
describe the use of StatiX in cost-based storage design for XML.)

2.3 .1 T r a n s f o r m a t i o n s

Consider once again the XML schema of Figure 1. A possible
transformation that can be applied to this schema is to distribute the
union in the definition of Show creating two new types as follows
(see Figure 5(a)): Show1 corresponds to movies (which have box
office proceeds) and Show2 corresponds to TV shows (which have
seasons and episodes). When statistics are gathered under this new
schema, separate ranges of IDs are assigned to the different kinds
of shows, making it possible to distinguish the occurrences of the
children of Show. That is, under the transformed schema, it is
possible to know exactly how many reviews are associated with
movies and how many reviews are associated with TV shows. This
is illustrated in the StatiX summary fragment shown in Figure 5(b).

Another useful, yet simple, transformation is to associate type
names with tags. For example, a new type can be created for the tag
guest_dir: type GuestOirector = guest_dir [String].
The presence of this new type implies that statistics are gathered
about how these values are distributed among episodes. Given this
additional information, precise estimates can be given for queries
such as "Find the guest directors o f (TV) shows later than 1991
that were broadcast for more than 10 seasons ".

Apart from the above transformations, other possible transfor-
mations include [2]: (1) merging duplicate definitions; (2) deleting
a type by inlining its definition within the definition of its parent;
(3) splitting shared types; and (4) unrolling repetitions (e.g., a* can
be rewritten as a?,a*). 5. By combining these transformations, many
different schemas, and consequently, many different summaries can
be derived that are appropriate for different applications. As we

5 See [2] for detailed definitions of these transformations

184

type Show = Show1 I Show2

t y p e Show1 =
show [title[String],

Year,
A k a * ,
Rev iew* ,
box_office [Integer]]

type Show2 =
show [title[String],

Year,
A k a * ,
Rev iew* ,
(seasons [Integer],
Episode*)]

(a) Transformed schema

DEFINE STAT Show1 {
C~DINALITY { 2 }
IDDO~IN{1 TO3 } }

DEFINE STAY Show2 {
C~DZNALIT¥ { 3 }
IDD0~IN { 3 TO6 } }

DEFINE STAT Review {
CARDINALITY { 8 }
ID DO.IN { 30 TO 38 }
PARENT HISTOGRAM Show%Show2 {

BUCKET NUMBER { 2 }
BUCKETS {

FROH i TO 3 COUNT 6,
FROM~ TO6 COUNT2 } } }

(b) StatiX summary for transformed schema

Figure 5: Transformed Schema and Associated Statistics

discuss in Section 4, in cost-based XML storage design, transfor-
mations can be applied to further decompose specifically the subset
of the schema that is relevant to the input workload.

2.3.2 Memory Issues
Transformations that add types clearly lead to more detailed statis-

tics, but they also increase the amount of memory required for the
StatiX summary since histograms are kept for each type. Ifa budget
is set for memory, a ceiling in the number of types can be easily set
and transformations are applied only until that ceiling is reached.
That is, in contrast to the expensive reductive process followed by
the previous literature, wherein large disk-based representations are
whittled down to memory-resident structures (see Section 6 for de-
tails), a constructive approach is taken in StatiX. Note, however,
that establishing the optimal set of types and histograms for a given
memory budget is clearly a computationally intensive optimization
problem.

Most transformations have no real impact on the algorithmic
complexity of the statistics gathering process, although they might
alter the overheads of statistics collection. This is because adding
or deleting a type only means that statistics will or will not be gath-
ered for the particular pattern defined by the type. However, this is
not true for transformations that add ambiguity and lead to schemas
that are not proper XML Schemas--in XML Schema, types are de-
fined so that there is no ambiguity to ensure that validation can be
done with one look-ahead token and in linear time.

Union distribution, which we had discussed earlier in Figure 5,
is a good example of an ambiguity-causing transformation. This
is because when we distribute the union in Show and create the
new types Show1 and Show2, both these new types have the same
tag, show. The presence of ambiguity in the transformed schemas
requires non-trivial extensions to standard validating parsers, in-

cluding the incorporation of sophisticated machinery such as tree
automata [20] and may significantly increase the complexity of
statistics gathering. In our future work, we plan to investigate how
to minimize the impact of ambiguity on the validation process.

2.3.3 Schema Normalization
An important detail that was not mentioned in the above discus-

sion is that, in practice, as a prelude to applying the transforma-
tions, the user-supplied XML Schema is first normalized. Schema
normalization, as defined in [2], is composed of the following set
of schema transformations:

1. New types are introduced for all tags that are part of repeti-
tions or that are optional, e.g.,

t y p e Episode =
episode [Aka{0,2}],

guest_dir [String] *]

is transformed to
t y p e Episode =

e p i s o d e [A k a { 0 , 2 }] ,
GuestDirector*]

t y p e GuestDirector =
guest_dir [String]

2. New types are introduced for all complex structures that oc-
cur within unions and repetitions, e.g.,

type Show =
show [....

(box office [Integer] I
(seasons [Integer] ,
Episode*)

)]

is transformed to
type Show =

show [....
(Movie I TVShow)

t y p e Movie = b o x _ o f f i c e [I n t e g e r]
t y p e TVShow =

seasons [Integer] ,
Episode*

These complex structures (i.e., optional elements, union, rep-
etition) are a major source of structural skew in the data. By
ensuring types are defined for these complex structures, nor-
malization provides a controlled way to gather detailed statis-
tics which capture this skew. Having these detailed statistics
is important because not all transformations (e.g., union dis-
tfibution and repetition unrolling) preserve the accuracy of
the statistics. Therefore, if we initially generate statistics at
the finest type granularity, it is possible to retain the accu-
racy in spite of subsequent transformations. This issue is
illustrated in Section 4.

3. S T A T I S T I C S G A T H E R I N G
StatiX exploits XML Schema validation in order to collect statis-

tics. In this section, we first give a brief overview of how schema
validation works, along with a few complexity results. We then ex-
plain how StatiX modifies the validation process in order to collect
statistics. Experimental results obtained with our implementation
of the StatiX validator are given in Section 5.

3.1 StatiX and XML Schema Validation
Schema validation [23] is the process by which an XML docu-

ment is checked against a given XML schema. By exploiting the
necessary schema validation process, StatiX is able to amortize the
cost of statistics collection. Another benefit of this approach is
that StatiX can extend existing implementations of XML parsers
and XML Schema validators [25, 9]. Our initial prototype of the
statistics collector was built on top of Galax [9], a freely available
schema validator.

185

DTDs and XML Schemas impose certain restrictions on the reg-
ular expressions they allow in order to achieve determinism, and
techniques to generate deterministic tree automatas directly from
DTDs or XML schema have been proposed [3, 4]. Checking wheth-
er a given tree belongs to the language defined by this automata,
i.e., performing validation, can then can be executed in linear time
in the size of the data. Other kinds of tree automatas are more
expressive but can result in exponential computations [20]. The
validation algorithm we use leverages these restrictions in order to
perform validation by directly using a deterministic top-down tree
automata.

When the validation process is successfial, it results in a type
assignment for nodes or sequences in the XML document. This
type assignment is the basis for statistics generation in StatiX. Intu-
itively, we just Proceed with schema validation and count the num-
ber of occurrences of each type. It is important to note that because
of the determinism, there is always a unique way to perform this
type assignment, and this ensures the consistency of the statistics
gathering process.

3.2 Identifier Assignment
In order to gather information about how different elements re-

late to each other, StatiX assigns unique IDs to type instances in
the document. Ideally, the assignment should be such that for each
type, the ranges of the IDs covered by its instances are (a) inter-
nally contiguous, and (b) disjoint from that of other types. These
goals are approximated as follows: Offline, each type in the XML
Schema is assigned a unique type ID. Then, for each type, we main-
tain the following structure during validation: (a) a counter for the
next available type ID; (b) the set of all parent IDs that have been
processed for that type. (This is possible because the validation
process is performed top down and a parent is always processed
before its children.) Every time a new instance of a type is encoun-
tered, it is assigned a local ID using the counter associated with the
type, and its parent liD is added to the parent set for the correspond-
ing type. The global ID of the element is obtained by concatenat-
ing the associated type ID and its local ID. Note that even though
types in the schema can form a graph, XML documents are always
trees--as a result, the top-down validation approach naturally deals
with shared types (for instance, the shared type Aka in Figure 4).

Currently, we fix the size of counters to be two bytes, thereby
permitting up to 65536 elements per type. In the event a counter at-
tains its maximum, we can safely bail out of this problem by assign-
ing a new unique ID to the type and resetting the local counter--
subsequent instances of the type in the document are assigned IDs
based on these new values. Note that this process may result in
non-contiguous ID ranges for a type.

3.3 Histogram Construction
Once validation is completed and information has been gathered

about the parent IDs for each type, we proceed to construct a more
concise representation using histograms. A variety of histogram
constructions have been described in the literature [19, 18]--the
most common are equi-width histograms, wherein the domain range
covered by each histogram bucket is the same, and equi-depth his-
tograms, wherein the frequency assigned to each bucket is the same.
Since it has been shown in [16] that equi-depth histograms result
in significantly less estimation error as compared to equi-width his-
tograms, we have implemented the former in StatiX (for details of
the construction process, please refer the afore-mentioned litera-
ture).

4. APPLICATION TO COST-BASED
XML-TO-RELATIONAL MAPPING

The LegoDB cost-based XML-to-relational storage mapping en-
gine was recently described in [2], representing a departure from
prior approaches that were largely based on heuristics [22, 7]. The
LegoDB system generates relational configurations that are eft/-
cient for a given application. Given inputs consisting of (a) an
XML Schema, (b) XML data statistics, and (c) an XML query
workload, it examines a space of possible ways to decompose the
XML document into relations. LegoDB exploits the type structure
of XML Schemas to generate a space of alternative relational con-
figurations. A fixed mapping is defined that maps XML Schema
types into tables. By repeatedly applying XML-specific schema
rewfitings that alter the type structure of the schema (but retain
the document structure) followed by this fixed mapping into rela-
tions, LegoDB generates a space of possible relational configura-
tions. Each configuration is composed of."

• a relational schema, derived from the transformed schema
using the fixed type-to-relation mapping;

• a statistical summary for each relation in the schema, derived
from the given XML data statistics;

• an SQL workload, derived from the given XQuery workload
and the relational schema.

LegoDB uses a traditional relational optimizer (e.g., [10]) to es-
timate the cost of the derived relational configurations and selects
the configuration with the lowest cost. The cost of a configuration
is computed as the cost of processing its SQL workload on its rela-
tional schema on the basis of its statistical summary. Note that the
optimizer is used as a black box in this process and is completely
unaware of the XML ancestry of its inputs.

Clearly, the accuracy of the optimizer's cost estimates, and hence
the efficacy of LegoDB, crucially depends on the accuracy of the
statistics. If the statistics cause the optimizer to over- or under-
estimate the cost of alternative configurations, desirable choices
may be discarded and substituted with poor configurations. As
such, for LegoDB, we need a result estimator that is able to com-
pute accurate statistics for different relational configurations. In
principle, LegoDB could derive these statistics for each new con-
figuration by loading the XML source data into relations and then
analyzing the contents of these relations. However, this is not a fea-
sible alternative since the solution does not scale--a large number
of distinct relational configurations are considered, and process-
ing each configuration in the described manner can become pro-
hibitively expensive, especially for large documents.

A more scalable approach is the following: First compute the sta-
tistical summary for the initial XML Schema. Then, as and when
a new alternative XML Schema is generated by the LegoDB map-
ping engine

• incrementally derive the statistical summary for this XML
Schema, and

• translate this derived statistical summary to statistics for the
associated relational schema.

The previous sections have explained how StatiX can be used
to build an accurate fine-grained statistical summary for the initial
XML Schema. In the remainder of this section, we describe how
StatiX is used in LegoDB.

Gathering XML Statistics An important requirement for LegoDB
is that the XML statistical summary should contain enough infor-
mation that allows precise relational statistics to be derived for each

186

t y p e Show = Show1 I Show2

t y p e Show1 =
show [title[String],

Year,
Review*,
Movie]

t y p e Show2 =
show [title [String],

Year,
Review*,
TVShow]

t y p e Review =
review [String]

(a) Normalized schema

DEFINE STAY Show1 {
CARDINALITY { 2 }
ID_DO~I. { 1 TO 3 } }

DEFINE STAY Show2 {
e~DIN~ITY { 3 }
IDDO~IN{ 3 TO6 } }

DEFINE STAT Review {
CARDINALITY { 8 }
ID DO~UUN { 30 TO 3S }
PARENT HISTOGRAM Showl_Show2 {

BUCKET NUMBER { 2 }
BUCKETS {

FROM 1 TO 3 COUNT 5,
FROM3 TO6 COUNT 3 } } }

(b) StatiX summary for normalized schema

type Show =
show [title[String],

Year,
Review*,
box office [Integer]
(seasons [Integer],
Episode*)]
]

t y p e Review =
r e v i e w [String]

(c) Merged schema

DEFINE STAY Show {
CARDINALITY { 5 }
ID DOMAIN { 1 TO 6 } }

DEFINE STAY Review {
C~DINALITY { s }
ID DOr~IN { 30 TO 3s }
PARENT HISTOGRAM Show {

BUCKET m~BER { 1 }
BUCKETS {

FROMi TO6 eOUNY 8 } } }

(d) StatiX summary for merged schema

Figure 6: Schema Transformation and Statistics Derivation

configuration examined by the system. The schema normalization
procedure of StatiX (described in Section 2.3.3) delivers the XML
Schema at thefinest type granularity, and collecting the statistics
with respect to this schema allows StatiX to derive the accurate
statistics for any configuration generated by the LegoDB search en-
gine without looking at the data.

An example of this process is presented in Figure 6. The ini-
tial normalized XML Schema and the associated StatiX summary
are shown in Figures 6(a) and 6(b), respectively. During the search
process LegoDB applies a series of transformations, that may in-
elude, for example, merging the types Show1 and Show2, and
inlining the definitions of Movie and TVShow, which would lead
to the schema of Figure 6(c). For this new schema, it is possible
to construct an accurate structural histogram for the merged type
Show, as shown in Figure 6(d), using only the information in the

summary for the initial schema (Figure 6(b)). This is achieved by
simply (a) adding up the cardinalities and combining the domains
of Show1 and Show2, and (b) combining the buckets in the parent
histograms of Review.

Note that, in contrast, had the statistics been collected for the
XML Schema with the merged type Show, and a subsequent rewrit-
ing had split it into Show1 and Show2, it would have been im-
possible to construct the accurate histograms for the new edges
Showl-Review and Show2-Review. This is because, although
we are given the histogram for Show-Review, the partition of the
Show ids into Show1 and Show2 is not well defined.

Deriving Relational Statistics Since StatiX provides type-based
statistics for a given XML Schema, mapping this statistical sum-
mary to relational statistics follows the fixed type-to-relation map-
ping defined in LegoDB [2]. The relational statistics generated con-
tain:

a trivial (single bucket) histogram covering the domain of the
type for the ID column (the primary key); 6

a histogram translated from the value histogram for each col-
umn that represents a base-type sub-element; and

for the foreign key column, a histogram that is constructed
by merging the PARENT HISTOGRAMs of the types which
correspond to the foreign key.

5. E X P E R I M E N T S

We have evaluated the performance of StatiX on a variety of
XML documents coveting a range of sizes, document character-
istics and application domains. We report results here for two rep-
resentative datasets: the XMark benchmark [26], which creates
deeply nested documents that model an Internct auction site, and
the Internet Movie Database (IMDB) [11], which has a mostly fiat
structure and contains information about movies. 7

The performance was evaluated with regard to the following met-
tics:

• The overhead imposed by statistics collection on the valida-
tion process,

• The space occupied by the statistical summaries, and

• The accuracy of the cardinality estimates.

The above metrics were evaluated for a variety of schemas in-
cluding the original XML Schema, its normalized version, as well
as the schemas obtained after various transformations. Our ex-
periments were conducted on a PIII-750 MHz machine, running
Redhat Linux 6.2, with 2 GB main memory and 18 GB local SCSI
disk.

5 .1 S t a t i s t i c s C o l l e c t i o n

For a range of XMark document sizes going from 100KB to
100MB, Figure 7 shows the added overhead of statistics collec-
tion for three different versions of the XMark schema: normalized
(consisting of 125 types); split-item wherein the type correspond-
ing to i t e m is split to eliminate its shared occurrences (resulting
in 132 types); and split-all wherein all shared types in the schema
are split (resulting in 1887 types). The algorithmic complexity of
validation is linear in the size of data and thus, it is not impacted

6Multiple buckets may be used if the IDs are not contiguous.
rWe created the XML Schemas for both XMark, for which only a
DTD is available, and IMDB, for which no DTD is provided.

187

1400

1200

1000

800

600

400

200

0

IOOKB

Stat Collection+Validation
Validation

2

1MB

3

5MB

4 5

10MB 50MB 100MB

(a) Normalized

1400

1200

1000

800

600

400

200

0

IOOKB

Stat Collection+Validation
Validation

2

1MB

3

5MB

4 5 6

10MB 50MB 100MB

(b) Split Item

.E

1400

1200

1000

800

600

400

200

0

100KB

Stat Collection+Validation ~ j

2 3 4 5

IMB 5MB 10MB 50MB 100MB

(c) Split All

Figure 7: Overheads for Statistics Collection

by the number of types in the schema. Statistics gathering, on the
other hand, does depend on the number of types, as Figure 7 shows.
A major source of overhead in our prototype are the structures that
are built (and maintained) by Galax [9] to construct the histograms;
these structures are not optimized for large documents. However,
with careful tuning or by using sampling-based techniques, this can
be improved.

For comparative purposes, we also evaluated the "Twigs" [6] ap-
proach (described in more detail in Section 6) with respect to the
time taken to build the summary structures. The Twigs software
(which was provided to us by its authors) excutes in two phases:
First, a preprocessing phase in which the XML document is parsed
and stored into a format suitable to generate the summary structure;
and, second, a building phase, where the summary structure is ac-
tually constructed. We ran Twigs on a 10MB document as well as a
50MB XMark document. The preprocessing phase took a consider-
able amount of time--around l0 minutes for the 10MB document
and over an hour for the 50MB document. The building phase,
on the other hand, took about 90 seconds for the 10MB document
and 450 seconds for the 50MB document. The summary contained
1000 nodes with a signature size of I0.

In contrast, the worst case performance of StatiX, correspond-
ing to the "Split All" schema (Figure 7(c)), takes approximately 70
seconds for processing the 10MB document and 500 seconds for
the 50MB document--note that these figures include the entire set
of operations: parsing, validation and statistics collection.

5.2 Summary Sizes
The sizes of the StatiX summaries are directly proportional to the

number of incoming edges into complex types (ctypes), number of
base types for which statistics are gathered (btypes), and the size
of the histograms which is determined by the number (nbuckets)
and size (bsize) of buckets:

summary_s i ze = ~ i (c t ypes i * nbucketsi • bsizei)+
~ j (btypesj • nbucketsj • bsizej)

where i ranges over the IDs of complex types and j over the IDs
for the base types. For example, with the 100MB XMark docu-
ment, a normalized schema, and 30 buckets per histogram (in our
implementation, each bucket consumes 8 bytes), the total summary
size was only 25KB, whereas for the split-all schema it was around
200KB. This clearly shows that StatiX summaries are extremely
concise as compared to the documents whose statistics they are rep-
resenting.

It is important to note here that in previous approaches, the space
space overhead is proportional to the size of the data. With StatiX,
however, the overhead is proportional to the size of the schema
since it is based on the number of types. As schemas are typically
much smaller than the data, major savings can be realized with our
approach. For comparative purposes, we evaluated the memory
consumption of Twigs on the 10MB XMark document and found
that even for this relatively small-sized document it took about dou-
ble the space required by StatiX (as we discuss below, StatiX is able
to derive estimates that are more accurate even with a significantly
smaller summary). We can expect that this difference would only
grow larger with increase in document size.

5.3 Estimation Accuracy
To assess the estimation accuracy of StatiX, we ran a variety of

queries against the 100MB version of XMark (using the normal-
ized schema) and against a 44MB version of the IMDB dataset.
We describe these results, obtained using 30 buckets per histogram,
below. As an indicator of the amount of skew encountered in the
data we also evaluated the estimates that would have been obtained
from a uniform distribution modeling approach.

XMark Dataset. The list of XMark queries used in our experi-
ments is given in Table 1 (please refer to [26] for details of the
XMark document structure). Some of these queries are derived
from the query set supplied with the benchmark, while others were

1 8 8

m

X2
X3
X4
X5
X6
X7

- ~ - p t i o n
all buyers of European items
all bidders for European items
names of sellers who sold an item
names of people and their emails
list of item ids and buyer's ids in closed auctions
names of people with homepages
names and descriptions of australian items

Table 1: XMark Benchmark Query List

30000

25000

20000
.m

15000

10000

5000 - -

0 ,r~J!

~ []Actual
StatiX

• Un form
i

r

X1 X2 X3 X4 X5 X6 X7

XMark Queries

Figure 8: Accuracy of StatiX vs Uniform for XMark queries

constructed by us. Note that queries X 1, X2 and X3 feature value-
based joins, while X4, X5, X6 and X7 only involve tree patterns
(the joins are structure-based). The number of joins in each of the
queries is listed below:

• X4, X6 :2 joins involving 3 types

• X7:3 joins involving 4 types

• X5 :4 joins involving 5 types

• X3:5 joins involving 6 types

• X1, X2:8 joins involving 9 types.

Figure 8 shows the cardinality estimates for the above queries
using StatiX and uniform distribution, as well as the actual query
sizes. It is gratifying to note here that the StatiX estimates are all
within reasonable error margins and, in fact, for most of the queries,
the estimate contains virtually no error. These results become even
more attractive when taken in conjunction with the fact that the
StatiX summaries are very small in size. For example, with queries
X6 and X7, where StatiX has virtually no error, Twigs, which uti-
lized double the storage (see above), had 3% and 53% error, re-
spectively.

We also note in Figure 8 that using a uniform distribution as-
sumption results in large errors. An important factor that con-
tributes to these errors is the structural skew that arises as a con-
sequence of shared types. For example, query X5 requires the fol-
lowing join: Closed_auction N Itemref t~ Buyer. But since both
closed and open auctions have Itemrefs, the uniform estimator as-
sumes that 50% of Itemrefs would join with Closed_auction--as
the 11.5% error indicates, this assumption does not hold for the
XMark dataset. These errors are magnified when (a) the queries
involve types with greater number of parents, e.g., queries X4 and
X6 involve the type Name which is shared among 3 types, lead-
ing to errors greater than 70%; and (b) the queries involve multiple

250000- ..

200000-

150000-

100000.

50000-

0-
Q1 Q2

IMDB Queries

[Actual

• Uniform

Statix (Struct)

[] StatiX (Struct +
Val)

Figure 10: StatiX Accuracy for the IMDB dataset

shared types, e.g., query X7 includes the types Item (shared among
6 types) and Name (shared among 3 types), leading to an estimate
that is 7 times larger than the actual query size.

Let us now examine the queries X1 and X3, whose pictorial rep-
resentation is shown in Figure 9. Note that these two queries are
quite similar, but whereas the StatiX estimate for X3 is precise, the
estimate for X1 is of fby 10.4%. This can be explained as follows:
In query X 1, the type Item (and consequently id) is shared among
6 parents (i.e., Europe, North America, etc.). When the join is per-
formed between Itemref and Item, StatiX estimates the cardinality
correctly. However, as it does not keep track of the correlation be-
tween the id values and Item values, when the selection to filter out
European items of closed auctions is subsequently applied, error is
introduced in the estimate. In contrast, for query X3, because the
types of the join attributes are not shared, StatiX derives precise
estimates.

IMDB Dataset. We now move on to evaluating the accuracy of
StatiX on the IMDB dataset. For this dataset, we focus on the sub-
set of the schema that covers movies and alternative titles (aka 's)--
a movie can have from zero to an unlimited number of aka's. This
subset has a total of 113,269 movie elements and 47,756 aka ele-
ments. The skewness of this data is indicated by the fact that of the
113,269 movies, only 30,506 have at least one aka, while 9 movies
have 26 aka's.

In Figure 10, we show cardinality estimates for the following
queries over the IMDB data: Q 1 :Find title, year, and pairs ofakas
for all shows; and Q2:Find title, year, and pairs o f akas for shows
released later than 1990. These are tree-pattern queries and require
a 3-way join (show t~ aka t~ aka). Notice that under uniform distri-
bution assumption, the cardinality over-estimates are unacceptably
high: 12 times for Q 1 and 147 times for Q2. In marked contrast, us-
ing the structural histograms in the StatiX summary, the estimates
for Q 1 are far better--within 1% of the actual size. For Q2, how-
ever, which includes the conditional check for year > 1990, struc-
tural histograms alone are not sufficient to generate a precise esti-
mate: in the absence of information about the distribution of year
values across shows, uniform distribution is assumed for these val-
ues, resulting in the large error (12 times over-estimate). However,
when a value histogram (with 5 buckets) is added for the year ele-
ment, the error becomes significantly reduced.

6. R E L A T E D W O R K
A variety of proposals for XML result estimators have appeared

in the recent literature [14, 6, 1, 24, 17]. McHugh and Widom

189

Openauction i
. . . . 2

Closed_auction ..
/

Buyer

person ~attribute)
I
I

string

! .

: Namerica
: Africa Samerica

Europe : Australia...,~s!a.

\ "1 , . . ' "

Itemref Item

sti-ing -I

(a) Query X l

i Open_auction

"'. Closed auction
' . . %

"'" 'Seller

persos!a~gfibute~

.... "Aus'traiia"
Asia Africa Europe
Samerica Namerica

Person i .C. 9.tegg.~... !te.na..:

I • id (attribute) string
I

string

(b) Query X3

Figure 9: Pictoral Representation of XMark Queries Xl and X3

[14] proposed a scheme wherein statistics about all subpaths p of
length _< k that occur in the XML document are explicitly stored
(k is a tunable parameter). These statistics are sufficient to give
accurate answers for queries that involve path expressions of length
_< k + 1. For queries with longer paths, the statistics of the k-length
subpaths occurring in the query are combined to estimate the result
cardinalities.

In [6], Chen et al propose a scheme that captures correlations
between paths, resulting in accurate estimation of the so-called
twig or tree queries. Their strategy consists of gathering counts
for frequently occurring twiglets in the data, and then assigning
each twiglet a "set hash" signature that captures the correlations
between the subpaths in the data tree. Query selectivity is then es-
timated by combining the hash signatures of the twiglets occurring
in the query. While this work is restricted to tree-structured data,
the more general problem of handling queries on graph-structured
XML documents, involving chasing through references (i.e., idrefs),
is addressed in [17].

Aboulnaga et al [1] propose and evaluate two memory-efficient
data structures for estimating sizes of simple path expressions (as
opposed to twigs): a summarized path tree, which collapses the tree
corresponding to the original XML document by deleting or coa-
lescing low-frequency nodes; and a summarized path table, which
stores the counts of all frequently occurring paths of length _< k.

While the above proposals represent novel and ingenious ap-
proaches to the estimator problem, they have some limitations. No-
tably, they focus on sehemaless semistructured data--i.e., the XML
source document comes in an "as is" condition. However, in a
growing number of data-oriented applications, the use of schemas
is commonplace. (See [15] for descriptions of several applica-
tions and standardized XML Schemas.) As we have described,

this schema information can be used to improve the quality of the
statistics as well as reduce their storage overheads. Wu et al [24]
proposed a method that does take schema information into account.
They defined position histograms that capture the ancestor-descen-
dent relationships among nodes in the document. Even though
these histograms can be used to efficiently answer path queries con-
taining the descendent construct, they are not able to capture skew
that is derived by other important structural constraints (e.g., union,
repetition) present in typical XML Schemas.

Another limitation of previous works is that they support a lim-
ited class of XML queries. For example, [1] is restricted to simple
(non-branching) path expressions in the document tree and cannot
handle equality predicates or queries that involve reference chas-
ing. [6] cannot efficiently handle value range selections, e.g., a
query such as 1991 _< Year <_ 2000, cannot be handled un-
less converted to separate sub-queries for each of 1991, 1992,. . . ,
2000. Note that this conversion requires domain knowledge about
the legal data values in the range. Further, the translation into sub-
queries and the subsequent estimation by integration of the indi-
vidual sub-query results is likely to be expensive. [24] constructs
a separate position histogram for each distinct predicate--this ap-
proach has limited scalability and may be infeasible for ad-hoc
query workloads.

Except for [17], existing approaches for XML estimators per-
form summarization by reduction of fully-specified structures. For
example, in [1], the complete path-tree for the entire document is
built on disk and then whittled down to an in-memory structure.
This may entail considerable disk activity during the reduction pro-
cess. Instead, the alternative approach of construction adopted by
StatiX, wherein the statistics are built up until the memory budget
is exhausted, is more sealable and less resource-intensive.

190

In some cases, specialized data-structures such as suffix-trees [6,
1] and data-guides [14] have been employed to host the statistical
information--these structures are relatively complicated to imple-
ment. Our choice, on the other hand, of histograms as the statistics-
maintaining structure results in a simple and scalable implementa-
tion.

Lastly, in some of the schemes, the addition of new nodes in the
document graph may have global side-effects--that is, necessitate
changes in several locations in the statistics-maintaining structure.
For example, in [6], the addition of a node may require the updat-
ing of all signatures occurring in the path leading to the node. Such
side-effects do not occur with StatiX, however, since the histograms
are schema-based, not document-based; therefore, it is only the his-
tograms associated with the types of the added nodes whose values
may have to be updated.

7. CONCLUSIONS
In this paper, we have defined an XML statistics model and pre-

sented StatiX, a system that implements this model. StatiX lever-
ages the XML Schema data model, schema rewriting transforma-
tions, and histograms to provide simple, concise, flexible, and scal-
able data summaries for query selectivity estimation, a critical input
in database configuration and usage.

The advantages of our approach over the prior art include han-
dling a wider spectrum of queries, localized impact of document
updates, and a constructive approach to memory utilization. Fur-
ther, from an implementation perspective, statistics gathering is in-
tegrated with a standard XML validation module, making it attrac-
tive for hosting in current systems.

Experiments with large data sets and complex queries, including
those derived from XMark, against a relational backend indicate
that StatiX provides highly accurate query selectivity estimates,
especially as compared to simplistic uniform distribution assump-
tions. The computational overhead due to statistics collection is
also quite reasonable, considering that this collection is a one-time
operation--our normalization process ensures that statistics for all
rewritten schemas can always be derived from the initial statistics.
Further, our overheads are considerably smaller in magnitude than
those incurred by previous approaches.

Currently, StatiX only supports XQuery queries that can be trans-
lated into SPJs. In future work, we plan to add support for both
aggregates and recursion. Other issues that we intend to explore
include usage of sampling to reduce the overhead of statistics col-
lection, and the efficient handling of the ambiguity caused by trans-
formations such as union distribution.

Acknowledgements
We thank Zhiyuan Chen and Divesh Srivastava for generously pro-
viding the Twigs software and helping us with its installation and
u s e .

8. REFERENCES

[1] A. Abouinaga, A.R. Alameldeen, and J.Naughton.
Estimating the selectivity of XML path expressions for
Internet scale applications. In Proceedings of VLDB, pages
591-600, 2001.

[2] P. Bohannon, J. Freire, P. Roy, and J. Sim6on. From XML
schema to relations: A cost-based approach to XML storage.
In Proceedings oflCDE, pages 64-75, 2002.

[3] A. Briiggemann-Klein. Regular expressions into finite
automata. TCS, 120(2):197-213, 1993.

[4] A. Briiggemann-Klein and D. Wood. One-unambiguous
regular languages. Information and ComPutation,
140(2):229-253, 1998.

[5] D. Chambelin, J. Clark, D. Florescu, Jonathan Robie,
J. Sim6on, and M. Stefanescu. XQuery 1.0: An XML query
language. W3C Working Draft, June 2001.

[6] Z. Chen, H.V. Jagadish, F. Kom, N. Koudas,
S. Muthukrishnan, R.T. Ng, and D. Srivastava. Counting
twig matches in a tree. In Proceedings oflCDE, pages
595-604, 2001.

[7] A. Deutsch, M. Fernandez, and D. Suciu. Storing
semi-structured data with STORED. In Proceedings of
SIGMOD, pages 431--442, 1999.

[8] P. Fankhauser, M. Fernandez, A. Malhotra, M. Rys,
J. Sim6on, and P. Wadler. The XML query algebra, February
2001.
http ://www.w3.org/TR/2001/WD-query-algebra-20010215.

[9] Galax system, October 2001. http://db.bell-labs.com/galax/.
[10] G. Graefe and W. McKenna. The volcano optimizer

generator: Extensibility and efficient search. In Proceedings
oflCDE, pages 209-218, 1993.

[11] Internet Movie Database. http://www.imdb.com.
[12] Y. Ioannidis and S. Christodoulakis. Optimal histograms for

limiting worst-case error propagation in the size of join
results. ACM TODS, 18(4):709-748, 1993.

[13] A. Kemper and G. Moerkotte. Advanced query processing in
object bases using access support relations. In Proceedings
of VLDB, pages 290-301, 1990.

[14] J. McHugh and J. Widom. Query optimization for XML. In
Proceedings of VLDB, pages 315-326, 1999.

[15] XML query language (xql). http://www.oasis-open.org,
2001.

[16] G. Piatetsky-Shapiro and C. Connell. Accurate estimation of
the number of tuples satisfying a condition. In Proceedings
of SIGMOD, pages 256-276, 1984.

[17] N. Polyzotis and M. Garofalakis. Statistical synopses for
graph structured XML databases. In Proceedings of
SIGMOD, 2002.

[18] V. Poosala and Y. Ioannidis. Selectivity estimation without
the attribute value independence assumption. In Proceedings
of VLDB, pages 486--495, 1997.

[19] V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita. Improved
histograms for selectivity estimation of range predicates. In
Proceedings of SIGMOD, pages 294-305, 1996.

[20] G. Rozenberg and A. Salomaa, editors. Handbook offormal
languages, volume 3. Springer Verlag, 1997.

[21] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and
T. Price. Access path selection in a relational database
management system. In Proceedings of SIGMOD, pages
23-34, 1979.

[22] J. Shanmugasundaram, K. Tufie, G. He, C. Zhang,
D. DeWitt, and J. Naughton. Relational databases for
querying XML documents: Limitations and opportunities. In
Proceedings of VLDB, pages 302-314, 1999.

[23] H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn.
XML Schema Part 1: Structures. W3C Working Draft,
February 2000.

[24] Y. Wu, J. M. Patel, and H. V. Jagadish. Estimating answer
sizes for xml queries. In Proceedings of EDBT, 2002.

[25] Xerces java parser 1.4.3. http://xml.apache.org/xerees-j/.
[26] Xmark. http://monetdb.cwi.nl/xml.

191

