
EUROGRAPHICS-IEEE VGTC Symposium on Visualization (2005)
K. W. Brodlie, D. J. Duke, K. I. Joy (Editors)

High-Quality Rendering of Compressed Volume Data Formats

Nathaniel Fout Hiroshi Akiba Kwan-Liu Ma Aaron E. Lefohn
Department of Computer Science

The University of California, Davis

Joe Kniss
Department of Computer Science

The University of Utah

 Abstract
Rendering directly from packed or compressed volume data formats using graphics hardware has advantages
in terms of memory consumption and bandwidth, but results in lower-quality images due to the prohibitive cost
of performing interpolation and gradient-based shading on the reconstructed data. The problem with the
existing method lies in its close coupling of decompression and interpolation. We demonstrate that deferred
filtering overcomes this problem by using a two-pass decompression and rendering strategy. With this method
interpolation and gradient calculations are very efficient, allowing high quality rendering directly from packed
or compressed volume data. We evaluate the cost of creating interpolated, gradient-shaded renderings using
traditional on-the-fly decompression and deferred filtering, and show that deferred filtering can provide up to
twenty times speed-up for high quality rendering.

Catagories and Subject Descriptors: I.3.1: [Computer Graphics]: Picture and Image Generation – Graphics
processors; I.3.3 [Computer Graphics]: Picture and Image Generation – Viewing algorithms; E.4 [Coding and
Information Theory]: Data Compaction and Compression

1. Introduction

Volume rendering of large data sets is the subject of
ongoing research in the field of visualization, and with
larger and larger volume data being generated the problem
will not disappear soon. On one hand we have time-varying
volumes, wherein measurements or computer simulations
of dynamic phenomena may provide hundreds of time
steps. On the other hand we have large static volumes
resulting from high-resolution acquisition devices and/or
the need to visualize fine features in the spatial domain. To
compound the problem many data sets store multiple
properties or variables for each voxel. In fact the presence
of any or all of these properties presents challenges in
volume rendering due to the increase in data available for
visualization.

Research into large data visualization has offered various
potential solutions to handling large data in the context of
volume rendering, and one of these is data reduction via
compression. Data compression is a well-established field
offering a plethora of techniques to reduce the size of data,
either losslessly or lossily, and though a large part of this
work targets image compression most of these techniques
can be extended in a straightforward manner to volume
compression as well. Several options exist when combining
compression and volume rendering, as described by Yang
[Yan00]. These include decompression prior to rendering,
rendering on-the-fly during decompression, decompressing
on-the-fly during rendering, and rendering directly from the
compressed volume.

In this work we show how a recently proposed algorithm,
deferred filtering [LKHW03, KLF05], dramatically
improves the performance for decompressing on-the-fly

during rendering. In the recent past several compression
options have been presented which enable decompression
on-the-fly [KE02, LK02, BCF03, SW03], but all of these
suffer from one key problem: in order to support
continuous reconstruction from the compressed
representation either data replication or costly manual
interpolation is necessary (in some cases, for instance
whenever vector quantization is used, only the latter option
is available). We demonstrate that the reason for this is the
close coupling of decompression and interpolation implicit
in previous methods. Furthermore, we demonstrate that
deferred filtering overcomes this problem, thereby enabling
efficient rendering of compressed volume data while taking
advantage of native hardware interpolation. The improved
efficiency of decompression afforded by deferred filtering
allows for a) continuous reconstruction from the
compressed volume, b) calculation of gradients on-the-fly
for shading, and c) more flexibility in the compression
algorithm.

2. Related Work

There are numerous applications where compression is
useful, and while many compression methods are general in
their application, tailoring the compression method to the
application is a standard technique to achieve improved
performance. For instance, MPEG compression of video
relies not just on compression of separate frames, but also
on inter-frame correlation with motion compensation.
Similarly, compression of volume data can be tailored to
the application of volume rendering. The essential
requirements of compression, if it is to be closely coupled
with volume rendering, are described by Ning and

© The Eurographics Association 2005.

 Fout et al. / High-Quality Rendering of Compressed Volume Data Formats

Hesselink [NH92] as fast, direct, random access to voxels.
As can be observed in many of the existing methods, the
degree to which the former principles are followed largely
determines the amount of interactivity possible when
rendering from compressed volume data.

Original
Texture

= Index
Texture + Packed

Texture

Figure 1: Overview of block-based volumetric
compression method for graphics hardware. Lossless
compression (texture packing) stores only non-empty
blocks and uses an index texture for mapping from the
original volume domain to the packed volume. Lossy
compression is similar to packing but uses a small
representative set of blocks called the codebook
instead of the packed texture.

Rendering on-the-fly from compressed volume data is
efficient in that from the renderer's perspective the memory
consumption and bandwidth are reduced. Ning and
Hesselink [NH93] compressed volumes with vector
quantization and achieved very efficient rendering by ray
casting the relatively small codebook once and reusing the
results. In this way vector quantization not only compresses
the data but also increases the efficiency of rendering in
some cases. Yeo and Liu [YL95] compressed volumes with
a JPEG-like method and rendered by decompressing blocks
as needed. Rendering was accelerated by extracting only
the DC coefficient for nearly homogeneous blocks. A more
recent technique by Guthe et al. [GWGS02] creates a
block-wise hierarchical decomposition or octree of volume
data with entropy encoding of wavelet coefficients. During
rendering projective classification, priority-based
decompression, and block caching are used to efficiently
render large data sets interactively.

With the recent introduction of programmability in the
graphics pipeline, several on-the-fly decompression
methods have been developed which allow rendering
directly from compressed data stored in graphics memory.
In texture packing non-empty regions of the volume are
packed into smaller textures. This method achieves a kind
of lossless compression and allows access to packed data,
both static [KE02, LK02] and dynamic [LKHW03,
LKHW04], through an index texture. A similar technique is
described by Binotto et al. [BCF03] for time-varying data.
Coherence between time steps allows reuse of packed
blocks, and a refinement structure is used to take advantage
of homogeneous regions and to provide efficient rendering.
Schneider and Westermann [SW03] use a hierarchical
vector quantization scheme based on a Laplacian
decomposition to compress volumes, with decompression
on-the-fly in graphics hardware. This method achieves
better performance than using simple vector quantization
but uses a slightly more complex decompression scheme.

Various other compression methods have been applied to
volume data. Lossless compression [FY94] as well as lossy
methods based on fractal encoding [CHF96], Laplacian
pyramid encoding [GY95], wavelet encoding [Mur93,
GS01, NS01, LHJ99, Wes95], and vector quantization
[NH92] have also been proposed, with varying amounts of
integration with rendering. Several 4D techniques have
been specifically designed with time-varying data in mind,
including tree-based [WvG94, SCM99] and subdivision
[LPD*02] methods. Lum et al. [LMC01] use the Discrete
Cosine Transform (DCT) of time series for compression
with decompression on-the-fly in graphics hardware.

3. Deferred Filtering

In this section we describe deferred filtering, an efficient
algorithm for rendering from packed or compressed volume
data. The algorithm is a two-pass technique that
decompresses into slices in the first pass and then renders
filtered slices in the second pass. This approach was
introduced by Lefohn et al. [LKHW03] in the context of
rendering level-set surfaces from a sparse dynamic (i.e.

GPGPU) texture format and later generalized [KLF05].
Here we explore the application of this idea in the context
of rendering from compressed volume formats.

We first describe the conventional way to perform on-
the-fly decompression using graphics hardware, followed
by a discussion of the problems with this method. We then
describe the basic deferred filtering technique and offer an
analysis in terms of decompression costs. Our focus then
shifts to implementation of deferred filtering in graphics
hardware, including the calculation of gradients for
lighting.

3.1. The Algorithm

In the context of decompression in graphics hardware there
are essentially two options available. The first option is
natively supported hardware decompression, which
includes methods such as the S3 texture compression
standard provided by S3 Inc. These types of methods are
generally fixed-rate and lossy, designed primarily for color
textures used in gaming. The second option is custom
hardware decompression, which comes in two forms:
lossless compression, also called texture packing, and lossy
compression, which is based on vector quantization.
Implementations of these decompression methods rely on
the programmability of pixel shaders in modern graphics
cards.

Texture packing partitions the volume into blocks and
stores only the non-empty blocks. As shown in Figure 1, an
additional texture often called the index texture is used to
define a mapping from the original data domain to blocks in
the packed texture. In order to support continuous
reconstruction and shading, a space-filling arrangement as
described by Ning and Hesselink [NH93] and Yeo and Liu

(a) (b) (c)

Figure 2: Space-filling arrangements shown in 2D for
a 4x4 block (a). Linear (in this case bilinear)
interpolation requires 1-space-filling (b), whereas
shading based on gradients requires 3-space-filling (c).

 © The Eurographics Association 2005.

 Fout et al. / High-Quality Rendering of Compressed Volume Data Formats

[YL95], respectively, is applied to each block (Figure 2).
As proposed by Kraus and Ertl [KE02], a remapping of the
texture coordinate domain from cell-based texels (used by
OpenGL) to vertex-based texels allows space-filling blocks
in hardware, such that a block of size b3 is increased in size
by a factor of (b+1)3/b3 for trilinear interpolation and
(b+3)3/b3 for gradient calculation. Although space-
filling (or padding) allows the use of native hardware
interpolation in the packed texture, the replication of data at
block boundaries serves to undermine the compression rate
by inflating the packed texture size. Furthermore, because
each block is padded at the boundaries it is difficult to reuse
blocks, since not only the block itself but also the boundary
values would need to be identical [KE02]. Table 1 gives the
overhead of texture packing for various volumetric block
sizes. Note that in order to support gradient calculation a
substantial increase in the block size is required, and in
some cases packing may actually increase the size of the
data.

Lossy methods rely on vector quantization, which is
essentially a texture packing where blocks are reused.
Again we have a mapping from the original data domain to
the packed texture, which in this case is referred to as the
codebook. Because a given block in the codebook texture
may be used to represent many blocks in the original
volume, it is usually not possible to pad the blocks.
Although an “average” boundary could be constructed by
looking at the blocks which reference the code block, this
would result in increased blocking artifacts, which are
already a problem for block-based compression methods.
Consequently, each voxel needed in the interpolation filter
must be individually decompressed in the fragment
program prior to interpolation. Furthermore, the
interpolation itself must then be carried out in the fragment
program in order to obtain the scalar value needed for
classification. A consequence of this is that since the

interpolation is performed on a per-fragment basis, the
complexity of the decompression is a direct function of the
sampling rate. The problem with this is that although a
single voxel may be needed for several fragments, rather
than decompressing that voxel once and caching the result
we must recalculate the decompression of that voxel for
each use. For instance, consider the 2D cases depicted in
Figure 3. Any sample point within the highlighted region
will require voxel V to be decompressed. If we consider
sampling once per voxel then for interpolation (depicted in
Figure 3a) we will perform 4 decompressions (3 redundant
decompressions) of each voxel; likewise, in 3D we will
perform 8 decompressions (7 redundant decompressions) of
each voxel. Now consider gradient calculations as well
(Figure 3b). In order to compute the gradient for shading
using central differences we need six additional
interpolated values. This would mean 11 redundant
decompressions in 2D and 31 in 3D. Thus we see that even
when sampling just once per voxel the massive amount of
work required to calculate an interpolated and shaded
sample prohibits real-time calculation for reasonable sized
data sets. This is why implementations of on-the-fly
decompression typically forego shading and even
continuous reconstruction, opting instead to use a nearest-
neighbor reconstruction kernel requiring only one
decompressed sample. However, even this approach will
perform redundant decompressions when sampling more
than once per voxel and/or performing shading.

Padding Overhead Block Size
Padding Type 43 83 163 323

Trilinear Interpolation 95% 42% 20% 10%
Gradient Calculation 436% 160% 67% 31%
Table 1: Percent increase in block size when padding
volume blocks. For most data sets the optimum block size
is 83 or 163, in which case to support shading the packed
blocks will need to be 160% or 67% larger, respectively.

We should say that texture packing can also use this
approach of “hand-coded” interpolation, thereby alleviating
the need for padding; however, texture packing would then
suffer from the same problems associated with this method
in terms of redundant decompressions.

It is clear that both packing and compression suffer from
some form of inefficiency; in particular, packing is
memory-inefficient, whereas compression is computation-
inefficient. The problem is that with the inability to cache
decompressed voxels among fragments the close coupling
of decompression and interpolation results in redundant
decompressions. The solution, therefore, is to separate these
two steps in such a way that intermediate decompression
results can be cached. We do this by using deferred
filtering, a two-pass approach in which a small subset of the
volume is decompressed in the first pass and in the second
pass this subset is used for conventional rendering. The
basic idea is to render slab-by-slab using axis-aligned slabs
as shown in Figure 4. To render a single slab we use a first
pass which decompresses two consecutive slices of the
original volume. Then in the second pass sampling slices
are rendered using native filtering to compute trilinearly
interpolated samples. In short, deferred filtering proceeds as
follows for a volume consisting of k slices:

 (a) (b)

Figure 3: The filter support for linear interpolation (a)
and gradient calculation (b) shown in 2D. Any sample
within this support will require decompression of V. If V
must be decompressed separately for each sample then
we will perform 4 decompressions of V in (a) and 12
decompressions of V in (b). Analogously, in 3D we will
perform 8 decompressions for linear interpolation and
32 for gradient calculation.

 1. Decompress volume slice 0.
 2. For volume slice n=0 to k-1:
 a. Decompress volume slice n+1
 b. Render sampling slices between n and n+1

Whereas for lossy compression the first pass is used for
performing the decompression computation, for lossless
packing the first pass simply retrieves the voxel from the
packed texture using the address from the index texture.

In this approach the slabs will be axis-aligned according
to the current view, as in 2D texture-based volume
rendering [REB*00]. However, unlike 2D texture-based

© The Eurographics Association 2005.

 Fout et al. / High-Quality Rendering of Compressed Volume Data Formats

volume rendering where three sets of slices are needed for
the three axes, we dynamically reconstruct slices to be
aligned with whichever axis is needed. It is important to
realize that in the decompression pass slices are being
reconstructed voxel by voxel (i.e. nearest-neighbor
interpolation) at exactly the resolution of the original
volume. This guarantees that no matter how many times a
voxel is needed it will be decompressed only once.
Furthermore, in order to obtain an interpolated sample for
each fragment of the sampling slices we read from the two
decompressed volume slices defining the slab using native
bilinear interpolation, and then finally weight each value by
the slice's position within the slab to obtain the final value.
On current hardware this is faster than performing the
entire interpolation “by hand” in the fragment program, and
this will probably be the case for future architectures as
well.

The advantage of using deferred filtering for packing is
that we no longer have to pad the blocks, thereby increasing
the compression rate. Another advantage is that it is easier
to reuse blocks as in vector quantization, as long as the
values within the block are identical. This is important
because many volumes contain significant redundancy, not
just in the empty space but also in homogeneous regions
and in natural patterns that repeat. These two factors should
increase the utility of packing considerably; whereas
previously a volume would need to contain significant
amounts of empty space to justify packing, with deferred
filtering we need only a small amount of empty space or
some amount of redund

Figure 4: The basic algorithm for deferred filtering. In
the first pass (Step A) two consecutive slices are
decompressed according to the axis with which the view
is most closely aligned. In the second pass (Step B) the
axis-aligned slab is rendered using sampling slices which
lie in between the two decompressed volume slices.

ancy in order to justify the added
co

ressed volume data, or even custom
G

ith both of these items, as we describe in
th

contributions of voxels
al

priate for rendering from
p

t of decompression for lazy
, to be:

 CLD = k·d·s·n3 (1)

mplexity of packing.
As we discuss at greater length in the next section, one

nice feature of deferred filtering from an implementation
perspective is the modular approach; all compression-
specific information is used in the first pass only, and the
second pass is canonical volume rendering: interpolation,
classification, shading, and compositing (with a slightly
modified interpolation for samples). Therefore the same
implementation for the second pass of deferred filtering can
be used regardless of whether we are rendering from
packed or comp

PGPU formats.
The disadvantages of deferred filtering are the restriction

to axis-aligned slicing and the overhead of using two passes
for each slab. However, adjusting the number and spacing
of sampling slices per slab can almost entirely eliminate
artifacts from renderings [REB*00]. The overhead of two-
pass rendering comes both from additional rasterization and
context/state changes. In practice we can minimize the
costs associated w

e next section.
One way to understand deferred filtering is to view

decompression as a mapping, similar to the projection of
volume data to form images in volume rendering (see
Figure 5). In volume rendering there are two ways to map:
forward and backward. In forward mapping (e.g. splatting),
for each voxel an image contribution is computed,
projected and finally accumulated. In contrast, backward
mapping (e.g. ray casting) computes for each image
element the accumulation of the

ong the image ray.
If we cast decompression in terms of a mapping, then the

conventional method (which henceforth will be called lazy
decompression) would be backward mapping, whereas
deferred filtering would be forward mapping, as shown in
Figure 5. Difficulties sometimes associated with forward
mapping, for instance computing the mapping function,
unmapped fragments (holes), and interpolation, are not a
problem because of the simple configuration of deferred
filtering, in which the mapping is a simple one-to-one
function which leaves no holes and requires no
interpolation (interpolation is deferred to the second pass).
In this work we show that in the context of decompression
forward mapping is more appro

Figure 5: Overview of integrated volume rendering
and decompression. Whereas Lazy Decompression
(LD) maps backward from volume space to
compression space, Deferred Filtering (DF) maps
forward from compression space to volume space. In
mapping forward DF achieves greater efficiency by
decompressing each voxel only once, regardless of how
many times it is needed in filtering.

acked or compressed volumes.
To see why this is true let us consider the complexity of

both lazy decompression (LD) and deferred filtering (DF).
We can estimate the cos
decompression, CLD

 © The Eurographics Association 2005.

 Fout et al. / High-Quality Rendering of Compressed Volume Data Formats

Figure 6: Implementation of deferred filtering. In the first pass we use proxy geometry to generate a fragment per voxel;
possible configurations are simple quad (left), multiple slice-filling quads for static resolution of volume partitions
(center), and multiple quads for region-selective decompression (right). Four consecutive slices stored in the four back
pbuffer channels allow efficient linear interpolation and gradient calculation for a single slab. Finally, in the second pass
sampling slices within the slab are composited in the front pbuffer surface.

Where k is the size of the filter kernel, d is the cost of
decompressing a single voxel, s is the sample rate (samples
per voxel), and n is the dimension of the data. Likewise we
can estimate the cost of decompression for deferred
filtering, CDF, as:
 CDF = d·n3 (2)

Keep in mind that these costs are for decompression only;
filtering calculations are not included.

Let us first consider magnification, which we will define
as a sample rate equal to or greater than one (s≥1). Since
our aim is quality we desire at least first-order interpolation
and shading based on gradients using central differences. In
this configuration k=32, which means that decompression
using deferred filtering will be 32s times more efficient
than decompression using lazy decompression.

Now consider minification, in which the sample rate is
less than one (s<1). At first glance it may seem that for
some values of s<<1 lazy decompression will be more
efficient than deferred filtering; however this is not in fact
true. In order to prevent aliasing artifacts in minification
some type of filtering is necessary; in fact, what is actually
required is to integrate over the projected area of the
sample in texture (or volume) space. As the sample rate
decreases the projected area increases and thus the size of
the minification filter kernel increases. The net result is that
although we may sample less than once per voxel the
product ks will remain constant; in fact, if we consider only
the effects of minification on k then ks≅1 always.

If the compression method is inherently multi-resolution
then deferred filtering can take advantage of this by
decompressing the appropriate resolution directly. This
offers pre-computed minification filtering similar to mip-
mapping, and is potentially faster than decompressing the
highest resolution.

3.2 Implementation in Graphics Hardware

While deferred filtering could also be used for software
volume rendering of volumes too large to fit in core
memory, we focus only on the implementation in graphics
hardware. In software deferred filtering would not gain the
efficiency afforded by hardware interpolation, but it would
still provide efficient decompression. Deferred filtering
would work well in conjunction with shear warp [LL94],
for instance. It would be interesting to compare deferred
filtering with an implementation of lazy decompression that
cached decompressed voxels.

There are several ways to implement deferred filtering
using current graphics hardware. We describe one way

using OpenGL which is particularly efficient and requires
only the ability to use fragment programs and to write to
and read from off-screen buffers. Figure 6 shows the
important components of this method. In order to minimize
context changes we use a single pixel buffer (pbuffer) for
both passes of the algorithm, although in other APIs and in
future OpenGL extensions the ability to use a single context
for all buffers will offer an alternative but equivalent
implementation which uses two off-screen buffers. The
back surface of the pbuffer is used to store the
decompressed slices from the first pass, and the front
surface is used for volume rendering in the second pass. As
mentioned before, this method is modular in that the second
rendering pass is independent of the first pass and therefore
of the compression-specific code as well.

In the first pass voxels are individually decompressed
into slices by rendering a quad the size of the slice into the
back buffer. This back buffer is the slab or slice cache that
will contain two (for shading we will need four)
consecutive slices of the volume, with the slices aligned
according to the axis closest to the view direction. Since
our compressed format is inherently 3D (that is, our index
texture is a volume since we compress volumetric blocks)
we can reconstruct with quads for any of the three possible
orientations. This is in contrast to the approach described
by Lefohn et al. [LKHW03] for rendering from a single
stack of 2D slices, where lines were used for the two
orientations not matching the stored orientation. In order to
efficiently use the back buffer we use two channels for the
two slices instead of tiling them in one channel.

The purpose of the quad is to generate a fragment for
each voxel, so in general we can use any configuration of
geometry to achieve the same result. In fact, regions of
empty space may not need to be decompressed at all. In this
case we just render geometry into the non-empty regions of
the slice, and in the empty regions we either initialize the
buffer with a background color before each slab is
rendered, or else render background-colored geometry.
Although this requires calculation and storage of the
additional geometry, in sparse volumes the acceleration can
be significant.

In certain situations we may wish to partition the volume
into regions to be processed separately. One example of
this is rate inflation to increase the quality of compression;
current methods use one fixed-size codebook for the entire
volume, regardless of the volume size. For larger volumes
or volumes with little correlation this may result in low
quality encodings. Although we can increase the size of the
codebook, an alternative solution is to partition the volume

© The Eurographics Association 2005.

 Fout et al. / High-Quality Rendering of Compressed Volume Data Formats

into macroblocks and use a separate codebook for each
macroblock. The advantages of doing this over increasing
codebook size are: a) better adaptation to locally varying
statistics, b) better texture cache coherency, c) faster
codebook searches, and d) scalability (increasing codebook
size means having larger indices, which scales linearly in
memory as opposed to the constant memory of the
codebook). However, one negative aspect of using multiple
codebooks for the same volume is that there will probably
be redundancy among the codebooks.

In the first pass of deferred filtering we simply render
quads that cover each partition in the slice, thereby
achieving static resolution of the codebook. For instance, if
we partition the volume equally into eight macroblocks
then in the decompression pass we render four quarter-size
quads for any given slice, as shown in Figure 6. In fact, we
are free to use different parameters for each partition,
including the compression method itself; we could
compress one partition and pack another, for instance.
Since volume rendering is generally fill-rate limited, the
small amount of additional geometry has almost no effect
on frame rates. Of course for many small partitions there
will be a point where the geometry load might become a
bottleneck; on current hardware when using uniform slice-
covering partitions this begins to occur with quad sizes 162
and smaller.

In the second pass we render some number of sampling
planes within the current slab. In order to obtain an
interpolated sample we read from the corresponding
location in both the front and back decompressed slices. We
then perform the final interpolation in the fragment
program using the z-value of the current slice. The z-value
ranges from 0 to 1 and gives the offset of the slice within
the slab; that is, for a given slice all samples will have the
same z-value. Since the slices are stored in two channels,
we need only one texture read from the back buffer to
obtain both slice values. The sampling slices are
composited into the front buffer in front-to-back or back-to-
front order, depending on whether the slabs are advancing
from front-to-back or back-to-front.

After an interpolated sample is obtained we perform
classification and shading. Shading requires gradients,
which can be pre-calculated or computed on-the-fly. The
massive increase in data size required to store pre-
computed gradients makes this method inappropriate for
packing or compression applications, and so gradients must
be computed on-the-fly. In order to do this we need the
neighborhood of the sample position, which translates to a
slightly larger slice cache; instead of keeping two
consecutive slices we keep four, as seen in Figure 6. This
works out well since we have exactly four texture channels
to use. The slice cache then acts as a circular buffer, so that
after decompressing three initial slices we then only need to
decompress one slice per pass while using three slices from
the previous slab. This is achieved by cycling the color
channel, using buffer color masks to select the target
channel. In Figure 7 we show the gradient computation
using central differences. By stacking the slices in the
texture channels we can obtain both the sample and
gradient in only 5 bilinearly-filtered texture reads and 7
lerps.

Figure 7: Calculation of the gradient using central
differences for a given sample () in a sampling slice
requires six gradient samples (). In order to obtain the
gradient samples we need to access the decompressed
slices at the corresponding locations (). As the slices
are stacked in the RGBA texture channels we need only
five texture reads (horizontal lines). Calculation of the
gradient samples then requires six lerps, using Zlerp as the
interpolation weight.

An alternative implementation of deferred filtering is
possible given the capability to render slices into a volume
texture; instead of using the four channels of a pbuffer we
use a four-slice volume texture. By using a volume texture
to cache slices we are able to take advantage of native
trilinear interpolation while providing a potentially more
elegant implementation. In this case it would be necessary
to use texture border mirroring for the r texture coordinate,
along with a careful specification of the r texture coordinate
domain.

Other options also exist for computing gradients, such as
voxel-wise reconstruction of gradients during the
decompression pass. We have experimented with two
variants of this approach and found them to be less efficient
than the approach described above. Note that in rendering
adaptive level-set surfaces, Lefohn et al. [LKHW03] were
able to reuse gradients computed in the level-set updates.

4. Results

In this section we show the results of applying deferred
filtering to existing packing and compression methods. We
chose one packing method and one compression method
which we believe are representative and compared the
original implementations using lazy decompression and
their corresponding implementations using deferred
filtering. All results were obtained using an NVIDIA
GeForce 6800 Ultra and an image resolution of 5122 pixels.

The texture packing method we use (shown in Figure 1)
is a simplified version of previous methods. Specifically,
we partition the volume into equal-sized blocks and store
only non-empty blocks in a packed texture. We use an
index texture to map from an original volume block to a
volume block in the packed texture. The blocks themselves
are padded using a space-filling arrangement in order to
support linear interpolation and gradient calculation.

Figure 8 shows the results of packing applied to two data
sets. The first is the 5122×360 CT scan of the Stanford
bunny volume. This data set can be compressed very
effectively using only packing due to the sparseness of the
volume. However, due to the overhead incurred by padding
this sparseness is more effectively exploited by deferred
filtering. The second data set is an atmospheric simulation

 © The Eurographics Association 2005.

 Fout et al. / High-Quality Rendering of Compressed Volume Data Formats

generated by NCAR. The data set is time-varying (400 time
steps), multivariate (5 variables), with a moderately high
resolution (2562×1024 voxels). Texture packing without
padding reduces the total size of the data set from 125 GB
to 3.2 GB, and with deferred filtering we can interactively
render directly from the compressed data with high quality.
Although the packed size is still too large to fit in graphics
memory it does fit in core memory, and the compressed
size of individual volumes (averaging 1.5 MB) allows more
efficient storage and transfer to graphics memory. Note that
the extra padding necessary with the previous approach
results in a compressed size of 27.1 GB (averaging 13.8
MB per volume). Figure 8 shows rendering of one time step
and one variable along with the packed texture.

Because of its performance and its more complex
decompression scheme, we chose the method developed by
Schneider and Westermann [SW03] as our compression
subject. This method partitions the volume into blocks of
size 43 which are then transformed using a Laplacian
decomposition to a more energy compact representation
consisting of the mean, a block of first-order differences (of
size 23) and a block of second-order differences (of size 43).
The first- and second-order difference blocks are separately
quantized using vector quantization. In the index volume
the mean and codebook indices for the difference blocks
are stored. To decompress a voxel we take the mean and
add the appropriate differences from the quantized
difference blocks. While the original implementation used
only nearest filtering, for purposes of comparison we also
implemented a version which supports linear interpolation
“by hand” in the fragment program. This involves
separately decompressing 8 voxels and performing the
interpolation itself (14 instructions) in order to obtain a
single sample. We further implemented shading by
decompressing 24 more voxels and performing six more
interpolations (14*6=84 more instructions) for the gradient.

In Figure 9 we show the results of using this compression
method on two different data sets. The first one is a
500×470×136 CT scan of a frog. We use a high-frequency
transfer function (an implicit isosurface) and shading to test
the compression. In order to get acceptable quality the
volume was partitioned into 8 equal regions and a separate
codebook was used for each partition. The timing results
demonstrate the efficacy of deferred filtering. The second
data set is a supernova simulation generated by TSI
consisting of 200 time steps, 5 variables per time step, and
volumes of 4803 voxels. For compression we found that
partitioning each volume into 83=512 macroblocks with
associated codebooks was necessary for acceptable quality.
The compression rate for this scheme is 87%, reducing the
data set from 103 GB to 13 GB. Although the entire data
set will not fit in memory, the reduced memory
consumption and bandwidth greatly facilitate exploration.
Rendering of a single time step and variable is shown in
Figure 9.

5. Conclusions and Future Work

In this work we addressed the problem inherent in previous
on-the-fly decompression methods, namely the inability to
provide efficient decompression when coupled with volume
rendering. The proposed solution, deferred filtering,
enables interactive high quality volume rendering directly
from compressed data. Deferred filtering is up to 20 times

faster than the existing approach. Furthermore, this method
is general enough to be used with all the existing texture
packing and custom compression techniques, which we
demonstrate with prototype implementations.

In the future we would like to further explore sparse
volume optimizations for deferred filtering (both in the
decompression pass and the rendering pass) with the goal
of rendering large static volumes at higher frame rates.

Finally, in terms of available compression methods it is
clear that when using transfer functions with high
frequencies and/or shading even small errors in
reconstruction result in objectionable artifacts. While using
a larger codebook or multiple codebooks can help, a better
alternative would be to come up with more performant
techniques. The increased efficiency afforded by deferred
filtering indirectly supports this by allowing more complex
decompression.

6. Acknowledgements

We would like to thank Jens Schneider for his helpful
comments and for contributing his compression code. The
nrrd toolkit by Gordon Kindlmann was used for data set
preparation (http://teem.sourceforge.net). The GLEW
library by Milan Ikits was used for OpenGL extension
management (http://glew.sourceforge.net). Thanks to TSI
and NCAR for the simulation data sets. This work has been
sponsored in part by the U.S. National Science Foundation
under contracts ACI 9983641 (PECASE award), ACI
0325934 (ITR), ACI 0222991, and CMS-9980063; and
Department of Energy under Memorandum Agreements
No. DE-FC02-01ER41202 (SciDAC) and No. B523578
(ASCI VIEWS). Finally, we are indebted to the reviewers
for their insightful comments and suggestions.

References

[BCF03]BBBINOTTO A., COMBA J., FREITAS C.:
Real-time rendering of time-varying data using a
fragment-shader compression approach. In IEEE
Parallel and Large Data Visualization and Graphics
(2003), pp. 69-75.

[CHF96]BBCOCHRAN W. O., HART J. C., FLYNN P.
J.: Fractal volume compression. In IEEE Transactions
on Visualization and Computer Graphics (1996), 2(4),
pp. 313-322.

[FY94]BBFOWLER J., YAGEL R.: Lossless compression
of volume data. In Proc. of the 1994 Symposium on
Volume Visualization (1994), pp. 43-50.

[GY95]BBGHAVAMNIA M., YANG X.: Direct
rendering of laplacian pryamid compressed volume data.
In Proc. of IEEE Visualization Conference (1995), pp.
192-199.

[GS01]BBGUTHE S., STRASSER W.: Real-time
decompression and visualization of animated volume
data. In Proc. of IEEE Visualization Conference (2001),
pp. 349-356.

[GWGS02]BBGUTHE S., WAND M., GONSER J.,
STRASSER W.: Interactive rendering of large volume
data sets. In Proc. of IEEE Visualization Conference
(2002), pp. 53-60.

© The Eurographics Association 2005.

 Fout et al. / High-Quality Rendering of Compressed Volume Data Formats

[KLF05]BBKNISS J., LEFOHN A., FOUT N.: Deferred
filtering: rendering from difficult data formats. Pharr M.
(editor), GPU Gems II (2005), ch. 41, pp. 669-677.

[KE02]BBKRAUS M., ERTL T.: Adaptive texture maps.
In Proc. SIGGRAPH/EG Graphics Hardware Workshop
(2002), pp. 7-15.

[LL94]BBLACROUTE P., LEVOY M.: Fast volume
rendering using a shear-warp factorization of the
viewing transform. In Computer Graphics, Proc. of
SIGGRAPH (1994), pp. 451-458.

[LKHW03]BBLEFOHN A., KNISS J., HANSEN C.,
WHITAKER R.: Interactive deformation and
visualization of level set surfaces using graphics
hardware. In Proc. of IEEE Visualization Conference
(2003), pp. 75-82.

[LKHW04]BBLEFOHN A., KNISS J., HANSEN C.,
WHITAKER R.: A streaming narrow-band algorithm:
interactive computation and visualization of level sets.
In IEEE Transactions on Visualization and Computer
Graphics, 10(4), July-Aug (2004), pp. 422-433.

[LK02]BBLI W., KAUFMAN A.: Accelerating volume
rendering with texture hulls. In IEEE/SIGGRAPH
Symposium on Volume Visualization and Graphics
(2002), pp. 115-122.

[LPD*02]BBLINSEN L., PASCUCCI V.,
DUCHAINEAU M., HAMANN B., JOY K.:
Hierarchical representation of time-varying volume data
with '4th-root-of-2' subdivision and quadrilinear B-
spline wavelets. In Proc. Pacific Graphics (2002), pp.
346-355.

[LMC01]BBLUM E., MA K.-L., CLYNE J.: Texture
hardware assisted rendering of time-varying volume
data. In Proc. of IEEE Visualization Conference (2001),
pp. 263-270.

[Mur93]BBMURAKI S.: Volume data and wavelet
transforms. In IEEE Computer Graphics and
Applications (1993), 13(4), pp. 50-56.

[NS01]BBNGUYEN K., SAUPE D.: Rapid high quality
compression of volume data for visualization. In
Computer Graphics Forum (2001), 20(3), pp. 49-57.

[NH92]BBNING P., HESSELINK L.: Vector quantization
for volume rendering. In Symposium on Volume
Visualization (1992), pp. 69-74.

[NH93]BBNING P., HESSELINK H.: Fast volume
rendering of compressed data. In Proc. of IEEE
Visualization Conference (1993), pp. 11-18.

[REB*00]BBREZK-SALAMA C., ENGEL K., BAUER
M., GREINER G., ERTL T.: Interactive volume
rendering on standard PC graphics hardware using
multi-textures and multi-stage rasterization. In Proc.
SIGGRAPH/EG Graphics Hardware Workshop (2000),
pp. 109-118.

[SW03]BBSCHNEIDER J., WESTERMANN R.:
Compression domain volume rendering. In Proc. of
IEEE Visualization Conference (2003), pp. 293-300.

[SCM99]BBSHEN H.-W., CHIANG L., MA K.-L.: A fast
volume rendering algorithm for time-varying fields
using a time-space partitioning (TSP) tree. In Proc. of
IEEE Visualization Conference (1999), pp. 371-377.

[Wes95]BBWESTERMANN R.: Compression domain
rendering of time-resolved volume data. In Proc. of
IEEE Visualization Conference (1995), pp. 168-175.

[WvG94]BBWILHELMS J., VAN GELDER A.:
Multidimensional trees for controlled volume rendering
and compression. In Proc. of the 1994 Symposium on
Volume Visualization (1994), pp. 27-34.

[Yan00]BBYANG C.-K.: Integration of volume
visualization and compression: a survey. Research
Proficiency Exam Report, Sept. 2000.

[YL95]BBYEO B., LIU B.: Volume rendering of DCT-
based compressed 3D scalar data. In IEEE Transactions
on Visualization and Computer Graphics (1995), 1(1),
pp. 29-43.

 © The Eurographics Association 2005.

 Fout et al. / High-Quality Rendering of Compressed Volume Data Formats

(a) Rendering of packed Stanford bunny data set:
 LD: 11 fps, 76.1% compression
 DF: 8 fps, 86.7% compression

(b) Rendering of a packed NCAR simulation time step:
 LD: 2.6 fps, 78.3% compression
 DF: 2.2 fps, 97.4% compression
Figure 8: Comparison of high quality volume rendering
from packed textures using lazy decompression (LD) vs.
deferred filtering (DF). Although DF is about 15%
slower it allows significantly better compression.

(a) Conventional volume rendering of the original frog

data set (22 fps).

(b) Volume rendering of the compressed frog data set:

LD: 0.6 fps, DF: 14 fps

(c) Conventional volume
rendering of an original

supernova time step
(1.8 fps).

(d) Volume rendering of
the compressed supernova

time step:
LD: 0.06 fps, DF: 1.1 fps

Figure 9: Comparison of high quality volume rendering
from compressed textures using lazy decompression (LD)
vs. deferred filtering (DF). Images generated are almost
identical, but DF is about 20 times faster than LD.

© The Eurographics Association 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 2400
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

