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 Abstract 
Rendering directly from packed or compressed volume data formats using graphics hardware has advantages 
in terms of memory consumption and bandwidth, but results in lower-quality images due to the prohibitive cost 
of performing interpolation and gradient-based shading on the reconstructed data. The problem with the 
existing method lies in its close coupling of decompression and interpolation. We demonstrate that deferred 
filtering overcomes this problem by using a two-pass decompression and rendering strategy. With this method 
interpolation and gradient calculations are very efficient, allowing high quality rendering directly from packed 
or compressed volume data. We evaluate the cost of creating interpolated, gradient-shaded renderings using 
traditional on-the-fly decompression and deferred filtering, and show that deferred filtering can provide up to 
twenty times speed-up for high quality rendering. 
 
Catagories and Subject Descriptors: I.3.1: [Computer Graphics]: Picture and Image Generation – Graphics 
processors; I.3.3 [Computer Graphics]: Picture and Image Generation – Viewing algorithms; E.4 [Coding and 
Information Theory]: Data Compaction and Compression 

 

 
1. Introduction 

Volume rendering of large data sets is the subject of 
ongoing research in the field of visualization, and with 
larger and larger volume data being generated the problem 
will not disappear soon. On one hand we have time-varying 
volumes, wherein measurements or computer simulations 
of dynamic phenomena may provide hundreds of time 
steps. On the other hand we have large static volumes 
resulting from high-resolution acquisition devices and/or 
the need to visualize fine features in the spatial domain. To 
compound the problem many data sets store multiple 
properties or variables for each voxel. In fact the presence 
of any or all of these properties presents challenges in 
volume rendering due to the increase in data available for 
visualization. 

Research into large data visualization has offered various 
potential solutions to handling large data in the context of 
volume rendering, and one of these is data reduction via 
compression. Data compression is a well-established field 
offering a plethora of techniques to reduce the size of data, 
either losslessly or lossily, and though a large part of this 
work targets image compression most of these techniques 
can be extended in a straightforward manner to volume 
compression as well. Several options exist when combining 
compression and volume rendering, as described by Yang 
[Yan00]. These include decompression prior to rendering, 
rendering on-the-fly during decompression, decompressing 
on-the-fly during rendering, and rendering directly from the 
compressed volume. 

In this work we show how a recently proposed algorithm, 
deferred filtering [LKHW03, KLF05], dramatically 
improves the performance for decompressing on-the-fly 

during rendering. In the recent past several compression 
options have been presented which enable decompression 
on-the-fly [KE02, LK02, BCF03, SW03], but all of these 
suffer from one key problem: in order to support 
continuous reconstruction from the compressed 
representation either data replication or costly manual 
interpolation is necessary (in some cases, for instance 
whenever vector quantization is used, only the latter option 
is available). We demonstrate that the reason for this is the 
close coupling of decompression and interpolation implicit 
in previous methods. Furthermore, we demonstrate that 
deferred filtering overcomes this problem, thereby enabling 
efficient rendering of compressed volume data while taking 
advantage of native hardware interpolation. The improved 
efficiency of decompression afforded by deferred filtering 
allows for a) continuous reconstruction from the 
compressed volume, b) calculation of gradients on-the-fly 
for shading, and c) more flexibility in the compression 
algorithm. 

2. Related Work 

There are numerous applications where compression is 
useful, and while many compression methods are general in 
their application, tailoring the compression method to the 
application is a standard technique to achieve improved 
performance. For instance, MPEG compression of video 
relies not just on compression of separate frames, but also 
on inter-frame correlation with motion compensation. 
Similarly, compression of volume data can be tailored to 
the application of volume rendering. The essential 
requirements of compression, if it is to be closely coupled 
with volume rendering, are described by Ning and 

© The Eurographics Association 2005. 



 Fout et al. / High-Quality Rendering of Compressed Volume Data Formats 

Hesselink [NH92] as fast, direct, random access to voxels. 
As can be observed in many of the existing methods, the 
degree to which the former principles are followed largely 
determines the amount of interactivity possible when 
rendering from compressed volume data. 
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Figure 1: Overview of block-based volumetric 
compression method for graphics hardware. Lossless 
compression (texture packing) stores only non-empty 
blocks and uses an index texture for mapping from the 
original volume domain to the packed volume. Lossy 
compression is similar to packing but uses a small 
representative set of blocks called the codebook 
instead of the packed texture. 

Rendering on-the-fly from compressed volume data is 
efficient in that from the renderer's perspective the memory 
consumption and bandwidth are reduced. Ning and 
Hesselink [NH93] compressed volumes with vector 
quantization and achieved very efficient rendering by ray 
casting the relatively small codebook once and reusing the 
results. In this way vector quantization not only compresses 
the data but also increases the efficiency of rendering in 
some cases. Yeo and Liu [YL95] compressed volumes with 
a JPEG-like method and rendered by decompressing blocks 
as needed. Rendering was accelerated by extracting only 
the DC coefficient for nearly homogeneous blocks. A more 
recent technique by Guthe et al. [GWGS02] creates a 
block-wise hierarchical decomposition or octree of volume 
data with entropy encoding of wavelet coefficients. During 
rendering projective classification, priority-based 
decompression, and block caching are used to efficiently 
render large data sets interactively. 

With the recent introduction of programmability in the 
graphics pipeline, several on-the-fly decompression 
methods have been developed which allow rendering 
directly from compressed data stored in graphics memory. 
In texture packing non-empty regions of the volume are 
packed into smaller textures. This method achieves a kind 
of lossless compression and allows access to packed data, 
both static [KE02, LK02] and dynamic [LKHW03, 
LKHW04], through an index texture. A similar technique is 
described by Binotto et al. [BCF03] for time-varying data. 
Coherence between time steps allows reuse of packed 
blocks, and a refinement structure is used to take advantage 
of homogeneous regions and to provide efficient rendering. 
Schneider and Westermann [SW03] use a hierarchical 
vector quantization scheme based on a Laplacian 
decomposition to compress volumes, with decompression 
on-the-fly in graphics hardware. This method achieves 
better performance than using simple vector quantization 
but uses a slightly more complex decompression scheme. 

Various other compression methods have been applied to 
volume data. Lossless compression [FY94] as well as lossy 
methods based on fractal encoding [CHF96], Laplacian 
pyramid encoding [GY95], wavelet encoding [Mur93, 
GS01, NS01, LHJ99, Wes95], and vector quantization 
[NH92] have also been proposed, with varying amounts of 
integration with rendering. Several 4D techniques have 
been specifically designed with time-varying data in mind, 
including tree-based [WvG94, SCM99] and subdivision 
[LPD*02] methods. Lum et al. [LMC01] use the Discrete 
Cosine Transform (DCT) of time series for compression 
with decompression on-the-fly in graphics hardware. 

3. Deferred Filtering 

In this section we describe deferred filtering, an efficient 
algorithm for rendering from packed or compressed volume 
data. The algorithm is a two-pass technique that 
decompresses into slices in the first pass and then renders 
filtered slices in the second pass. This approach was 
introduced by Lefohn et al. [LKHW03] in the context of 
rendering level-set surfaces from a sparse dynamic (i.e. 

GPGPU) texture format and later generalized [KLF05]. 
Here we explore the application of this idea in the context 
of rendering from compressed volume formats. 

We first describe the conventional way to perform on-
the-fly decompression using graphics hardware, followed 
by a discussion of the problems with this method. We then 
describe the basic deferred filtering technique and offer an 
analysis in terms of decompression costs. Our focus then 
shifts to implementation of deferred filtering in graphics 
hardware, including the calculation of gradients for 
lighting. 

3.1. The Algorithm 

In the context of decompression in graphics hardware there 
are essentially two options available. The first option is 
natively supported hardware decompression, which 
includes methods such as the S3 texture compression 
standard provided by S3 Inc. These types of methods are 
generally fixed-rate and lossy, designed primarily for color 
textures used in gaming. The second option is custom 
hardware decompression, which comes in two forms: 
lossless compression, also called texture packing, and lossy 
compression, which is based on vector quantization. 
Implementations of these decompression methods rely on 
the programmability of pixel shaders in modern graphics 
cards. 

Texture packing partitions the volume into blocks and 
stores only the non-empty blocks. As shown in Figure 1, an 
additional texture often called the index texture is used to 
define a mapping from the original data domain to blocks in 
the packed texture. In order to support continuous 
reconstruction and shading, a space-filling arrangement as 
described by Ning and Hesselink [NH93] and Yeo and Liu 

   

(a) (b) (c) 

Figure 2: Space-filling arrangements shown in 2D for 
a 4x4 block (a). Linear (in this case bilinear) 
interpolation requires 1-space-filling (b), whereas 
shading based on gradients requires 3-space-filling (c). 
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[YL95], respectively, is applied to each block (Figure 2). 
As proposed by Kraus and Ertl [KE02], a remapping of the 
texture coordinate domain from cell-based texels (used by 
OpenGL) to vertex-based texels allows space-filling blocks 
in hardware, such that a block of size b3 is increased in size 
by a factor of (b+1)3/b3 for trilinear interpolation and 
(b+3)3/b3 for gradient calculation. Although space-
filling (or padding) allows the use of native hardware 
interpolation in the packed texture, the replication of data at 
block boundaries serves to undermine the compression rate 
by inflating the packed texture size. Furthermore, because 
each block is padded at the boundaries it is difficult to reuse 
blocks, since not only the block itself but also the boundary 
values would need to be identical [KE02]. Table 1 gives the 
overhead of texture packing for various volumetric block 
sizes. Note that in order to support gradient calculation a 
substantial increase in the block size is required, and in 
some cases packing may actually increase the size of the 
data. 

Lossy methods rely on vector quantization, which is 
essentially a texture packing where blocks are reused. 
Again we have a mapping from the original data domain to 
the packed texture, which in this case is referred to as the 
codebook. Because a given block in the codebook texture 
may be used to represent many blocks in the original 
volume, it is usually not possible to pad the blocks. 
Although an “average” boundary could be constructed by 
looking at the blocks which reference the code block, this 
would result in increased blocking artifacts, which are 
already a problem for block-based compression methods. 
Consequently, each voxel needed in the interpolation filter 
must be individually decompressed in the fragment 
program prior to interpolation. Furthermore, the 
interpolation itself must then be carried out in the fragment 
program in order to obtain the scalar value needed for 
classification. A consequence of this is that since the 

interpolation is performed on a per-fragment basis, the 
complexity of the decompression is a direct function of the 
sampling rate. The problem with this is that although a 
single voxel may be needed for several fragments, rather 
than decompressing that voxel once and caching the result 
we must recalculate the decompression of that voxel for 
each use. For instance, consider the 2D cases depicted in 
Figure 3. Any sample point within the highlighted region 
will require voxel V to be decompressed. If we consider 
sampling once per voxel then for interpolation (depicted in 
Figure 3a) we will perform 4 decompressions (3 redundant 
decompressions) of each voxel; likewise, in 3D we will 
perform 8 decompressions (7 redundant decompressions) of 
each voxel. Now consider gradient calculations as well 
(Figure 3b). In order to compute the gradient for shading 
using central differences we need six additional 
interpolated values. This would mean 11 redundant 
decompressions in 2D and 31 in 3D. Thus we see that even 
when sampling just once per voxel the massive amount of 
work required to calculate an interpolated and shaded 
sample prohibits real-time calculation for reasonable sized 
data sets. This is why implementations of on-the-fly 
decompression typically forego shading and even 
continuous reconstruction, opting instead to use a nearest-
neighbor reconstruction kernel requiring only one 
decompressed sample. However, even this approach will 
perform redundant decompressions when sampling more 
than once per voxel and/or performing shading. 

Padding Overhead Block Size 
Padding Type 43 83 163 323

Trilinear Interpolation 95% 42% 20% 10% 
Gradient Calculation 436% 160% 67% 31% 
Table 1: Percent increase in block size when padding 
volume blocks. For most data sets the optimum block size 
is 83 or 163, in which case to support shading the packed 
blocks will need to be 160% or 67% larger, respectively. 

We should say that texture packing can also use this 
approach of “hand-coded” interpolation, thereby alleviating 
the need for padding; however, texture packing would then 
suffer from the same problems associated with this method 
in terms of redundant decompressions. 

It is clear that both packing and compression suffer from 
some form of inefficiency; in particular, packing is 
memory-inefficient, whereas compression is computation-
inefficient. The problem is that with the inability to cache 
decompressed voxels among fragments the close coupling 
of decompression and interpolation results in redundant 
decompressions. The solution, therefore, is to separate these 
two steps in such a way that intermediate decompression 
results can be cached. We do this by using deferred 
filtering, a two-pass approach in which a small subset of the 
volume is decompressed in the first pass and in the second 
pass this subset is used for conventional rendering. The 
basic idea is to render slab-by-slab using axis-aligned slabs 
as shown in Figure 4. To render a single slab we use a first 
pass which decompresses two consecutive slices of the 
original volume. Then in the second pass sampling slices 
are rendered using native filtering to compute trilinearly 
interpolated samples. In short, deferred filtering proceeds as 
follows for a volume consisting of k slices: 

 
  (a) (b) 

Figure 3: The filter support for linear interpolation (a) 
and gradient calculation (b) shown in 2D. Any sample 
within this support will require decompression of V. If V 
must be decompressed separately for each sample then 
we will perform 4 decompressions of V in (a) and 12 
decompressions of V in (b). Analogously, in 3D we will 
perform 8 decompressions for linear interpolation and 
32 for gradient calculation. 

    1. Decompress volume slice 0. 
    2. For volume slice n=0 to k-1: 
        a. Decompress volume slice n+1 
        b. Render sampling slices between n and n+1 

Whereas for lossy compression the first pass is used for 
performing the decompression computation, for lossless 
packing the first pass simply retrieves the voxel from the 
packed texture using the address from the index texture. 

In this approach the slabs will be axis-aligned according 
to the current view, as in 2D texture-based volume 
rendering [REB*00]. However, unlike 2D texture-based 

© The Eurographics Association 2005. 



 Fout et al. / High-Quality Rendering of Compressed Volume Data Formats 

volume rendering where three sets of slices are needed for 
the three axes, we dynamically reconstruct slices to be 
aligned with whichever axis is needed. It is important to 
realize that in the decompression pass slices are being 
reconstructed voxel by voxel (i.e. nearest-neighbor 
interpolation) at exactly the resolution of the original 
volume. This guarantees that no matter how many times a 
voxel is needed it will be decompressed only once. 
Furthermore, in order to obtain an interpolated sample for 
each fragment of the sampling slices we read from the two 
decompressed volume slices defining the slab using native 
bilinear interpolation, and then finally weight each value by 
the slice's position within the slab to obtain the final value. 
On current hardware this is faster than performing the 
entire interpolation “by hand” in the fragment program, and 
this will probably be the case for future architectures as 
well. 

The advantage of using deferred filtering for packing is 
that we no longer have to pad the blocks, thereby increasing 
the compression rate. Another advantage is that it is easier 
to reuse blocks as in vector quantization, as long as the 
values within the block are identical. This is important 
because many volumes contain significant redundancy, not 
just in the empty space but also in homogeneous regions 
and in natural patterns that repeat. These two factors should 
increase the utility of packing considerably; whereas 
previously a volume would need to contain significant 
amounts of empty space to justify packing, with deferred 
filtering we need only a small amount of empty space or 
some amount of redund

 
Figure 4: The basic algorithm for deferred filtering. In 
the first pass (Step A) two consecutive slices are 
decompressed according to the axis with which the view 
is most closely aligned. In the second pass (Step B) the 
axis-aligned slab is rendered using sampling slices which 
lie in between the two decompressed volume slices. 

ancy in order to justify the added 
co

ressed volume data, or even custom 
G

ith both of these items, as we describe in 
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contributions of voxels 
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priate for rendering from 
p

t of decompression for lazy 
, to be: 

     CLD = k·d·s·n3 (1) 

mplexity of packing. 
As we discuss at greater length in the next section, one 

nice feature of deferred filtering from an implementation 
perspective is the modular approach; all compression-
specific information is used in the first pass only, and the 
second pass is canonical volume rendering: interpolation, 
classification, shading, and compositing (with a slightly 
modified interpolation for samples). Therefore the same 
implementation for the second pass of deferred filtering can 
be used regardless of whether we are rendering from 
packed or comp

PGPU formats. 
The disadvantages of deferred filtering are the restriction 

to axis-aligned slicing and the overhead of using two passes 
for each slab. However, adjusting the number and spacing 
of sampling slices per slab can almost entirely eliminate 
artifacts from renderings [REB*00]. The overhead of two-
pass rendering comes both from additional rasterization and 
context/state changes. In practice we can minimize the 
costs associated w

e next section. 
One way to understand deferred filtering is to view 

decompression as a mapping, similar to the projection of 
volume data to form images in volume rendering (see 
Figure 5). In volume rendering there are two ways to map: 
forward and backward. In forward mapping (e.g. splatting), 
for each voxel an image contribution is computed, 
projected and finally accumulated. In contrast, backward 
mapping (e.g. ray casting) computes for each image 
element the accumulation of the 

ong the image ray. 
If we cast decompression in terms of a mapping, then the 

conventional method (which henceforth will be called lazy 
decompression) would be backward mapping, whereas 
deferred filtering would be forward mapping, as shown in 
Figure 5. Difficulties sometimes associated with forward 
mapping, for instance computing the mapping function, 
unmapped fragments (holes), and interpolation, are not a 
problem because of the simple configuration of deferred 
filtering, in which the mapping is a simple one-to-one 
function which leaves no holes and requires no 
interpolation (interpolation is deferred to the second pass). 
In this work we show that in the context of decompression 
forward mapping is more appro 

Figure 5: Overview of integrated volume rendering 
and decompression. Whereas Lazy Decompression 
(LD) maps backward from volume space to 
compression space, Deferred Filtering (DF) maps 
forward from compression space to volume space. In 
mapping forward DF achieves greater efficiency by 
decompressing each voxel only once, regardless of how 
many times it is needed in filtering. 

acked or compressed volumes. 
To see why this is true let us consider the complexity of 

both lazy decompression (LD) and deferred filtering (DF). 
We can estimate the cos
decompression, CLD
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Figure 6: Implementation of deferred filtering. In the first pass we use proxy geometry to generate a fragment per voxel; 
possible configurations are simple quad (left), multiple slice-filling quads for static resolution of volume partitions 
(center), and multiple quads for region-selective decompression (right). Four consecutive slices stored in the four back 
pbuffer channels allow efficient linear interpolation and gradient calculation for a single slab. Finally, in the second pass 
sampling slices within the slab are composited in the front pbuffer surface. 

Where k is the size of the filter kernel, d is the cost of 
decompressing a single voxel, s is the sample rate (samples 
per voxel), and n is the dimension of the data. Likewise we 
can estimate the cost of decompression for deferred 
filtering, CDF, as: 
     CDF = d·n3 (2) 

Keep in mind that these costs are for decompression only; 
filtering calculations are not included. 

Let us first consider magnification, which we will define 
as a sample rate equal to or greater than one (s≥1). Since 
our aim is quality we desire at least first-order interpolation 
and shading based on gradients using central differences. In 
this configuration k=32, which means that decompression 
using deferred filtering will be 32s times more efficient 
than decompression using lazy decompression. 

Now consider minification, in which the sample rate is 
less than one (s<1). At first glance it may seem that for 
some values of s<<1 lazy decompression will be more 
efficient than deferred filtering; however this is not in fact 
true. In order to prevent aliasing artifacts in minification 
some type of filtering is necessary; in fact, what is actually 
required is to integrate over the projected area of the 
sample in texture (or volume) space. As the sample rate 
decreases the projected area increases and thus the size of 
the minification filter kernel increases. The net result is that 
although we may sample less than once per voxel the 
product ks will remain constant; in fact, if we consider only 
the effects of minification on k then ks≅1 always. 

If the compression method is inherently multi-resolution 
then deferred filtering can take advantage of this by 
decompressing the appropriate resolution directly. This 
offers pre-computed minification filtering similar to mip-
mapping, and is potentially faster than decompressing the 
highest resolution. 

3.2 Implementation in Graphics Hardware 

While deferred filtering could also be used for software 
volume rendering of volumes too large to fit in core 
memory, we focus only on the implementation in graphics 
hardware. In software deferred filtering would not gain the 
efficiency afforded by hardware interpolation, but it would 
still provide efficient decompression. Deferred filtering 
would work well in conjunction with shear warp [LL94], 
for instance. It would be interesting to compare deferred 
filtering with an implementation of lazy decompression that 
cached decompressed voxels. 

There are several ways to implement deferred filtering 
using current graphics hardware. We describe one way 

using OpenGL which is particularly efficient and requires 
only the ability to use fragment programs and to write to 
and read from off-screen buffers. Figure 6 shows the 
important components of this method. In order to minimize 
context changes we use a single pixel buffer (pbuffer) for 
both passes of the algorithm, although in other APIs and in 
future OpenGL extensions the ability to use a single context 
for all buffers will offer an alternative but equivalent 
implementation which uses two off-screen buffers. The 
back surface of the pbuffer is used to store the 
decompressed slices from the first pass, and the front 
surface is used for volume rendering in the second pass. As 
mentioned before, this method is modular in that the second 
rendering pass is independent of the first pass and therefore 
of the compression-specific code as well. 

In the first pass voxels are individually decompressed 
into slices by rendering a quad the size of the slice into the 
back buffer. This back buffer is the slab or slice cache that 
will contain two (for shading we will need four) 
consecutive slices of the volume, with the slices aligned 
according to the axis closest to the view direction. Since 
our compressed format is inherently 3D (that is, our index 
texture is a volume since we compress volumetric blocks) 
we can reconstruct with quads for any of the three possible 
orientations. This is in contrast to the approach described 
by Lefohn et al. [LKHW03] for rendering from a single 
stack of 2D slices, where lines were used for the two 
orientations not matching the stored orientation. In order to 
efficiently use the back buffer we use two channels for the 
two slices instead of tiling them in one channel. 

The purpose of the quad is to generate a fragment for 
each voxel, so in general we can use any configuration of 
geometry to achieve the same result. In fact, regions of 
empty space may not need to be decompressed at all. In this 
case we just render geometry into the non-empty regions of 
the slice, and in the empty regions we either initialize the 
buffer with a background color before each slab is 
rendered, or else render background-colored geometry. 
Although this requires calculation and storage of the 
additional geometry, in sparse volumes the acceleration can 
be significant. 

In certain situations we may wish to partition the volume 
into regions to be processed separately. One example of 
this is rate inflation to increase the quality of compression; 
current methods use one fixed-size codebook for the entire 
volume, regardless of the volume size. For larger volumes 
or volumes with little correlation this may result in low 
quality encodings. Although we can increase the size of the 
codebook, an alternative solution is to partition the volume 
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into macroblocks and use a separate codebook for each 
macroblock. The advantages of doing this over increasing 
codebook size are: a) better adaptation to locally varying 
statistics, b) better texture cache coherency, c) faster 
codebook searches, and d) scalability (increasing codebook 
size means having larger indices, which scales linearly in 
memory as opposed to the constant memory of the 
codebook). However, one negative aspect of using multiple 
codebooks for the same volume is that there will probably 
be redundancy among the codebooks. 

In the first pass of deferred filtering we simply render 
quads that cover each partition in the slice, thereby 
achieving static resolution of the codebook. For instance, if 
we partition the volume equally into eight macroblocks 
then in the decompression pass we render four quarter-size 
quads for any given slice, as shown in Figure 6. In fact, we 
are free to use different parameters for each partition, 
including the compression method itself; we could 
compress one partition and pack another, for instance. 
Since volume rendering is generally fill-rate limited, the 
small amount of additional geometry has almost no effect 
on frame rates. Of course for many small partitions there 
will be a point where the geometry load might become a 
bottleneck; on current hardware when using uniform slice-
covering partitions this begins to occur with quad sizes 162 
and smaller. 

In the second pass we render some number of sampling 
planes within the current slab. In order to obtain an 
interpolated sample we read from the corresponding 
location in both the front and back decompressed slices. We 
then perform the final interpolation in the fragment 
program using the z-value of the current slice. The z-value 
ranges from 0 to 1 and gives the offset of the slice within 
the slab; that is, for a given slice all samples will have the 
same z-value. Since the slices are stored in two channels, 
we need only one texture read from the back buffer to 
obtain both slice values. The sampling slices are 
composited into the front buffer in front-to-back or back-to-
front order, depending on whether the slabs are advancing 
from front-to-back or back-to-front. 

After an interpolated sample is obtained we perform 
classification and shading. Shading requires gradients, 
which can be pre-calculated or computed on-the-fly. The 
massive increase in data size required to store pre-
computed gradients makes this method inappropriate for 
packing or compression applications, and so gradients must 
be computed on-the-fly. In order to do this we need the 
neighborhood of the sample position, which translates to a 
slightly larger slice cache; instead of keeping two 
consecutive slices we keep four, as seen in Figure 6. This 
works out well since we have exactly four texture channels 
to use. The slice cache then acts as a circular buffer, so that 
after decompressing three initial slices we then only need to 
decompress one slice per pass while using three slices from 
the previous slab. This is achieved by cycling the color 
channel, using buffer color masks to select the target 
channel. In Figure 7 we show the gradient computation 
using central differences. By stacking the slices in the 
texture channels we can obtain both the sample and 
gradient in only 5 bilinearly-filtered texture reads and 7 
lerps. 

 
Figure 7: Calculation of the gradient using central 
differences for a given sample ( ) in a sampling slice 
requires six gradient samples ( ). In order to obtain the 
gradient samples we need to access the decompressed 
slices at the corresponding locations ( ). As the slices 
are stacked in the RGBA texture channels we need only 
five texture reads (horizontal lines). Calculation of the 
gradient samples then requires six lerps, using Zlerp as the 
interpolation weight. 

An alternative implementation of deferred filtering is 
possible given the capability to render slices into a volume 
texture; instead of using the four channels of a pbuffer we 
use a four-slice volume texture. By using a volume texture 
to cache slices we are able to take advantage of native 
trilinear interpolation while providing a potentially more 
elegant implementation. In this case it would be necessary 
to use texture border mirroring for the r texture coordinate, 
along with a careful specification of the r texture coordinate 
domain. 

Other options also exist for computing gradients, such as 
voxel-wise reconstruction of gradients during the 
decompression pass. We have experimented with two 
variants of this approach and found them to be less efficient 
than the approach described above. Note that in rendering 
adaptive level-set surfaces, Lefohn et al. [LKHW03] were 
able to reuse gradients computed in the level-set updates. 

4. Results 

In this section we show the results of applying deferred 
filtering to existing packing and compression methods. We 
chose one packing method and one compression method 
which we believe are representative and compared the 
original implementations using lazy decompression and 
their corresponding implementations using deferred 
filtering. All results were obtained using an NVIDIA 
GeForce 6800 Ultra and an image resolution of 5122 pixels. 

The texture packing method we use (shown in Figure 1) 
is a simplified version of previous methods. Specifically, 
we partition the volume into equal-sized blocks and store 
only non-empty blocks in a packed texture. We use an 
index texture to map from an original volume block to a 
volume block in the packed texture. The blocks themselves 
are padded using a space-filling arrangement in order to 
support linear interpolation and gradient calculation. 

Figure 8 shows the results of packing applied to two data 
sets. The first is the 5122×360 CT scan of the Stanford 
bunny volume. This data set can be compressed very 
effectively using only packing due to the sparseness of the 
volume. However, due to the overhead incurred by padding 
this sparseness is more effectively exploited by deferred 
filtering. The second data set is an atmospheric simulation 
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generated by NCAR. The data set is time-varying (400 time 
steps), multivariate (5 variables), with a moderately high 
resolution (2562×1024 voxels). Texture packing without 
padding reduces the total size of the data set from 125 GB 
to 3.2 GB, and with deferred filtering we can interactively 
render directly from the compressed data with high quality. 
Although the packed size is still too large to fit in graphics 
memory it does fit in core memory, and the compressed 
size of individual volumes (averaging 1.5 MB) allows more 
efficient storage and transfer to graphics memory. Note that 
the extra padding necessary with the previous approach 
results in a compressed size of 27.1 GB (averaging 13.8 
MB per volume). Figure 8 shows rendering of one time step 
and one variable along with the packed texture. 

Because of its performance and its more complex 
decompression scheme, we chose the method developed by 
Schneider and Westermann [SW03] as our compression 
subject. This method partitions the volume into blocks of 
size 43 which are then transformed using a Laplacian 
decomposition to a more energy compact representation 
consisting of the mean, a block of first-order differences (of 
size 23) and a block of second-order differences (of size 43). 
The first- and second-order difference blocks are separately 
quantized using vector quantization. In the index volume 
the mean and codebook indices for the difference blocks 
are stored. To decompress a voxel we take the mean and 
add the appropriate differences from the quantized 
difference blocks. While the original implementation used 
only nearest filtering, for purposes of comparison we also 
implemented a version which supports linear interpolation 
“by hand” in the fragment program. This involves 
separately decompressing 8 voxels and performing the 
interpolation itself (14 instructions) in order to obtain a 
single sample. We further implemented shading by 
decompressing 24 more voxels and performing six more 
interpolations (14*6=84 more instructions) for the gradient. 

In Figure 9 we show the results of using this compression 
method on two different data sets. The first one is a 
500×470×136 CT scan of a frog. We use a high-frequency 
transfer function (an implicit isosurface) and shading to test 
the compression. In order to get acceptable quality the 
volume was partitioned into 8 equal regions and a separate 
codebook was used for each partition. The timing results 
demonstrate the efficacy of deferred filtering. The second 
data set is a supernova simulation generated by TSI 
consisting of 200 time steps, 5 variables per time step, and 
volumes of 4803 voxels. For compression we found that 
partitioning each volume into 83=512 macroblocks with 
associated codebooks was necessary for acceptable quality. 
The compression rate for this scheme is 87%, reducing the 
data set from 103 GB to 13 GB. Although the entire data 
set will not fit in memory, the reduced memory 
consumption and bandwidth greatly facilitate exploration. 
Rendering of a single time step and variable is shown in 
Figure 9. 

5. Conclusions and Future Work 

In this work we addressed the problem inherent in previous 
on-the-fly decompression methods, namely the inability to 
provide efficient decompression when coupled with volume 
rendering. The proposed solution, deferred filtering, 
enables interactive high quality volume rendering directly 
from compressed data. Deferred filtering is up to 20 times 

faster than the existing approach. Furthermore, this method 
is general enough to be used with all the existing texture 
packing and custom compression techniques, which we 
demonstrate with prototype implementations. 

In the future we would like to further explore sparse 
volume optimizations for deferred filtering (both in the 
decompression pass and the rendering pass) with the goal 
of rendering large static volumes at higher frame rates. 

Finally, in terms of available compression methods it is 
clear that when using transfer functions with high 
frequencies and/or shading even small errors in 
reconstruction result in objectionable artifacts. While using 
a larger codebook or multiple codebooks can help, a better 
alternative would be to come up with more performant 
techniques. The increased efficiency afforded by deferred 
filtering indirectly supports this by allowing more complex 
decompression. 
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(a) Rendering of packed Stanford bunny data set: 
        LD: 11 fps, 76.1% compression 
        DF: 8 fps, 86.7% compression 

 
(b) Rendering of a packed NCAR simulation time step: 
        LD: 2.6 fps, 78.3% compression 
        DF: 2.2 fps, 97.4% compression 
Figure 8: Comparison of high quality volume rendering 
from packed textures using lazy decompression (LD) vs. 
deferred filtering (DF). Although DF is about 15% 
slower it allows significantly better compression. 

 
(a) Conventional volume rendering of the original frog 

data set (22 fps). 

 
(b) Volume rendering of the compressed frog data set: 

LD: 0.6 fps, DF: 14 fps 

  
(c) Conventional volume 
rendering of an original 

supernova time step 
(1.8 fps). 

(d) Volume rendering of 
the compressed supernova 

time step: 
LD: 0.06 fps, DF: 1.1 fps 

Figure 9: Comparison of high quality volume rendering 
from compressed textures using lazy decompression (LD) 
vs. deferred filtering (DF). Images generated are almost 
identical, but DF is about 20 times faster than LD. 
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