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1 Introduction
There are many application areas where the basic objects of
interest, rather than points in Euclidean space, are symmetric
positive-definite n× n matrices (denoted by P(n)). In diffu-
sion tensor imaging [3], matrices in P(3) model the flow of
water at each voxel of a brain scan. In mechanical engineer-
ing [7], stress tensors are modeled as elements of P(6). Ker-
nel matrices in machine learning are elements of P(n) [12].

In these areas, a problem of great interest is the anal-
ysis [8, 9] of collections of such matrices (finding central
points, clustering, doing regression). Since the geometry of
P(n) is non-Euclidean, it is difficult to apply standard com-
putational geometry tools.

The convex hull is fundamental to computational geom-
etry. It can be used to manage the geometry of P(n),
to find a center of a point set (via convex hull peeling
depth [11, 2]), and capture extent properties of data sets like
diameter, width, and bounding boxes (even in its approxi-
mate form [1]).

We introduce a generalization of the convex hull that can
be computed (approximately) efficiently in P(2), is identical
to the convex hull in Euclidean space, and always contains
the convex hull in P(n). In the process, we also develop a
generalized notion of extent [1] that might be of independent
interest.

Convex Hulls in P(n). P(n) is an example of a proper
CAT(0) space [6, II.10], and as such admits a well-defined
notion of convexity, in which metric balls are convex. We
can define the convex hull of a set of points as the smallest
convex set that contains the points. This hull can be real-
ized as the limit of an iterative procedure where we draw all
geodesics between data points, add all the new points to the
set, and repeat.

Lemma 1.1 ([5]). If X0 = X and Xi+1 =
⋃

a,b∈Xi
[a, b],

then C(X) =
⋃∞

i=0Xi.

Berger [4] notes that it is unknown whether the convex
hull of three points is in general closed, and the standing
conjecture is that it is not. The above lemma bears this out,
as it is an infinite union of closed sets, which in general is
not closed. These facts present a significant barrier to the
computation of convex hulls on general manifolds.

The ball hull of a set of points is the intersection of all
(closed) metric balls containing the set. The ball hull has
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Figure 1: Left: projection of X ⊂ P(2) onto det(x) = 1.

Right: X ⊂ P(2). Two horospheres are drawn in both views.

the advantage of being convex and closed. We provide an
algorithm that computes an approximate ball hull.

2 Definitions
P(n) is the set of symmetric positive-definite real matrices.
It is a Riemannian metric space with tangent space at point
p equal to S(n), the vector space of symmetric matrices
with inner product 〈A,B〉p = tr(p−1Ap−1B). The exp
map, expp : S(n) → P(n) is defined expp(tA) = c(t) =

p
1
2 ep−

1
2 tAp−

1
2 p

1
2 , where c(t) is the geodesic with unit tan-

gent A and c(0) = p. For simplicity, we often assume that
p = I so expI(tA) = etA. The log map, logp : P(n) →
S(n), indicates direction and distance and is the inverse of
expp. The metric d(p, q) = ‖ logp(q)‖ =

√
tr(log(p−1q)2).

Given a geodesic ray c(t) : R+ → P(n), a Busemann
function bc : P(n)→ R is defined

bc(p) = lim
t→∞

d(p, c(t))− t.

A Busemann function is an example of a horofunction (see
[6, II.8]). A horoball Br(h) ⊂ P(n) is a sublevel set of a
horofunction h, i.e. Br(h) = h−1((−∞, r]). By [6, II.8], h
is convex, so any sublevel setBr(h) is convex. A horosphere
Sr(h) is its boundary; i.e. Sr(h) = h−1(r). See Figure 1.

The geodesic anisotropy [10] of a point p ∈ P(n) mea-
sures disparity in its eigenvalues, and will be useful in our
analysis. It is defined as GA(p) = d( n

√
det(p)I, p) =

tr(log(p/ n
√

det(p))2)
1
2 .

Busemann functions in Rn. As an illustration, we can
easily compute the Busemann function in Euclidean space
associated with a geodesic ray c(t) = tu, where u is a
unit vector. Since limt→∞

1
2t (‖p − tu‖ + t) = 1, bc(p) =

limt→∞
1
2t (‖p− tu‖

2 − t2) and

bc(p) = lim
t→∞

‖p‖2

2t
− 〈p,u〉 = −〈p,u〉 .

Horospheres in Euclidean space are then just hyperplanes,
and horoballs are halfspaces.



Busemann Functions in P(n) For geodesic c(t) = etA,
where A ∈ S(n), the Busemann function bc : P(n)→ R is

bc(p) = − tr(A log(πc(p))),

where πc is defined below [6, II.10].
There is a subgroup of GL(n), Nc (the horospherical

group), that leaves the Busemann function bc invariant [6,
II.10]. That is, given p ∈ P(n), and ν ∈ Nc, bc(νpνT ) =
bc(p). Let A be diagonal, where Aii > Ajj , ∀i 6= j. Let
c(t) = etA. Then ν ∈ Nc if and only if ν is a upper-
triangular matrix with ones on the diagonal1. If A ∈ S(n)
is not sorted-diagonal, we may still use this characterization
of Nc without loss of generality, since we may compute an
appropriate diagonalization A = QA′QT , QQT = I , then
apply the isometry QT pQ to any element p ∈ P(n).

Let A ∈ S(n) and c(t) = etA as above. If we con-
sider all elements f ∈ P(n) that share eigenvectors Q with
eA, then feA = eAf , and we call this space Fc, the n-flat
containing c. If A is diagonal, f ∈ Fc is diagonal, where
the diagonal elements are positive [6, II.10]. Since we may
assume that Q ∈ SO(n), every flat Fc corresponds to an
element of SO(n). Moreover, since members of Fc com-
mute,

√
tr(log(u−1v)2) =

√
tr((log(v)− log(u))2) for all

u, v ∈ Fc so Fc is isometric to Rn with the Euclidean metric.
Given p ∈ P(n), there is a unique decomposition p =

νfνT where (ν, f) ∈ Nc × Fc [6, II.10]. Let p ∈ P(n)
and (ν, f) ∈ Nc × Fc. If p = νfνT , then define the
horospherical projection function πc : P(n) → P(n) as
πc(p) = ν−1pν−T = f .

3 Ball Hulls
For a subsetX ⊂ P(n), the ball hull B(X) is the intersection
of all horoballs that also contain X:

B(X) =
⋂
bc,r

Br(bc), X ⊂ Br(bc).

We know that any horoball is convex. Because the ball
hull is the intersection of convex sets, it is itself convex (and
therefore C(X) ⊆ B(X)).

horoextent

Since measuring width by recording the
distance between two parallel planes does
not have a direct analogue in P(n), we pro-
pose the use of horoextents. Let c(t) = etA

be a geodesic ray, and X ⊂ P(n). The
horoextent Ec(X) with respect to c is de-
fined as:

Ec(X) =
∣∣∣∣max
x∈X

bc(x) + max
x∈X

b−c(x)
∣∣∣∣

where −c is understood to mean et(−A) (the ray pointing
opposite c)2. Observe that for any c, Ec(X) = Ec(C(X)) =
Ec(B(X)).

1For simplicity, we consider only those rays with unique diagonal en-
tries, but this definition may be extended to those with multiplicity.

2While −A and A share eigenvectors, the eigenvalues of −A will be
sorted opposite to those of A, so the projections πc and π−c will be differ-
ent.

4 Algorithm for ε-Ball Hull
An intersection of horoballs is called a ε-ball hull (Bε(X))
if for all geodesic rays c, |Ec(Bε(X))− Ec(X)| ≤ ε.

Lemma 4.1. For any horosphere Sr(bc), there is a hyper-
plane Hr ⊂ log(Fc) ⊂ S(n) such that log(πc(Sr(bc))) =
Hr.

Lemma 4.2 (Lipschitz condition on P(2)). Given a point
p ∈ P(2), a rotation matrix Q corresponding to an angle of
θ/2, geodesics c(t) = etA and c′(t) = etQAQT

,

bc(p)− bc′(p) ≤ |θ| · 2
√

2 sinh
(
GA(p)/

√
2
)
.

Algorithm. ForX ⊂ P(2) we can construct Bε(X) as fol-
lows. Let gX = maxp∈X GA(p). We place a grid Gε on
SO(2) so that for any θ′ ∈ SO(2), there is another θ ∈ Gε

such that |θ − θ′| ≤ (ε/2)/(2
√

2 sinh(gX/
√

2)). For each c
corresponding to θ ∈ Gε, we consider πc(X), the projection
of X into the 2-flat Fc. Within Fc, we construct a convex
hull of πc(X), and return the horoball associated with each
hyperplane passing through each facet of the convex hull, as
in Lemma 4.1. Since between elements of Gε, the points of
πc(X) do not change the values of their horofunctions by
more than ε/2 (by Lemma 4.2), the extents do not change by
more than ε, and the returned set of horoballs is a Bε(X).

Theorem 4.1. For a set X ⊂ P(2) of size N , we can
construct an Bε(X) of size O((sinh(gX)/ε)N) in time
O((sinh(gX)/ε)N logN).

This can be improved by using an ε-kernel [1] on πc(X).
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