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computational anatomy is the statistical analysis of anatomical variability in large
populations of images. The study of anatomical shape is inherently related to the construction of
transformations of the underlying coordinate space, which map one anatomy to another. It is now well
established that representing the geometry of shapes or images in Euclidian spaces undermines our ability to
represent natural variability in populations. In our previous work we have extended classical statistical analysis
techniques, such as averaging, principal components analysis, and regression, to Riemannian manifolds, which
are more appropriate representations for describing anatomical variability. In this paper we extend the notion of
robust estimation, a well established and powerful tool in traditional statistical analysis of Euclidian data, to
manifold-valued representations of anatomical variability. In particular, we extend the geometric median, a
classic robust estimator of centrality for data in Euclidean spaces. We formulate the geometric median of data on
a Riemannianmanifold as theminimizer of the sum of geodesic distances to the data points. We prove existence
and uniqueness of the geometric median on manifolds with non-positive sectional curvature and give sufficient
conditions for uniqueness on positively curved manifolds. Generalizing the Weiszfeld procedure for finding the
geometric median of Euclidean data, we present an algorithm for computing the geometric median on an
arbitrary manifold. We show that this algorithm converges to the unique solution when it exists. In this paper
we exemplify the robustness of the estimation technique by applying the procedure to various manifolds
commonly used in the analysis of medical images. Using this approach, we also present a robust brain atlas
estimation technique based on the geometric median in the space of deformable images.

© 2008 Elsevier Inc. All rights reserved.
Introduction

Within computational anatomy, geometric transformations play a
central role in quantifying and studying anatomical variations in
populations of brain images. The transformations being utilized for
the study of anatomical shapes range from low-dimensional rigid and
affine transforms to the infinite-dimensional space of diffeomorphic
transformations. These transformations, regardless of their dimen-
sionality, inherently have an associated group structure and capture
anatomical variability by defining a group action on the underlying
coordinate space on which medical images are defined.

Recently, there has been substantial interest in the statistical
characterization of data that are best modeled as elements of a
Riemannian manifold, rather than as points in Euclidean space
(Fletcher et al., 2003; Klassen et al., 2004; Pennec, 2006; Srivastava
et al., 2005). In previous works (Buss and Fillmore, 2001; Fletcher et
al., 2003; Pennec, 2006), the notion of centrality of empirical data was
defined via the Fréchet mean (Fréchet, 1948), which was first
rights reserved.
developed for manifold-valued data by Karcher (Karcher, 1977). In
Joshi et al. (2004) the theory of Fréchet mean estimation was applied
to develop a statistical framework for constructing brain atlases.
Although the mean is an obvious central representative, one of its
major drawbacks is its lack of robustness, i.e., it is sensitive to outliers.

Robust statistical estimation in Euclidean spaces is nowa field in its
own right, and numerous robust estimators exist. However, no such
robust estimators have been proposed for data lying on a manifold.
One of the most common robust estimators of centrality in Euclidean
spaces is the geometric median. Although the properties of this point
have been extensively studied since the time of Fermat, (this point is
often called the Fermat–Weber point), no generalization of this
estimator exists for manifold-valued data. In this paper we extend the
notion of geometric median to general Riemannian manifolds, thus
providing a robust statistical estimator of centrality for manifold-
valued data. We prove some basic properties of the generalization and
exemplify its robustness for data on common manifolds encountered
in medical image analysis. In this paper we are particularly interested
in the statistical characterization of shapes given an ensemble of
empirical measurements. Although the methods presented herein are
quite general, for concreteness we will focus on the following explicit
examples: i) the space of 3D rotations, ii) the space of positive-definite
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Fig. 1. Metamorphosis geodesic between two 3D brain images. Mid-axial (top row) and mid-coronal (bottom row) slices are shown.
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tensors, iii) the space of planar shapes and iv) the space of deformable
images for brain atlas construction.

Background

Deformable images via metamorphosis

Metamorphosis (Trouvé and Younes, 2005) is a Riemannian metric
on the space of images that accounts for geometric deformation as
well as intensity changes. We briefly review the construction of
metamorphosis here and refer the reader toTrouvé and Younes (2005)
for a more detailed description.

We will consider square integrable images defined on an open
subset Xoℝd, i.e., images are elements of L2 X;ℝð Þ. Geometric
variation in the population is modeled in this framework by defining
a transformation group action on images following Miller and Younes
(2001). To accommodate the large and complex geometric transfor-
mations evident in anatomical images, we use the infinite-dimen-
sional group of diffeomorphisms, Diff(Ω). A diffeomorphism g Ω→Ω
is a bijective, C1 mapping that also has a C1 inverse. The action of g on
an image I : XYℝ is given by g · I= I ○g−1.

Metamorphosis combines intensity changes in the space L2 X;ℝð Þ
with geometric changes in the space Diff(Ω). A metamorphosis is a pair
of curves (μt, gt) in L2 X;ℝð Þ and Diff(Ω), respectively1. The diffeomorph-
ismgroup action produces amappingof these curves onto a curve in the
image space: It=gt ·μ. Now the energy of the curve It in the image space
is defined via a metric on the deformation part, gt, combined with a
metric on the intensity change part, μt. This gives a Riemannian
manifold structure to the space of images, which we denote by M.

To define a metric on the space of diffeomorphisms, we use the
now well established flow formulation. Let v : 0;1½ �×XYℝd be a time-
varying vector field. We can define a time-varying diffeomorphism gt
as the solution to the ordinary differential equation

dgt
dt

= vtBgt : ð1Þ

Themetric on diffeomorphisms is based on choosing a Hilbert space V,
which gives an inner product to the space of differentiable vector
fields. We use the norm

kvk2V =
Z
X
hLv xð Þ; v xð Þiℝddx; ð2Þ
1 We will use subcripts to denote time-varying mappings, e.g., µt(x) = µ(t,x).
where L is a symmetric differential operator, for instance, L=(αI−Δ)k,
for some αaℝ and integer k. We use the standard L2 norm as a metric
on the intensity change part.

Denote the diffeomorphism group action by g(μ)=g ·μ. Also, for a
fixed μ the group action induces a mapping Rμ: g↦g ·μ. The derivative
of this mapping at the identity element e∈Diff(Ω) then maps a vector
field v∈TeDiff(Ω) to a tangent vector deRμ(v)∈TμM. We denote this
tangentmapping by v(μ)=deRμ(v). If we assume images are also C1, this
mapping can be computed as v μð Þ = −h∇μ; vi. Given a metamorphosis
(gt, μt), the tangent vector of the corresponding curve It=gt ·μt∈M is
given by

dIt
dt

= dμtg
dμ t

dt

� �
+ v μ tð Þ: ð3Þ

Now, a tangent vector η∈TIM can be decomposed into a pair (v,δ)∈
TeDiff(Ω)×L2 X;ℝð Þ), such that η=v(I)+δ. This decomposition is not
unique, but it induces a unique norm if we minimize over all possible
decompositions:

jjηjj2I = inf jjvjj2V +
1
σ2 jjδjj

2
L2 : η = v Ið Þ + δ

� �
ð4Þ

Using this metric, the distance between two images I, I′ can now be
found by computing a geodesic on M that minimizes the energy

U vtItð Þ =
Z 1

0
jjvt jj2Vdt +

1
σ2

Z 1

0
jjdIt
dt

+ h∇It ; vtijj2L2dt; ð5Þ

with boundary conditions I0= I0 and I1= I′. An example of a metamor-
phosis geodesic between two 3D MR brain images is shown in Fig. 1. It
was computed using a gradient descent on Eq. (5), which is described in
further detail in the Deformable images section.

Outliers, robust estimators and the geometric median

Outliers in data can throw off estimates of centrality based on the
mean. One possible solution to this problem is outlier deletion, but
removing outliers often merely promotes other data points to outlier
status, forcing a large number of deletions before a reliable low-
variance estimate can be found. The theory of robust estimators
formalizes the idea that no individual point should affect measures of
central tendency. The measure of robustness of an estimator is the
breakdown point; formally, it is the fraction of the data that can be
“dragged to infinity” (i.e., completely corrupted) without affecting the
boundedness of the estimator. Clearly, the mean, whether it be a
standard centroid or themore general Fréchet mean, has a breakdown



Fig. 2. The geometric median (marked with a □) and mean (marked with an ×) for a
collection of points in the plane. Notice how the few outliers at the top right of the picture
have forced themean away fromthe points, whereas themedian remains centrally located.
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point of 0, since as any single data point is dragged to infinity, the
mean will grow without bound.

The theory of robust estimation has led to the development of
numerous robust estimators, of which the L1-estimator, also known as
the geometric median, is one of the best known. Given a set of points
{xi, i=1,…n}∈Rd, with the usual Euclidean norm ||x||, the L1-estimator
is defined as the point m∈ℝd minimizing

Pn
i = 1 kjm−xikj. It can be

shown (Lopuhaä and Rousseeuw, 1991) that this estimator has a
breakdown point of 0.5, which means that half of the data needs to be
corrupted in order to corrupt this estimator. In Fig. 2 we illustrate this
by showing how the geometric median and the mean are displaced in
the presence of a few outliers.

The existence and uniqueness of the median in ℝd follow directly
from the convexity of the distance function. In one dimension, the
geometricmedian is the point that divides the point set into equal halves
on either side (ifn is odd) and is anypoint on the line segment connecting
the two middle points (if n is even). In general however, computing the
geometric median is difficult; Bajaj (1988) has shown that the solution
cannot be expressed using radicals (arithmetic operations, and kth roots).

There are twomain approaches to computing the geometric median
of a collection of points in Rd. One way is to compute an approximate
medianm such that

Pn
i = 1 kjm−xikj is at most a (1+∈)-factor larger than

the cost of the optimalmedian. This can be computed using the ellipsoid
method (Chandrasekaran and Tamir, 1990). A more efficient algorithm
achieving the same result is due to Bose et al. (2003).

These algorithms do not generalize beyond Euclidean spaces. A
more general iterative algorithm due to Weiszfeld (1937) and later
improved by Kuhn and Kuenne (1962) and (Ostresh, 1978) converges
to the optimal solution in Euclidean spaces (Kuhn, 1973), and was
subsequently generalized to Banach spaces by Eckhardt (1980).

Several other robust estimators of centrality have been proposed in
the statistics literature (Maronna et al., 2006). Winsorized means,
where a percentage of extreme values are clamped, and trimmed
means, where extreme values are removed, have been used for
univariate data. The drawback of these methods is that they require a
somewhat arbitrary selection of a threshold. M-estimators (Huber,
1981) are a generalization of maximum likelihood methods in which
some function of the data is minimized. The geometric median is a
special case of an M-estimator with an L1 cost function.

The Riemannian geometric median

Let M be a Riemannian manifold. Given points x1,…,xn∈M and
corresponding positive real weights wi,…,wn, with Σiwi=1, define the
weighted sum-of-distances function f(x)=Σiwid(x,xi), where d is the
Riemannian distance function on M. Throughout, we will assume that
the xi lie in a convex set U⊂M, i.e., any two points in U are connected
by a unique shortest geodesic lying entirely in U. We define the
weighted geometric median, m, as the minimizer of f, i.e.,

m = argmin
xaM

Xn
i = i

wi d x; xið Þ: ð6Þ

When all the weights are equal, wi=1/n, we call m simply the geo-
metric median.

In contrast, the Fréchet mean, or Karchermean (Karcher, 1977), of a
set of points on a Riemannian manifold is defined, via the general-
ization of the least squares principle in Euclidean spaces, as the
minimizer of the sum-of-squared distances function,

μ = argmin
xaM

Xn
i = i

wi d x; xið Þ2: ð7Þ

Webegin our exploration of the geometricmedianwith a discussion of
the Riemannian distance function. Given a point p∈M and a tangent
vector v∈TpM, where TpM is the tangent space of M at p, there is a
unique geodesic, γ : [0, 1]→M, starting at p with initial velocity v. The
Riemannian exponential map, Expp :TpM→M, maps the vector v to the
endpoint of this geodesic, i.e., Expp(v)=γ(1). The exponential map is
locally diffeomorphic onto a neighborhood of p. Let V (p) be the largest
such neighborhood. Then within V (p) the exponential map has an
inverse, the Riemannian log map, Logp :V (p)→TpM. For any point
q∈V (p) the Riemannian distance function is given by d(p,q)= ||Logp
(q)||. For a fixed point p∈M, the gradient of the Riemannian distance
function is ▿xd(p,x)=−Logx(p) / ||Logx(p)|| for x∈V (p). Notice that
this is a unit vector at x, pointing away from p (compare to the
Euclidean distance function).

The diameter of U, denoted diam(U), is the maximal distance
between any two points in U. Using the convexity properties of the
Riemannian distance function (see the Appendix for more details), we
have the following existence and uniqueness result for the geometric
median.

Theorem 1. The weighted geometric median defined by Eq. (6) exists
and is unique if (a) the sectional curvatures of M are non positive, or
if (b) the sectional curvatures of M are bounded above by ΔN0 and
diam(U)bπ / 2

ffiffiffiffi
Δ

p� �
:

Proof. Let γ : [a, b]→U be a geodesic. By the arguments in the
Appendix, the distance function to any xi is convex, that is, (d2/dt2)
d(xi,γ(t))≥0. Since the weighted sum-of-distances function f(x) is a
convex combination of such functions, it is also convex. Furthermore,
since the xi do not all lie on the same geodesic, the vector Logγ(t)(xk)
is not tangential to γ(t) for at least one k∈ [1, n]. Therefore, by
Lemma 1 we have (d2/dt2)d(xk, γ(t))N0, and f(x) is a strictly convex
function, which implies that the minimization Eq. (6) has a unique
solution.

An isometry of a manifold M is a diffeomorphism ϕ that preserves
the Riemannian distance function, that is, d(x,y)=d(ϕ(x),ϕ(y)) for all x,
y∈M. The set of all isometries forms a Lie group, called the isometry
group. It is clear from the definition of the geometric median Eq. (6)
that the geometric median is invariant under the isometry group ofM.
In other words, if m is the geometric median of {xi} and ϕ is an
isometry, then ϕ(m) is the geometric median of {ϕ(xi)}. This is a
property that the geometric median shares with the Fréchet mean.

The breakdown point of the geometric median

A standard measure of robustness for a centrality estimator in
Euclidean space is the breakdown point, which is the minimal
proportion of data that can be corrupted, i.e., made arbitrarily distant,
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before the statistic becomes unbounded. Let X={x1,…,xn} be a set of
points on M. Define the breakdown point of the geometric median as

e4 m;Xð Þ = min
1VkVn

k
n
: sup

Yk
d m Xð Þ;m Ykð Þð Þ =∞

( )
;

where the supremum is taken over all sets Yk that corrupt k points of
X, that is, Yk contains n–k points from the set X and k arbitrary points
fromM. Lopuhaä and Rousseeuw (1991) show that for the caseM = Rd

the breakdown point is e4 m;Xð Þ = t n + 1ð Þ=2b=n. Notice that if M has
bounded distance, then ɛ⁎(m,X)=1. This is the case for compact
manifolds such as spheres and rotation groups. Therefore, the
breakdown point is only interesting in the case of manifolds with
unbounded distance. The next theorem shows that the geometric
median on unbounded manifolds has the same breakdown point as in
the Euclidean case.

Theorem 2. Let U be a convex subset of M with diam(U)=∞, and let
X={x1,…,xn} be a collection of points in U. Then the geometric median
has breakdown point e4 m;Xð Þ = t n + 1ð Þ=2b=n.
Proof. The first part of the proof is a direct generalization of the
argument for the Euclidean case given by Lopuhaä and Rousseeuw
(1991) (Theorem 2.2). Let Yk be a corrupted set of points that replaces
k points from X, with kVt n−1ð Þ=2b. We show that for all such Yk, d(m(X),
m(Yk)), is bounded by a constant. Let R=maxi d(m(X), xi), and consider
B={p∈M :d(p,m(X))≤2R)}, the ball of radius 2M about m(X). Let
δ=infp∈B d(p,m(Yk)). By the triangle inequality we have d(m(X), m
(Yk))≤2R+δ, and

d yi;m Ykð Þð Þzd m Xð Þ; yið Þ−d m Xð Þ;m Ykð Þð Þ
zd m Xð Þ; yið Þ− 2R + δð Þ:

Now assume that δNt n−1ð Þ=2b2R. Then for the original points xi we
have

d xi;m Ykð Þð ÞzR + δ
zd m Xð Þ; xið Þ + δ:

Combining the two inequalities above with the fact that n−t n−1ð Þ=2b
of the yi are from the original set X, we get

Xn
i = 1

d m Ykð Þ; yið Þz
Xn
i = 1

d m Xð Þ; yið Þ−tn−1=2b 2R + δð Þ + n−tn−1=2bð Þδ

z
Xn
i = 1

d m Xð Þ; yið Þ−tn−1=2b2R + δ

N
Xn
i = 1

d m Xð Þ; yið Þ:

However, this is a contradiction since m(Yk) minimizes the sum of
distances, Σid(m(Yk), yi). Therefore, d m Ykð Þ;m Xð Þð ÞV2R + δVt n + 1ð Þ=2b2R.
This implies that e4ðm;XÞztðnþ 1Þ=2b=n:

The other inequality is proven with the following construction.
Consider the case where kzt n + 1ð Þ=2b and each of the k corrupted
points of Yk are equal to some point p∈M. It is easy to show that m
(Yk)=p. Since we can choose the point p arbitrarily far away fromm(X),
it follows that e4 m;Xð ÞVt n + 1ð Þ=2b=n:

The Weiszfeld algorithm for manifolds

For Euclidean data the geometric median can be computed by an
algorithm introduced by Weiszfeld (1937) and later improved by
Kuhn and Kuenne (1962) and Ostresh (1978). The procedure
iteratively updates the estimate mk of the geometric median using
essentially a steepest descent on the weighted sum-of-distances
function, f. For a point xaRn not equal to any xi, the gradient of f
exists and is given by

∇f xð Þ =
Xn
i = 1

wi x−xið Þ=jjx−xijj: ð8Þ

The gradient of f(x) is not defined at the data points x=xi. The iteration
for computing the geometric median due to Ostresh is

mk + 1 =mk−αGk; Gk =
X
i∈Ik

wixi
jj xi−mkjj �

X
i∈Ik

wi

jj xi−mkjj
0
@

1
A

−1

; ð9Þ

where Ik={i∈ [1, n] :mk≠xi}, and αN0 is a step size. Notice if the
current estimate mk is located at a data point xi, then this term is left
out of the summation because the distance function is singular at that
point. Ostresh (1978) proves that the iteration in Eq. (9) converges to
the unique geometric median for 0≤α≤2 and when the points are not
all colinear. This follows from the fact that f is strictly convex and Eq.
(9) is a contraction, that is, f(mk +1)b f(mk) if mk is not a fixed point.

Now for a general Riemannian manifold M, the gradient of the
Riemannian sum-of-distances function is given by

∇f xð Þ = −
Xn
i = 1

wiLogx xið Þ=d x; xið Þ; ð10Þ

where again we require that x∈U is not one of the data points xi. This
leads to a natural steepest descent iteration to find the Riemannian
geometric median, analogous to Eq. (9),

mk + 1 = Expmk
αvkð Þ; vk =

X
iaIk

wiLogmk
xið Þ

d mk; xið Þ �
X
iaIk

wi

d mk; xið Þ

0
@

1
A

−1

: ð11Þ

The following result for positively curved manifolds shows that
this procedure converges to the unique weighted geometric median
when it exists.

Theorem 3. If the sectional curvatures of M are nonnegative and the
conditions (b) of Theorem 1 are satisfied, then limkÄ ∞ mk=m for
0≤α≤2.

Proof. Weuse the fact that the EuclideanWeiszfeld iteration, given by
Eq. (9), is a contraction. First, define f vð Þ = P

i wikjv−Logmk
xið Þkj, i.e., f

is the weighted sum-of-distances function for the log-mapped data,
using distances in Tmk

M induced by the Riemannian norm. Notice that
the tangent vector vk defined in Eq. (11) is exactly the same
computation as the Euclidean Weiszfeld iteration Eq. (9), replacing
each xi with the tangent vector Logmk

(xi). Therefore, we have the
contraction property f αvkð Þbf 0ð Þ: However, geodesics on positively
curved manifolds converge, which means that distances between two
points on the manifold are closer than their images under the log map
(This is a direct consequence of the Toponogov Comparison Theorem,
seeCheeger and Ebin (1975)). In other words, d(Expmk(αvk), xi) b ||
(αvk − Logmk

(xi)||. This implies thatf ðmk + 1Þ = f ðExpmk
ðαvkÞÞb

f ðαvkÞbf ð0Þ = f ðmkÞ: (The last equality follows from ||Logmk
(xi)||=d

(mk, xi).) Therefore, Eq. (11) is a contraction, which combined with
f being strictly convex, proves that it converges to the unique
solution m.

We believe that a similar convergence result will hold for
negatively curved manifolds as well (with an appropriately chosen
step size α). Since the algorithm is essentially a gradient descent on a
convex function, there should be an α for which it converges, although
in this case α may depend on the spread of the data. Our experiments
presented in the next section for tensor data support our belief of
convergence in this case. The tensor manifold has non positive
curvature, and we found the procedure in Eq. (11) converged for α=1.
Proving convergence in this case is an area of future work.



Fig. 4. Comparison of the geometric median and Fréchet mean for 3D rotations. The
geometric median results with 0, 5, 10, and 15 outliers (top). The Fréchet mean results
for the same data (bottom).
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Applications

In this section we present results of the Riemannian geometric
median computation on 3D rotations, symmetric positive-definite
tensors, planar shapes and, finally, the robust estimation of neuroa-
natomical atlases from brain images. For each example the geometric
median is computed using the iteration presented in the Weiszfeld
algorithm for the manifolds section, which only requires computation
of the Riemannian exponential and log maps. Therefore, the
procedure is applicable to a wide class of manifolds beyond those
presented here. The Fréchet mean is also computed for comparison
using a gradient descent algorithm as described in Fletcher et al.
(2003) and elsewhere. It is important to note that unlike the Euclidean
case where the mean can be computed in closed-form, both the
Fréchet mean and geometric median computations for general
manifolds are iterative, and we did not find any appreciable difference
in the computation times in the examples described below.

Rotations

We represent 3D rotations as the unit quaternions, ℍ1. A
quaternion is denoted as q=(α, v), where α is the “real” component
and v=bi+cj+dk. Geodesics in the rotation group are given simply by
constant speed rotations about a fixed axis. Let e=(1, 0) be the identity
quaternion. The tangent space Teℍ1 is the vector space of quaternions
of the form (0, v). The tangent space at an arbitrary point qaℍ1 is
given by right multiplication of Teℍ1 by q. The Riemannian
exponential map is Expq ((0, v) ·q)=cos(θ /2),v · sin(θ /2) /θ) ·q, where
θ= ||v||. The log map is given by Logq((a, v) ·q)=(0, θv / ||v||) ·q, where
θ=2arccos(a).

To demonstrate the geometric median computations for 3D
rotations, we generated a random collection of 20 quaternions. First,
random tangent vectors were sampled from an isotropic Gaussian
distribution with μ=0, σ=π /30 in the tangent space at the identity.
Next, the exponential map was applied to these random tangent
vectors to produce random elements of ℍ1, centered about the
identity. The same procedure was repeated to generate sets of 5, 10,
and 15 random outliers, whosemean nowwas rotated by 90° from the
original set. A sample of 8 of the original random rotations are
displayed as 3D frames in the top row of Fig. 3 along with 8 of the
outliers in the bottom row.

We computed both the Fréchet mean and the geometric median of
the original rotation dataset with 0, 5, 10, and 15 outliers included.
This corresponds to an outlier percentage of 0%, 20%, 33%, and 43%,
respectively. The geometric median was computed using the iteration
in Eq. (11). The Fréchet mean was computed using the gradient
descent algorithm described in Buss and Fillmore (2001). Both
Fig. 3. Eight rotations from the original dataset (top). Eight rotations from the outlier set
(bottom).
algorithms converged in below 10 iterations in a fraction of a second
for all cases. The results are shown in Fig. 4. The geometric median
remains relatively stable even up to an addition of 15 outliers. In
contrast, the Fréchet mean is dragged noticeably towards the outlier
set.

Tensors

Positive definite symmetric matrices, or tensors, have a wide
variety of uses in computer vision and image analysis, including
texture analysis, optical flow, image segmentation, and neuroimage
analysis. The space of positive definite symmetric tensors has a natural
structure as a Riemannian manifold. Manifold techniques have
successfully been used in a variety of applications involving tensors,
which we briefly review now.

Diffusion tensor magnetic resonance imaging (DT-MRI) (Basser et
al., 1994) gives clinicians the power to image in vivo the structure of
white matter fibers in the brain. A 3D diffusion tensor models the
covariance of the Brownian motion of water at a voxel, and as such is
required to be a 3×3, symmetric, positive-definite matrix. Recent
works (Batchelor et al., 2005; Fletcher and Joshi, 2004; Pennec et al.,
2006;Wang and Vemuri, 2005) have focused on Riemannianmethods
for statistical analysis (Fréchet means and variability) and image
processing of diffusion tensor data. The structure tensor (Bigun et al.,
1991) is a measure of edge strength and orientation in images and has
found use in texture analysis and optical flow. Recently, Rathi et al.,
(2007) have used the Riemannian structure of the tensor space for
segmenting images. Finally, the Riemannian structure of tensor space
has also found use in the analysis of structural differences in the brain,
via tensor based morphometry (Lepore et al., 2006). Barmpoutis et al.
(2007) describe a robust interpolation of DTI in the Riemannian
framework by using a Gaussianweighting function to downweight the
influence of outliers. Unlike the geometric median, this method has
the drawback of being dependent on the selection of the bandwidth
for the weighting function.

We briefly review the differential geometry of tensor manifolds,
which is covered in more detail in Batchelor et al. (2005), Fletcher and
Joshi (2004), and Pennec et al. (2006). Recall that a real n×n matrix A
is symmetric if A=AT and positive-definite if xTAxN0 for all nonzero
xaℝn. We denote the space of all n×n symmetric, positive-definite
matrices as PD(n). Diffusion tensors are thus elements of PD(3), and
structure tensors for 2D images are elements of PD(2). The tangent



Fig. 6. Comparison of the geometric median and Fréchet mean for 3D tensors. The
geometric median results with 0, 5, 10, and 15 outliers (top). The Fréchet mean results
for the same data (bottom).
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space of PD(n) at any point can be identified with the space of n×n
symmetric matrices, Sym(n). Given a point p∈PD(n) and a tangent
vector X, the Riemannian exponential map is given by

Expp Xð Þ = p1
2exp Σð Þp1

2T ; Σ = p−
1
2TXp−

1
2T ; ð12Þ

where exp(Σ) is the matrix exponential and can be computed by
exponentiating the eigenvalues of Σ, since it is symmetric. Likewise,
the Riemannian log map between two points p, q∈PD(n) is given by

Logp qð Þ = p1
2log Λð Þp1

2T ; Λ = p−
1
2qp−

1
2T ; ð13Þ

where log(Λ) is the matrix logarithm, computed by taking the log of
the eigenvalues of Λ, which is well defined in the case of positive
definite symmetric matrices.

As in the rotations example, we generated 20 random tensors
as the image under the exponential map of Gaussian random
tangent vectors. The mean was a tensor with eigenvalues λ1=4 and
λ2=λ3=1. Next, sets of 5, 10, and 15 outliers were randomly
generated in the same fashion with a mean tensor perpendicular
to the original group. The standard deviation of both groups was
σ=0.2. A sample of 5 of the original tensor data and 5 of the outlier
tensors are shown in Fig. 5. The Fréchet mean and geometric median
were computed for the tensor dataset including 0, 5, 10, and 15
outliers, and the results are shown in Fig. 6. Again, convergence of
the geometric median took less than 10 iterations in a fraction of a
second. The tensors in Figs. 5 and 6 are colored based on the
orientation of the major eigenvector (green=original orientation,
blue=outlier orientation) and with color modulated by the fractional
anisotropy (Basser et al., 1994), i.e., more anisotropic tensors are
more brightly colored. The geometric median retains the directio-
nality and anisotropy of the original data, unlike the mean, which
becomes more isotropic in the presence of outliers. This situation is
common in DT-MRI, where adjacent white matter tracts may pass
perpendicular to each other. In such cases, the geometric median
would be a more appropriate local statistic than the mean to avoid
contamination from tensors of a neighboring tract.

Planar shapes

One area of medical image analysis and computer vision that finds
the most widespread use of Riemannian geometry is the analysis of
shape. Dating back to the groundbreaking work of Kendall (1984) and
Bookstein (1986), modern shape analysis is concerned with the
geometry of objects that is invariant to rotation, translation, and scale.
This typically results in representing an object's shape as a point in a
nonlinear Riemannian manifold, or shape space. Recently, there has
Fig. 5. Five tensors from the original dataset (top). Five tensors from the outlier set
(bottom).
been a great amount of interest in Riemannian shape analysis, and
several shape spaces for 2D and 3D objects have been proposed
(Fletcher et al.,2003; Grenander and Keenan, 1991; Klassen et al.,
2004; Michor and Mumford, 2006; Sharon and Mumford, 2004;
Younes, 1998).

An elementary tool in shape analysis is the computation of a mean
shape, which is useful as a template, or representative of a population.
The mean shape is important in image segmentation using deform-
able models (Cootes et al., 1995), shape clustering, and retrieval from
shape databases (Srivastava et al., 2005). The mean shape is, however,
susceptible to influence from outliers, which can be a concern for
databases of shapes extracted from images. We now present an
example showing the robustness of the geometric median on shape
manifolds.We chose to use the Kendall shape space as an example, but
the geometricmedian computation is applicable to other shape spaces
as well.

We first provide some preliminary details of Kendall's (1984) shape
space. A configuration of k points in the 2D plane is considered as a
complex k-vector, zaℂk. Removing translation, by requiring the
centroid to be zero, projects this point to the linear complex subspace
V = zaℂk :

P
zi = 0

n o
, which is equivalent to the space ℂk−1. Next,

points in this subspace are deemed equivalent if they are a rotation
and scaling of each other, which can be represented as multiplication
by a complex number, ρei , where ρ is the scaling factor and is the
rotation angle. The set of such equivalence classes forms the complex
projective space, ℂPk−2. As Kendall points out, there is no unique way
to identify a shape with a specific point in complex projective space.
However, if we consider that the geometric median only require
computation of exponential and log maps, we can compute these
mappings relative to the base point, which requires no explicit
identification of a shape with ℂPk−2.

Thus, we think of a centered shape x∈V as representing the
complex line Lx={z ·x :z∈ℂ \ {0}}, i.e., Lx consists of all point config-
urations with the same shape as x. A tangent vector at Lx∈V is a
complex vector, v∈V, such that hx; v = 0i. The exponential map is
given by rotating (within V) the complex line Lx by the initial velocity
v, that is,

Expx vð Þ = cosθ � x + jjxjjsinθ
θ

� v; θ = jjvjj: ð14Þ

Likewise, the log map between two shapes x, y∈V is given by finding
the initial velocity of the rotation between the two complex lines Lx



Fig. 7. The original data set of 18 hand shapes.

Fig. 9. The geometric median shape (top row) from the hand database with 0, 2, 6, and
12 outliers included. The Fréchet mean shape (bottom row) using the same data.
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and Ly. Let πx yð Þ = x � hx; yi=jjxjj2 denote the projection of the vector y
onto x. Then the log map is given by

Logx yð Þ = θ � y−πx yð Þð Þ
jjy−πx yð Þjj ; θ = arccos

jhx; yij
jjxjj jjyjj: ð15Þ

Notice that we never explicitly project a shape ontoℂPk−2. This has the
effect that shapes computed via the exponential map (Eq. (14)) will
have the same orientation and scale as the base point x. Also, tangent
vectors computed via the log map (Eq. (15)) are valid only at the
particular representation x (and not at a rotated or scaled version of
x). This works nicely for our purposes and implies that the geometric
median shape resulting from Eq. (11) will have the same orientation
and scale as the initialization shape, m0.

To test the robustness of the geometric median in Kendall shape
space, we used the classic hand outlines from Cootes et al. (1995). This
data, shown in Fig. 7, consists of 18 hand shapes, each with 72 points.
We then generated a set of 12 ellipses as outliers (Fig. 8). Each ellipse
was generated as (a cos( k), b sin( k)), where a, b are two uniformly
random numbers in [0.5,1] and k=kπ/36, k=0,…, 71. We computed
the Fréchet mean and geometric median for the hand datawith 0, 2, 6,
and 12 outliers included, corresponding to 0%, 10%, 25%, and 40%
outliers, respectively. Both the mean and geometric median computa-
tions converge in below 15 iterations, running in less than a second for
each of the cases. The results are shown in Fig. 9. With enough outliers
the Fréchet mean is unrecognizable as a hand, while the geometric
median is very stable even with 40% outliers. To ensure that both the
Fréchet mean and the geometric median computations were not
caught in local minima, we initialized both algorithms with several
different data points, including several of the outlier shapes. In each
case the Fréchet mean and geometric median converged to the same
results as shown in Fig. 9.

Deformable images

We now present the application of the manifold geometric median
algorithm developed above for robust atlas estimation from a
Fig. 8. The 12 outlier shapes.
collection of grayscale images. To do this in a fashion that combines
geometric variability as well as intensity changes in the images, we
use themetamorphosis metric reviewed in Deformable images via the
metamorphosis section. The algorithms to compute the Fréchet mean
and the geometric median of a set of images Ii,i=1,…,n are slightly
different than in the above finite-dimensional examples. Rather than
computing exponential and log maps for the metamorphosis metric,
we compute a gradient descent on the entire energy functional and
optimize the atlas image simultaneously with the geodesic paths. We
begin with a description of the computation for the Fréchet mean
image, μ. We now have n metamorphoses (fti, gti), where Ii(t)=gt

i · ft
i has

boundary conditions I0i =μ and I1
i = Ii. In other words, each path starts at

the atlas image μ and ends at an input image. The Fréchet mean is
computed by minimizing the sum of geodesic energies, i.e.,

μ = argI min
i;vi

Xn
i = 1

U vit ; I
i
t

� �
; subject to Ii0 = I; I

i
1 = I

i: ð16Þ

Similarly, the geometric median image, m, is computed by
minimizing the sum of square root geodesic energies, i.e.,

m = argI min
I;vi

Xn
i = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U vit ; I

i
t

	 
q
; subject to Ii0 = I; I

i
1 = I

i: ð17Þ

Following Garcin and Younes (2005), we compute geodesics
directly using the discretized version of the energy functional U.
Fig. 10. 2D cross-sections from the input images for the 3D bullseye example. The
bottom right image is an outlier.



Fig. 11. The Fréchet mean of the bullseye images (left) and the geometric median (right),
both using the metamorphosis metric. Notice the mean is affected more by the outlier,
while the median retains the spherical shape of the main data.
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Denoting a discretized metamorphosis by It, t=1…,T, and vt, t=1,…T
−1, the energy of this path is given by

U I; vð Þ =
XT−1
t = 1

hLvt ; vti + 1
σ2 jjTvt It + 1−It jj2; ð18Þ

where TvI denotes trilinear interpolation of the transformed image
I(x+v(x)). The gradients of U with respect to both v and I are given by

∇vt U I; vð Þ = vt− 1
σ2 K Tvt It + 1−Itð ÞTvt∇It + 1½ �;

σ2∇It U I; vð Þ = It−Tvt It + 1 + TT
vt−1It−It−1

� �
;

where Tv
T denotes the adjoint of the trilinear interpolation operator

(see Garcin and Younes (2005) for details), and K=L−1. Finally, given a
discretized version of the Fréchet mean Eq. (16) and discretized paths
It
i,vt

i,i=1,…,n, we denote the total sum-of-square geodesic energies by

Eμ Ii; vi
� �

=
Xn
i = 1

U Ii; vi
� �

; such that Ii1 = μ:

The gradient of Eμ with respect to the Fréchet mean atlas, μ, is

∇μEμ Ii; vi
� �

=
1
σ2

Xn
i = 1

u−Tvi1 I
i
2

� �
:

Fig. 12. Midaxial slices from the four input 3D MR image
For computing the geometric median from the discretized version
of Eq. (17), the gradients for the individual paths are given by

∇vt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U I; vð Þ

p
=∇vt U I; vð Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U I; vð Þ

p
;

∇It

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U I; vð Þ

p
=∇It U I; vð Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U I; vð Þ

p
:

We denote the total discretized energy functional for the geometric
median by

Em Ii; vi
� �

=
Xn
i = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U Iivið Þ

q
; such that Ii1 =m:

Now, the gradient of Emwith respect to the geometric median atlas,m,
has the form

∇mEm Ii; vi
� �

=
Xn
i = 1

m−Tvi1 I
i
2

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hLv1; v1i + 1

σ2 jjTvi1 I
i
2−mk2

r

We first tested the geometric median atlas estimation using
synthesized 3D bullseye images, consisting of concentric spheres with
different grayscales. We created three spherical bullseye images with
varying radii. We then added a single outlier image that was a bullseye
with anisotropic aspect ratio. Slices from the input images are shown in
Fig. 10. Finally, we computed the geometric median and Fréchet mean
atlases under the metamorphosis metric as described in this section
(Fig.11). The Fréchetmean atlas is geometricallymore similar to the outlier,
i.e., it has an obvious oblong shape. However, the geometricmedian atlas is
able to better retain the spherical shape of the original bullseye data.

Finally, we tested the geometric median atlas estimation from a set
of 3DMR brain images. The input images were chosen from a database
containing MRA, T1-FLASH, T1-MPRAGE, and T2-weighted images
from 97 healthy adults ranging in age from 20 to 79 (Lorenzen et al.
2006). For this study we only utilized the T1-FLASH images. These
images were acquired at a spatial resolution of 1 mm×1 mm×1 mm
using a 3 T head-only scanner. The tissue exterior to the brain was
removed using a mask generated by a brain segmentation tool
described in Prastawa et al. (2004). This tool was also used for bias
correction. In the final preprocessing step, all of the images were
spatially aligned to an atlas using affine registration. We applied our
geometric median atlas estimation to a set of four MR images from the
database. The resulting atlas is shown on the right side of Fig. 12. In
this case the geometric median atlas was nearly identical to the
s (left). The resulting geometric median atlas (right).
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Fréchet mean atlas, most likely because there is no clear outlier in the
MR images. We expect the median atlas construction to be useful in
cases where there are gross anatomical outliers.

Conclusion and discussion

In this paper we extended the notion of the geometric median, a
robust estimator of centrality, to manifold-valued data. We proved
that the geometric median exists and is unique for any non positively
curved manifold and under certain conditions for positively curved
manifolds. Generalizing the Weiszfeld algorithm, we introduced a
procedure to find the Riemannian geometric median and proved that
it converged on positively curved manifolds. Applications to the 3D
rotation group, tensor manifolds, and planar shape spaces were
presented with comparisons to the Fréchet mean.

We expect the geometric median to be useful in several image
analysis applications. For instance, the geometric median could be
used to robustly train deformable shape models for image segmenta-
tion applications. In this application and in robust atlas construction
we believe the geometric median will have advantages to the Fréchet
meanwhen the data includes anatomical outliers due to misdiagnosis,
segmentation errors, or anatomical abnormalities. In diffusion tensor
imaging we envision the geometric median being used as a median
filter or for robust tensor splines (similar to Barmpoutis et al. (2007)).
This would preserve edges in the data at the interface of adjacent
tracts. The geometric median could also be used for along-tract
summary statistics for robust group comparisons (along the lines of
Corouge et al. (2006); Fletcher et al. (2007); Goodlett et al. (2008)).

Since the area of robust estimation on manifolds is largely
unexplored, there are several exciting opportunities for future work.
Least squares estimators of the spread of the data have been extended
to manifolds via tangent space covariances (Pennec, 2006) and
principal geodesic analysis (PGA) (Fletcher et al., 2003). Noting that
the median is an example of an L1 M-estimator, the techniques
presented in this paper can be applied to extend notions of robust
covariances and robust PCA to manifold-valued data. Other possible
applications of the Riemannian geometric median include robust
clustering on manifolds, filtering and segmentation of manifold-
valued images (e.g., images of tensor or directional data).
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Appendix

Here we outline the convexity properties of the Riemannian
distance function. Our argument follows along the same lines as
Karcher (1977), who proves the convexity of the squared distance
function. Let U be a convex subset of a manifoldM. Let γ : [a, b]Ä U be a
geodesic and consider the variation of geodesics from p∈U to γ given
by c(s, t)=Expp(s ·Logp(γ(t))). To prove convexity of the Riemannian
distance function,wemust show that the second derivative d2

dt2 d p;γ tð Þð Þ
is strictly positive. Denote c′=(d/ds)c(s, t) and :c = d=dtð Þc s; tð Þ. (Readers
familiar with Jacobi fields will recognize that :c is a family of Jacobi
fields.) The second derivative of the distance function is given by

d2

dt2
d p;γ tð Þð Þ = hċ 1; tð Þ; D=dsð Þ:c 1; tð Þi

d p;γ tð Þð Þ −
hċ 1; tð Þ; c0 1; tð Þi2

d p;γ tð Þð Þ3
: ð19Þ

When :c 1; tð Þ is tangential to γ(t), i.e., γ is a geodesic towards (or away
from) p we can easily see that d2

dt2 d p;γ tð Þð Þ = 0. Now let :c8 1; tð Þ be the
component of :c 1; tð Þ that is normal to γ(t). We use the following
result from Karcher (1977).

Lemma 1. If the sectional curvature of M is bounded above by ΔN0
and diam Uð Þbπ= 2

ffiffiffiffiffiffiffi
ΔÞ;p	

then h:c8 1; tð Þ; D=dsð Þc0 1; tð ÞiN0. If M has non
positive curvature (Δ≤0), then the result holds with no restriction on
the diameter of U.

Alongwith h:c8 1; tð Þ; c0 1; tð Þi = 0, Lemma 1 implies that d2
dt2 d p;γ tð Þð Þ

is strictly positive when Logγ(t)(p) is not tangential to γ(t).
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