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Abstract

The geometric median is a classic robust estimator of
centrality for data in Euclidean spaces. In this paper we
formulate the geometric median of data on a Riemannian
manifold as the minimizer of the sum of geodesic distances
to the data points. We prove existence and uniqueness of the
geometric median on manifolds with non-positive sectional
curvature and give sufficient conditions for uniqueness on
positively curved manifolds. Generalizing the Weiszfeld
procedure for finding the geometric median of Euclidean
data, we present an algorithm for computing the geometric
median on an arbitrary manifold. We show that this algo-
rithm converges to the unique solution when it exists. This
method produces a robust central point for data lying on a
manifold, and should have use in a variety of vision applica-
tions involving manifolds. We give examples of the geomet-
ric median computation and demonstrate its robustness for
three types of manifold data: the 3D rotation group, tensor
manifolds, and shape spaces.

1. Introduction
Riemannian geometry plays a central role in many com-

puter vision applications, in particular, the study of shape
variability. Recently there has been substantial interest in
the statistical characterization of data that are best mod-
eled as elements of a Riemannian manifold, rather than
as points in Euclidean space [14, 20, 28, 32]. In previ-
ous work [7, 14, 28], the notion of centrality of empirical
data was defined via the Fréchet mean [15], which was first
developed for manifold-valued data by Karcher [18]. Al-
though the mean is an obvious central representative, one
of its major drawbacks is its lack of robustness, i.e., it is
sensitive to outliers.

Robust statistical estimation in Euclidean spaces is now a
field in its own right, and numerous robust estimators exist.
However, no such robust estimators have been proposed for
data lying on a manifold. One of the most common robust
estimators of centrality in Euclidean spaces is the geomet-

ric median. Although the properties of this point have been
extensively studied since the time of Fermat, (this point is
often called the Fermat-Weber point), no generalization of
this estimator exists for manifold-valued data. In this pa-
per we extend the notion of geometric median to general
Riemannian manifolds, thus providing a robust statistical
estimator of centrality for manifold-valued data. We prove
some basic properties of the generalization and exemplify
its robustness for data on common manifolds encountered
in computer vision. In this paper we are particularly inter-
ested in the statistical characterization of shapes given an
ensemble of empirical measurements. Although the meth-
ods presented herein are quite general, for concreteness we
will focus on the following explicit examples: i) the space
of 3D rotations, ii) the space of positive-definite tensors, and
iii) the space of planar shapes.

2. Outliers, Robust Estimators And The Geo-
metric Median

Robust estimation has received considerable attention in
the computer vision literature (see [25, 33] for a review).
Several robust estimators proposed in the statistics litera-
ture, such as M-estimators and least median of squares [17],
have been used in computer vision. Other robust tech-
niques, such as the Hough transform and random sample
consensus (RANSAC) [12], have been developed within
computer vision. Applications of robust estimators include
image segmentation, image feature detection, surface ge-
ometry from range data, point correspondences and funda-
mental matrix estimation, among others.

Outliers in data can throw off estimates of centrality
based on the mean. One possible solution to this prob-
lem is outlier deletion, but removing outliers often merely
promotes other data points to outlier status, forcing a large
number of deletions before a reliable low-variance estimate
can be found. The theory of robust estimators formalizes
the idea that no individual point should affect measures of
central tendency. The measure of robustness of an estima-
tor is the breakdown point; formally, it is the fraction of
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the data that can be “dragged to infinity” (i.e., completely
corrupted) without affecting the boundedness of the estima-
tor. Clearly, the mean, whether it be a standard centroid or
the more general Fréchet mean, has a breakdown point of
0, since as any single data point is dragged to infinity, the
mean will grow without bound.

The theory of robust estimation has led to the devel-
opment of numerous robust estimators, of which the L1-
estimator, also known as the geometric median, is one of the
best known. Given a set of points {xi, i = 1, · · · , n} ∈ Rd,
with the usual Euclidean norm ‖x‖, the L1-estimator is de-
fined as the point m ∈ Rd minimizing

∑n
i=1 ‖m − xi‖.

It can be shown [24] that this estimator has a breakdown
point of 0.5, which means that half of the data needs to be
corrupted in order to corrupt this estimator. In Figure 1 we
illustrate this by showing how the geometric median and the
mean are displaced in the presence of a few outliers.

Figure 1. The geometric median (marked with a �) and mean
(marked with a ×) for a collection of points in the plane. Notice
how the few outliers at the top right of the picture have forced the
mean away from the points, whereas the median remains centrally
located.

The existence and uniqueness of the the median in Rd

follows directly from the convexity of the distance function.
In one dimension, the geometric median is the point that di-
vides the point set into equal halves on either side (if n is
odd) and is any point on the line segment connecting the two
middle points (if n is even). In general however, comput-
ing the geometric median is difficult; Bajaj has shown that
the solution cannot be expressed using radicals (arithmetic
operations, and kth roots) [1].

There are two main approaches to computing the ge-
ometric median of a collection of points in Rd. One
way is to compute an approximate median m̃ such that∑n

i=1 ‖m̃−xi‖ is at most a (1+ε)-factor larger than cost of

the optimal median. This can be computed using the ellip-
soid method [8]. A more efficient algorithm achieving the
same result is due to Bose et al. [6].

These algorithms do not generalize beyond Eu-
clidean spaces. A more general iterative algorithm
due to Weiszfeld [34] and later improved by Kuhn and
Kuenne [22] and Ostresh [27] converges to the optimal so-
lution in Euclidean spaces [21], and was subsequently been
generalized to Banach spaces by Eckhardt [11].

3. The Riemannian Geometric Median
Let M be a Riemannian manifold. Given points

x1, . . . , xN ∈ M and corresponding positive real weights
wi, . . . , wN , with

∑
i wi = 1, define the weighted sum-of-

distances function f(x) =
∑

i wid(x, xi), where d is the
Riemannian distance function on M . Throughout, we will
assume that the xi lie in a convex set U ⊂ M , i.e., any two
points in U are connected by a unique shortest geodesic ly-
ing entirely in U . We define the weighted geometric me-
dian, m, as the minimizer of f , i.e.,

m = arg min
x∈M

N∑
i

wid(x, xi). (1)

When all the weights are equal, wi = 1/N , we call m sim-
ply the geometric median. In contrast, the Fréchet mean, or
Karcher mean [18], of a set of points on a Riemannian man-
ifold is defined, via the generalization of the least squares
principle in Euclidean spaces, as the minimizer of the sum-
of-squared distances function,

µ = arg min
x∈M

N∑
i

wid
2(x, xi). (2)

We begin our exploration of the geometric median with
a discussion of the Riemannian distance function. Given a
point p ∈ M and a tangent vector v ∈ TpM , where TpM
is the tangent space of M at p, there is a unique geodesic,
γ : [0, 1] → M , starting at p with initial velocity v. The Rie-
mannian exponential map, Expp : TpM → M , maps the
vector v to the endpoint of this geodesic, i.e., Expp(v) =
γ(1). The exponential map is locally diffeomorphic onto
a neighborhood of p. Let V (p) be the largest such neigh-
borhood. Then within V (p) the exponential map has an
inverse, the Riemannian log map, Logp : V (p) → TpM .
For any point q ∈ V (p) the Riemannian distance func-
tion is given by d(p, q) = ‖Logp(q)‖. For a fixed point
p ∈ M , the gradient of the Riemannian distance function is
∇xd(p, x) = −Logx(p)/‖Logx(p)‖ for x ∈ V (p). Notice
that this is a unit vector at x, pointing away from p (compare
to the Euclidean distance function).

The diameter of U , denoted diam(U), is the maximal
distance between any two points in U . Using the convexity



properties of the Riemannian distance function (see the Ap-
pendix for more details), we have the following existence
and uniqueness result for the geometric median.

Theorem 1. The weighted geometric median defined by (1)
exists and is unique if (a) the sectional curvatures of M
are nonpositive, or if (b) the sectional curvatures of M are
bounded above by ∆ > 0 and diam(U) < π/(2

√
∆).

Proof. Let γ : [a, b] → U be a geodesic. By the arguments
in the Appendix, the distance function to any xi is convex,
that is, (d2/dt2)d(xi, γ(t)) ≥ 0. Since the weighted sum-
of-distances function f(x) is a convex combination of such
functions, it is also convex. Furthermore, since the xi do
not all lie on the same geodesic, the vector Logγ(t)(xk) is
not tangential to γ(t) for at least one k ∈ [1, N ]. Therefore,
by Lemma 1 we have (d2/dt2)d(xk, γ(t)) > 0, and f(x) is
a strictly convex function, which implies that the minimiza-
tion (1) has a unique solution.

An isometry of a manifold M is a diffeomorphism φ
that preserves the Riemannian distance function, that is,
d(x, y) = d(φ(x), φ(y)) for all x, y ∈ M . The set of all
isometries forms a Lie group, called the isometry group. It
is clear from the definition of the geometric median (1) that
the geometric median is invariant under the isometry group
of M . In other words, if m is the geometric median of {xi}
and φ is an isometry, then φ(m) is the geometric median
of {φ(xi)}. This is a property that the geometric median
shares with the Fréchet mean.

4. The Weiszfeld Algorithm for Manifolds
For Euclidean data the geometric median can be com-

puted by an algorithm introduced by Weiszfeld [34] and
later improved by Kuhn and Kuenne [22] and Ostresh [27].
The procedure iteratively updates the estimate mk of the ge-
ometric median using essentially a steepest descent on the
weighted sum-of-distances function, f . For a point x ∈ Rn

not equal to any xi, the gradient of f exists and is given by

∇f(x) =
N∑

i=1

wi(x− xi)/‖x− xi‖. (3)

The gradient of f(x) is not defined at the data points x = xi.
The iteration for computing the geometric median due to
Ostresh is

mk+1 = mk − αGk,

Gk =
∑
i∈Ik

wixi

‖xi −mk‖
·
(∑

i∈Ik

wi

‖xi −mk‖

)−1

, (4)

where Ik = {i ∈ [1, N ] : mk 6= xi}, and α > 0 is a step
size. Notice if the current estimate mk is located at a data

point xi, then this term is left out of the summation because
the distance function is singular at that point. Ostresh [27]
proves that the iteration in (4) converges to the unique ge-
ometric median for 0 ≤ α ≤ 2 and when the points are
not all colinear. This follows from the fact that f is strictly
convex and (4) is a contraction, that is, f(mk+1) < f(mk)
if mk is not a fixed point.

Now for a general Riemannian manifold M , the gradient
of the Riemannian sum-of-distances function is given by

∇f(x) = −
N∑

i=1

wi Logx(xi)/d(x, xi), (5)

where again we require that x ∈ U is not one of the data
points xi. This leads to a natural steepest descent iteration
to find the Riemannian geometric median, analogous to (4),

mk+1 = Expmk
(αvk),

vk =
∑
i∈Ik

wi Logmk
(xi)

d(mk, xi)
·
(∑

i∈Ik

wi

d(mk, xi)

)−1

. (6)

The following result for positively curved manifolds
shows that this procedure converges to the unique weighted
geometric median when it exists.

Theorem 2. If the sectional curvatures of M are nonnega-
tive and the conditions (b) of Theorem 1 are satisfied, then
limk→∞mk = m for 0 ≤ α ≤ 2.

Proof. We use the fact that the Euclidean Weiszfeld itera-
tion, given by (4), is a contraction. First, define f̃(v) =∑

i wi‖v − Logmk
(xi)‖, i.e., f̃ is the weighted sum-of-

distances function for the log-mapped data, using distances
in Tmk

M induced by the Riemannian norm. Notice that the
tangent vector vk defined in (6) is exactly the same com-
putation as the Euclidean Weiszfeld iteration (4), replacing
each xi with the tangent vector Logmk

(xi). Therefore, we
have the contraction property f̃(αvk) < f̃(0). However,
geodesics on positively curved manifolds converge, which
means that distances between two points on the manifold
are closer than their images under the log map. (This is
a direct consequence of the Toponogov Comparison The-
orem, see [9]). In other words, d(Expmk

(αvk), xi) <
‖αvk − Logmk

(xi)‖. This implies that f(mk+1) =
f(Expmk

(αvk)) < f̃(αvk) < f̃(0) = f(mk). (The last
equality follows from ‖Logmk

(xi)‖ = d(mk, xi).) There-
fore, (6) is a contraction, which combined with f being
strictly convex, proves that it converges to the unique so-
lution m.

We believe that a similar convergence result will hold for
negatively curved manifolds as well (with an appropriately
chosen step size α). Our experiments presented in the next



section for tensor data (Section 5.2) support this belief. The
tensor manifold has nonpositive curvature, and we found the
procedure in (6) converged for α = 1. Proving convergence
in this case is an area of future work.

5. Applications

In this section we present results of the Riemannian ge-
ometric median computation on 3D rotations, symmetric
positive-definite tensors, and planar shapes. For each ex-
ample the geometric median is computed using the iteration
presented in Section 4, which only requires computation of
the Riemannian exponential and log maps. Therefore, the
procedure is applicable to a wide class of manifolds used in
computer vision beyond those presented here. The Fréchet
mean is also computed for comparison using a gradient de-
scent algorithm as described in [28] and elsewhere. It is
important to note that unlike the Euclidean case where the
mean can be computed in closed-form, both the Fréchet
mean and geometric median computations for general man-
ifolds are iterative, and we did not find any appreciable dif-
ference in the computation times in the examples described
below.

5.1. Rotations

We represent 3D rotations as the unit quaternions, H1. A
quaternion is denoted as q = (a, v), where a is the “real”
component and v = bi + cj + dk. Geodesics in the ro-
tation group are given simply by constant speed rotations
about a fixed axis. Let e = (1, 0) be the identity quater-
nion. The tangent space TeH1 is the vector space of quater-
nions of the form (0, v). The tangent space at an arbitrary
point q ∈ H1 is given by right multiplication of TeH1 by
q. The Riemannian exponential map is Expq((0, v) · q) =
(cos(θ/2), v · sin(θ/2)/θ) · q, where θ = ‖v‖. The log
map is given by Logq((a, v) · q) = (0, θv/‖v‖) · q, where
θ = 2arccos(a).

To demonstrate the geometric median computations for
3D rotations, we generated a random collection of 20
quaternions. First, random tangent vectors were sampled
from an isotropic Gaussian distribution with µ = 0, σ =
π/30 in the tangent space at the identity. Next, the expo-
nential map was applied to these random tangent vectors to
produce random elements of H1, centered about the iden-
tity. The same procedure was repeated to generate sets of 5,
10, and 15 random outliers, whose mean now was rotated
by 90 degrees from the original set. A sample of 10 of the
original random rotations are displayed as 3D frames in the
top-left row of Figure 2 along with 10 of the outliers in the
bottom-left row.

We computed both the Fréchet mean and the geometric
median of the original rotation dataset with 0, 5, 10, and 15
outliers included. This corresponds to an outlier percentage

of 0%, 20%, 33%, and 43%, respectively. The geometric
median was computed using the iteration in (6). The Fréchet
mean was computed using the gradient descent algorithm
described in [7]. Both algorithms converged in under 10 it-
erations in a fraction of a second for all cases. The results
are shown in the right column of Figure 2. The geometric
median remains relatively stable even up to an addition of
15 outliers. In contrast, the Fréchet mean is dragged notice-
ably towards the outlier set.

5.2. Tensors

Positive definite symmetric matrices, or tensors, have a
wide variety of uses in computer vision and image analy-
sis, including texture analysis, optical flow, image segmen-
tation, and neuroimage analysis. The space of positive defi-
nite symmetric tensors has a natural structure as a Rieman-
nian manifold. Manifold techniques have successfully been
used in a variety of applications involving tensors, which
we briefly review now.

Diffusion tensor magnetic resonance imaging (DT-MRI)
[2] gives clinicians the power to image in vivo the struc-
ture of white matter fibers in the brain. A 3D diffusion ten-
sor models the covariance of the Brownian motion of wa-
ter at a voxel, and as such is required to be a 3 × 3, sym-
metric, positive-definite matrix. Recent work [3, 13, 29]
has focused on Riemannian methods for statistical analysis
(Fréchet means and variability) and image processing of dif-
fusion tensor data. The structure tensor [4] is a measure of
edge strength and orientation in images and has found use
in texture analysis and optical flow. Recently, Rathi et al.
[30] have used the Riemannian structure of the tensor space
for segmenting images. Finally, the Riemannian structure
of tensor space has also found use in the analysis of struc-
tural differences in the brain, via tensor based morphometry
[23].

We briefly review the differential geometry of tensor
manifolds, which is covered in more detail in [3, 13, 29].
Recall that a real n × n matrix A is symmetric if A = AT

and positive-definite if xT Ax > 0 for all nonzero x ∈ Rn.
We denote the space of all n×n symmetric, positive-definite
matrices as PD(n). Diffusion tensors are thus elements of
PD(3), and structure tensors for 2D images are elements
of PD(2). The tangent space of PD(n) at any point can
be identified with the space of n × n symmetric matrices,
Sym(n). Given a point p ∈ PD(n) and a tangent vector X ,
the Riemannian exponential map is given by

Expp(X) = p
1
2 exp(Σ)p

1
2 T , Σ = p−

1
2 Xp−

1
2 T , (7)

where exp(Σ) is the matrix exponential and can be com-
puted by exponentiating the eigenvalues of Σ, since it is
symmetric. Likewise, the Riemannian log map between two



0 outliers 5 outliers 10 outliers 15 outliers

Figure 2. Comparison of the geometric median and Fréchet mean for 3D rotations. Eight rotations from the original dataset (top left). Eight
rotations from the outlier set (bottom left). The geometric median results with 0, 5, 10, and 15 outliers (top right). The Fréchet mean results
for the same data (bottom right).

0 outliers 5 outliers 10 outliers 15 outliers

Figure 3. Comparison of the geometric median and Fréchet mean for 3D tensors. Five tensors from the original dataset (top left). Five
tensors from the outlier set (bottom left). The geometric median results with 0, 5, 10, and 15 outliers (top right). The Fréchet mean results
for the same data (bottom right).

points p, q ∈ PD(n) is given by

Logp(q) = p
1
2 log(Λ)p

1
2 T , Λ = p−

1
2 qp−

1
2 T , (8)

where log(Λ) is the matrix logarithm, computed by taking
the log of the eigenvalues of Λ, which is well defined in the
case of positive definite symmetric matrices.

As in the rotations example, we generated 20 random
tensors as the image under the exponential map of Gaussian
random tangent vectors. The mean was a tensor with eigen-
values λ1 = 4 and λ2 = λ3 = 1. Next, sets of 5, 10, and 15
outliers were randomly generated in the same fashion with a
mean tensor perpendicular to the original group. The stan-
dard deviation of both groups was σ = 0.2. The Fréchet
mean and geometric median were computed for the tensor
dataset including 0, 5, 10, and 15 outliers, and the results

are shown in Figure 3. Again, convergence of the geometric
median took less than 10 iterations in a fraction of a second.
The tensors in Figure 3 are colored based on the orienta-
tion of the major eigenvector (green = original orientation,
blue = outlier orientation) and with color modulated by the
fractional anisotropy [2], i.e., more anisotropic tensors are
more brightly colored. The geometric median retains the
directionality and anisotropy of the original data, unlike the
mean, which becomes more isotropic in the presence of out-
liers. This situation is common in DT-MRI, where adjacent
white matter tracts may pass perpendicular to each other. In
such cases, the geometric median would be a more appro-
priate local statistic than the mean to avoid contamination
from tensors of a neighboring tract.



Figure 4. The original dataset of 18 hand shapes.

Figure 5. The 12 outlier shapes.

5.3. Planar Shapes

One area of computer vision that finds the most
widespread use of Riemannian geometry is the analysis
of shape. Dating back to the groundbreaking work of
Kendall [19] and Bookstein [5], modern shape analysis is
concerned with the geometry of objects that is invariant to
rotation, translation, and scale. This typically results in rep-
resenting an object’s shape as a point in a nonlinear Rieman-
nian manifold, or shape space. Recently, there has been a
great amount of interest in Riemannian shape analysis, and
several shape spaces for 2D and 3D objects have been pro-
posed [14, 16, 20, 26, 31, 35].

An elementary tool in shape analysis is the computation
of a mean shape, which is useful as a template, or repre-
sentative of a population. The mean shape is important in
image segmentation using deformable models [10], shape
clustering, and retrieval from shape databases [32]. The
mean shape is, however, susceptible to influence from out-
liers, which can be a concern for databases of shapes ex-
tracted from images. We now present an example showing
the robustness of the geometric median on shape manifolds.
We chose to use the Kendall shape space as an example,
but the geometric median computation is applicable to other
shape spaces as well.

We first provide some preliminary details of Kendall’s
shape space [19]. A configuration of k points in the 2D
plane is considered as a complex k-vector, z ∈ Ck. Remov-

ing translation, by requiring the centroid to be zero, projects
this point to the linear complex subspace V = {z ∈ Ck :∑

zi = 0}, which is equivalent to the space Ck−1. Next,
points in this subspace are deemed equivalent if they are
a rotation and scaling of each other, which can be repre-
sented as multiplication by a complex number, ρeiθ, where
ρ is the scaling factor and θ is the rotation angle. The set
of such equivalence classes forms the complex projective
space, CP k−2. As Kendall points out, there is no unique
way to identify a shape with a specific point in complex
projective space. However, if we consider that the geomet-
ric median only require computation of exponential and log
maps, we can compute these mappings relative to the base
point, which requires no explicit identification of a shape
with CP k−2.

Thus, we think of a centered shape x ∈ V as representing
the complex line Lx = {z · x : z ∈ C\{0} }, i.e., Lx

consists of all point configurations with the same shape as
x. A tangent vector at Lx ∈ V is a complex vector, v ∈
V , such that 〈x, v〉 = 0. The exponential map is given
by rotating (within V ) the complex line Lx by the initial
velocity v, that is,

Expx(v) = cos θ · x +
‖x‖ sin θ

θ
· v, θ = ‖v‖. (9)

Likewise, the log map between two shapes x, y ∈ V is
given by finding the initial velocity of the rotation be-
tween the two complex lines Lx and Ly . Let πx(y) =
x · 〈x, y〉/‖x‖2 denote the projection of the vector y onto
x. Then the log map is given by

Logx(y) =
θ · (y − πx(y))
‖y − πx(y)‖

, θ = arccos
|〈x, y〉|
‖x‖‖y‖

. (10)

Notice that we never explicitly project a shape onto CP k−2.
This has the effect that shapes computed via the exponential
map (9) will have the same orientation and scale as the base
point x. Also, tangent vectors computed via the log map
(10) are valid only at the particular representation x (and not
at a rotated or scaled version of x). This works nicely for
our purposes and implies that the geometric median shape
resulting from (6) will have the same orientation and scale
as the intialization shape, m0.

To test the robustness of the geometric median in
Kendall shape space, we used the classic hand outlines
from [10]. This data, shown in Figure 4, consists of 18
hand shapes, each with 72 points. We then generated a set
of 12 ellipses as outliers. Each ellipse was generated as
(a cos(θk), b sin(θk), where a, b are two uniformly random
numbers in [0.5, 1] and θk = kπ/36, k = 0, . . . , 71. We
computed the Fréchet mean and geometric median for the
hand data with 0, 2, 6, and 12 outliers included, correspond-
ing to 0%, 10%, 25%, and 40% outliers, respectively. Both
the mean and geometric median computations converge in



0 outliers 2 outliers 6 outliers 12 outliers

Figure 6. The gometric median shape (top row) from the hand
database with 0, 2, 6, and 12 outliers included. The Fréchet mean
shape (bottom row) using the same data.

under 15 iterations, running in less than a second for each of
the cases. The results are shown in Figure 6. With enough
outliers the Fréchet mean is unrecognizable as a hand, while
the geometric median is very stable even with 40% outliers.
To ensure that both the Fréchet mean and the geometric me-
dian computations were not caught in local minima, we ini-
tialized both algorithms with several different data points,
including several of the outlier shapes. In each case the
Fréchet mean and geometric median converged to the same
results as shown in Figure 6.

6. Conclusion and Discussion

In this paper we extended the notion of the geometric
median, a robust estimator of centrality, to manifold-valued
data. We proved that the geometric median exists and is
unique for any nonpositively curved manifold and under
certain conditions for positively curved manifolds. Gen-
eralizing the Weiszfeld algorithm, we introduced a proce-
dure to find the Riemannian geometric median and proved
that it converged on positively curved manifolds. Applica-
tions to the 3D rotation group, tensor manifolds, and pla-
nar shape spaces were presented with comparisons to the
Fréchet mean.

Since the area of robust estimation on manifolds is
largely unexplored, there are several exciting opportuni-
ties for future work. Least squares estimators of the
spread of the data have been extended to manifolds via tan-
gent space covariances [28] and principal geodesic analysis
(PGA) [14]. Noting that the median is an example of an L1

M-estimator, the techniques presented in this paper can be
applied to extend notions of robust covariances and robust
PCA to manifold-valued data. Other possible applications
of the Riemannian geometric median include robust cluster-
ing on manifolds, filtering and segmentation of manifold-
valued images (e.g., images of tensor or directional data).

Appendix
Here we outline the convexity properties of the Rieman-

nian distance function. Our argument follows along the
same lines as Karcher [18], who proves the convexity of
the squared distance function. Let U be a convex subset of
a manifold M . Let γ : [a, b] → U be a geodesic and con-
sider the variation of geodesics from p ∈ U to γ given by
c(s, t) = Expp(s · Logp(γ(t))). Denote c′ = (d/ds)c(s, t)
and ċ = (d/dt)c(s, t). (Readers familiar with Jacobi fields
will recognize that ċ is a family of Jacobi fields.) The sec-
ond derivative of the distance function is given by

d2

dt2
d(p, γ(t)) =

〈ċ(1, t), (D/ds)ċ(1, t)〉
d(p, γ(t))

− 〈ċ(1, t), c′(1, t)〉2

d(p, γ(t))3
. (11)

When ċ(1, t) is tangential to γ(t), i.e., γ is a geodesic
towards (or away from) p, we can easily see that
d2

dt2 d(p, γ(t)) = 0. Now let ċ⊥(1, t) be the component of
ċ(1, t) that is normal to γ(t). We use the following result
from [18].

Lemma 1. If the sectional curvature of M is bounded
above by ∆ > 0 and diam(U) < π/(2

√
∆), then

〈ċ⊥(1, t), (D/ds)c′(1, t)〉 > 0. If M has nonpositive cur-
vature (∆ ≤ 0), then the result holds with no restriction on
the diameter of U .

Along with 〈ċ⊥(1, t), c′(1, t)〉 = 0, Lemma 1 implies
that d2

dt2 d(p, γ(t)) is strictly positive when Logγ(t)(p) is not
tangential to γ(t).

References
[1] C. Bajaj. The algebraic degree of geometric optimization

problems. Discrete and Computational Geometry, 3:177–
191, 1988.

[2] P. J. Basser, J. Mattiello, and D. L. Bihan. MR diffusion ten-
sor spectroscopy and imaging. Biophysics Journal, 66:259–
267, 1994.

[3] P. Batchelor, M. Moakher, D. Atkinson, F. Calamante, and
A. Connelly. A rigorous framework for diffusion tensor cal-
culus. Magnetic Resonance in Medicine, 53:221–225, 2005.

[4] J. Bigun, G. Granlund, and J. Wiklund. Multidimensional
orientation estimation with application to texture analysis
and optical flow. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13(8):775–790, 1991.

[5] F. L. Bookstein. Size and shape spaces for landmark data
in two dimensions (with discussion). Statistical Science,
1(2):181–242, 1986.

[6] P. Bose, A. Maheshwari, and P. Morin. Fast approximations
for sums of distances, clustering and the fermat–weber prob-
lem. Comput. Geom. Theory Appl., 24(3):135–146, 2003.



[7] S. R. Buss and J. P. Fillmore. Spherical averages and appli-
cations to spherical splines and interpolation. ACM Transac-
tions on Graphics, 20(2):95–126, 2001.

[8] R. Chandrasekaran and A. Tamir. Algebraic optimization:
The Fermat-Weber problem. Mathematical Programming,
46:219–224, 1990.

[9] J. Cheeger and D. G. Ebin. Comparison Theorems in Rie-
mannian Geometry. North-Holland, 1975.

[10] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Ac-
tive shape models – their training and application. Comp.
Vision and Image Understanding, 61(1):38–59, 1995.

[11] U. Eckhardt. Weber’s problem and Weiszfeld’s algorithm in
general spaces. Mathematical Programming, 18:186–196,
1980.

[12] M. A. Fischler and R. C. Bolles. Random sample consen-
sus: a paradigm for model fitting with applications to image
analysis and automated cartography. Communications of the
ACM, 24(6):381–395, 1981.

[13] P. T. Fletcher and S. Joshi. Principal geodesic analysis on
symmetric spaces: statistics of diffusion tensors. In Proceed-
ings of ECCV Workshop on Computer Vision Approaches to
Medical Image Analysis, 2004.

[14] P. T. Fletcher, C. Lu, and S. Joshi. Statistics of shape via prin-
cipal geodesic analysis on Lie groups. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 95–101, 2003.
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