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ABSTRACT 
 

While we have previously reported on multiscale segmen-
tation of single-figure anatomic objects from medical im-
ages by deformable m-rep models, here we report on a 
method of segmentation of multiple geometrically related 
single-figure objects from a medical image. Inter-object 
geometric effects within segmentation of structures in the 
male pelvis from CT in the planning of radiation therapy 
of the prostate will be illustrated. Given a model in which 
each object is formed from a mesh of medial atoms, the 
method adds an object-complex similarity transformation 
stage ahead of the figural, medial atom, and boundary 
deformation stages of model transformation. The final 
three stages reward geometric interrelations among ob-
jects that occur in the model, according to the object-
intrinsic coordinate systems provided by m-reps.  
 
 
 

1. INTRODUCTION & REVIEW OF DEFORM-
ABLE M-REP SEGMENTATION OF SINGLE-

FIGURE OBJECTS 
 
In previous papers [3, 5] we have described a representa-
tion for 3D objects called m-reps. An m-rep for a generic 
figure is a 2-manifold of medial atoms (Fig. 1). An inte-
rior medial atom is a medial position at which two vectors 
(called port and starboard sails) of equal length r share a 
tail, and a mesh-edge medial atom has an additional sail 
that bisects the other two sails and is of length greater 
than or equal to r. In the representation used in this paper 
the medial manifold is sampled into a quad-mesh. This 
medial representation implies (as opposed to being im-
plied by) a boundary that is incident to and orthogonal to 
the sail tips for each sail and at the bisector vector tip. The 
locus of bisector tips for sheet-edge medial atoms forms 
the crest cycling the boundary of the figure.  

The two coordinates (u,v) along and across the mani-
fold provide an object-intrinsic along-figural parametriza-
tion, and the along-sail directions provide a corresponding 
cross-figural coordinate τ, measuring the signed fractional 
distance from the boundary to the medial locus by taking 
it to be zero at the medially implied boundary and nega-
tive inside. All of these coordinates measure distance in 
multiples of the figural width, r. The around-crest figural 

coordinate t designates, by its value ±1,  on which side of 
the medial locus a point is. Around the crest as the point 
moves from one medial side to the other, t passes con-
tinuously from +1, through 0 at the crest, to –1. Thus any 
point in 3-space can be indicated by its object-intrinsic 
(figural) coordinates (u,v,t,τ). 

In these same papers we have shown how an effec-
tive multiscale method of segmentation by deformable 
models has been constructed based on m-rep models. In 
this method at each of successively smaller object-related 
scale levels an objective function summing geometric 
typicality and geometry-to-image match is optimized. At 
each scale level the geometric typicality for a particular 
geometric primitive at that scale level is the sum of two 
terms.  The first term measures, by τ 2  averaged over the 
medially implied boundary, the relationship between that 
primitive and its value provided by the next larger scale 
level. The second term measures the relationships be-
tween that geometric primitive and its value as predicted 
by the geometric primitives that immediately neighbor it 
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Fig. 1.  Top: an m-rep for a hippocampus, viewed from two
directions, with figural coordinates indicated. Each ball with
two line segment sails forms a medial atom. Shown is a quad-
mesh of samples of the continuous 2-manifold of medial at-
oms. Center: an internal medial atom and a sheet-edge medial
atom, each with their implied boundaries and with figural co-
ordinates indicated. Bottom: The boundary implied by the m-
rep, viewed from the two directions. 



at that scale. The geometry-to-image match is measured at 
positions affected by that geometric primitive and with 
apertures that are proportional to the local figural width. 
The positions at which the match is measured are in ob-
ject-intrinsic coordinates chosen at modeling time, typi-
cally in a collar about the medially implied boundary des-
ignated by a threshold on |τ|. 

In the model deformation  
1) the largest scale level is the object, in those papers 

limited to a single figure (so in this paper it is called 
“the figural stage”), and the figural transformation at 
that scale level is limited to a similarity transform 
composed with a figural elongation.  

2) at the next smaller scale level each medial atom, in 
succession, is optimally transformed in its 8 first-
order parameters: medial position, 3D orientation, 
figural width, and figural object angle; and neighbors 
are the up to 4 adjacent medial atoms. The necessary 
neighbor prediction can take place since each atom 
can be described, according to the model, in the in-
trinsic coordinates of a neighboring atom. 

3) at the smallest scale level, finely spaced boundary 
tiling vertices implied by the m-rep are transformed 
by an optimal displacement along the medially im-
plied normal. Neighbor boundary vertices predict the 
vertex in question to have the same displacement as 
they had. The boundary tiling is produced using the 
subdivision method of Thall [7]. 

 
This paper describes the extension of this method to a 

larger object-related scale level, that of the multi-object 
complex, for single figure objects without overlap. We 
show how the m-rep representation allows the location of 
one figure in the object-intrinsic coordinate system of a 
neighboring figure. This can be used to give predictions 
of an object to be transformed by a neighboring object as 
well as to prevent inter-object penetration when an object 
is being transformed at whichever scale level. 

The remainder of this paper begins with a section de-
scribing the segmentation strategy for multi-object com-
plexes followed by a section on the representation of in-
ter-object geometry for single figure objects. These are 
followed by a section on results to date in regard to inter-
object geometric effects within multi-object segmentation 
by deformable m-reps. We close with a discussion. 

 
2. SEGMENTATION STRATEGY FOR MULTI-

OBJECT COMPLEXES 
 
The segmentation strategy described above needs to be 
augmented in two ways. First, we add a multi-object scale 
level 0 at the next larger scale above the three scale levels 
above. At this scale level a similarity transform for the 
whole object complex is chosen by optimization of an 
objective function that is the same as that used at the sin-
gle-figure scale level, except that the boundaries and 

boundary collars used in the geometric typicality and ge-
ometry-to-image match terms, respectively, are computed 
from all objects’ boundaries in the complex and the scale 
of the image interrogation is appropriately increased. Sec-
ond, the figural scale level followed by the medial atom 
scale level is applied for the objects in succession. Each 
object is placed in an optimal position relative to that pre-
dicted by nearby, already placed objects, as measured by 
the value shift2 described below. In the subsequent opti-
mization of the object at the figural and medial atom 
stages, as at the smaller scale levels the geometric typical-
ity function for each object contains a term, also described 
below, reflecting the relation with neighboring objects. 
The order in which the objects are transformed is desig-
nated during model building, in decreasing order of the 
strength (contrast, low variability) of the image data por-
traying the objects.  

For each object to be transformed (OT), any of the 
objects that have already been transformed can provide 
geometric information relevant to the proper placement of 
the OT. Normally these are taken to be the nearby, or 
even abutting, objects. Any such object is designated at 
model building time as a neighbor object of the OT. The 
desire is that the OT stay in close to the same relationship 
in inter-object coordinates to each neighbor as it is in the 
model and that it not interpenetrate the neighbor, or at 
least not interpenetrate by an amount that is larger than 
can be corrected at the following smaller scale levels. As 
described in section 3, the figural coordinate systems al-
low the definition of the measure for disagreement, shift2, 
from each neighbor’s prediction; this measure is averaged 
over all predicting objects. The figural coordinate system 
also allows the definition of a measure for interpenetra-
tion, and this measure is added to the prediction dis-
agreement measure to produce the inter-object neighbors 
term used in the geometric typicality first when the OT is 
first similarity transformed from its neighbor-predicted 
position and then when its medial atoms are transformed. 

We will not show results of the boundary scale level 
in this paper, but suffice it to say, interpenetration must 
also be avoided at this stage. 
 

3. INTER-OBJECT GEOMETRY 
 
The inter-object neighbors term (Fig. 2), is the average, 
over the neighbor objects, Nk(OT), of –Diff(OT, Nk(OT)),  
which measures the geometric relation between the OT 
and that neighbor object. Diff(OT, Nk(OT)) is computed 
(Fig. 2) as the sum of a term measuring shifts of the OT 
boundary from positions predicted by the neighbor and an 
interpenetration term f(τ) that is near zero if positions on 
the medially implied boundary of the OT fall into posi-
tions of the neighbor that have positive τ in the neighbor’s 
figural coordinates, i.e., are outside its implied boundary, 
and rises to a very large value to the extent that the any 
position on the OT’s boundary has negative τ in the 
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Fig. 3. Left: Shown in grey on the lighter bladder OT is the
boundary section of the OT that is governed by the left pubic
bone, shown in white. The right pubic bone, which also governs
the bladder, is shown in wireframe. Right pair: Model of male
pelvis in front and side views: pubic bones (white), bladder
Fig. 2. The neighbor-to-object to be transformed difference 
neighbor’s figural coordinates, i.e., is inside its implied 
boundary. The neighbor prediction terms involves the 
shift d of each selected OT boundary point from its posi-
tion predicted from Nk(OT) and r, the medial radius asso-
ciated with that boundary point in the model of Nk(OT). 

hen the neighbor prediction term is (d/r)2 averaged over 
 section of the OT boundary selected at model building 
ime. 

This model building includes, for each OT and for 
ach governing neighbor Nk(OT), selecting a boundary 
ection of OT to be governed. These points, whose posi-
ions are taken to determine the inter-object geometry, are 
hosen as all OT boundary points within a user-chosen |τ| 
hreshold from Nk(OT) (Fig.3), with the region being cho-

sen indicated on an interactive display. 
For each of the selected OT boundary points, that 

point’s figural coordinates (u,v,t)OT  in the OT coordinate 
system and that point’s figural coordinates (u,v,t,τ)k in the 

overning (neighbor) object’s coordinate system are re-
orded; these latter coordinates will be used as the predic-
or of the boundary point (u,v,t)OT after object k has been 

transformed. These predictors can be expected to be good 
only within about 2r from the surface of OT and within its 
external focal surfaces. 

During the transformation of the OT during segmen-
tation, for each selected boundary point the Euclidean 
coordinates (ξ, η, ζ) are extracted for each boundary fig-
ural coordinate (u,v,t)OT. For each such point we find the 
predicted position (x,y,z) corresponding to the neighbor’s 
(u,v,t,τ)k, and we measure the disagreement between the 
predicted and candidate position in r-proportional units: 
shift2 = [(ξ-x)2 + (η-y)2 + (ζ-z)2)]/r(u,v)2. Also, we find the 
new τ k of (ξ, η, ζ), compute the interpenetration penalty 
(τk), and add this to shift2. We average the resulting inter-

object penalty term over all the boundary points and over 
all neighboring objects k. 

 
4. MULTI-OBJECT SEGMENTATION BY DE-

FORMABLE M-REPS 

he implementation uses a conjugate gradient algorithm 
o optimize the objective function at each scale level. A 
egality term is added to the geometry term during the 
tom deformation level to prevent self-intersections of the 

boundary. This term penalizes high curvature, i.e., the 
average over the boundary of the square of the dot prod-
uct between adjacent triangles’ normals. 

An m-rep model of the male pelvis (Fig. 3) was built 
to fit a single CT training image. The model’s objects 
follow: right pubic bone: 3×5 atoms; left pubic bone: 3×5 
atoms, with the right bone as its neighbor; bladder: 4×4 
atoms, with both bones as neighbors; rectum: 3×5 atoms, 
with the bladder as its neighbor; prostate: 3×3 atoms, with 
all 4 other objects as neighbors. We model only sections 
of the rectum and the bones, namely, the sections that are 
near other objects of interest. 

The model was then deformed using the above 
method into two different target patients. The target im-
ages used for the bones were windowed CT data. Because 
the goal was to test the effectiveness of using the inter-
object geometric relationships and not the image match, 
the target images for the other organs were label images 
from hand segmentations of CT data. 

The number of iterations required was approximately 
20 at each object stage and approximately 5 passes 
through all the atoms at the medial atom stage. The total 
time to segment all five objects was about 20 minutes on 
a 1.7 GHz Pentium 4. 

Results from the m-rep segmentation of one of the 
images are shown in Fig. 4. First the right bone trans-
forms into place (Fig 4a). Next the left bone’s initial posi-
tion is predicted in relation to the right bone and it then is 
optimally transformed. Figs. 4b&c show the layout at this 
stage, where the bones have penetrated the bladder. Fig 
4d shows the nicely predicted bladder’s position from its 
relation to the bones. After the bladder and the rectum 
have been transformed, removing all interpenetrations, the 
prostate’s position is predicted. Fig. 4e shows how nicely 
the prostate is predicted solely on its geometric relation-
ship to the other objects. The final result (Fig. 4f) is at-
tractive but shows how the inter-object relations can pre-
vent segmentation of unpredicted sections of an object. In 
the second target image (not shown) the bone segmenta-
tions succeeded as before. The rectum label image was 
from a lower section of the rectum than was modeled. 
However, since the rectum is rewarded for maintaining its 
relationship with the bladder, the model is not drawn by 

(light), rectum (mid-grey), prostate (darkest). 



the image data to the lower section. The other objects 
again predict the prostate well, and its segmentation is of 
similar quality as in Fig. 4. 

 
5. DISCUSSION AND CONCLUSION 

 
Characterizing one object in the figural coordinates of 
another appears to be effective in initially locating objects 
and in keeping them in the proper relation. We antic te 
that beginning a segmentation at a multi-object scale el 
will for many segmentations make any manual in
placement of the model unnecessary, as the amoun
which the multi-object model will have to move fro
standard position in the image will be a fraction << 0
the extent of the model. The resulting method for sim
neous extraction of multiple objects in a coarse-to
fashion while avoiding interpenetration has potent
improved abilities compared to other deformable m
methods with rich geometric priors [1, 2, 4] that are e
designed for single-figure objects or handle multi-o
complexes at a single scale level and thus some
slowly.  Results of actual use of our method in m
object segmentation on real images will come at the 
entation at the ISBI Conference, according to the rese
schedule set when this paper was invited. Validation
human segmentation is planned for after ISBI. 

A direction for improvement is a common coord
system for interstitial regions related to all nearby obj
Another important direction to improve segment
using this approach is further to develop geometr
image match. Other developments that are anticipated
the straightforward extension to multifigure objects
improvement of the boundary folding penalty, and ha
separate weights for an object to be transformed sli
along a neighboring object and pulling away or to
that neighbor. 

Serious improvement in segmentation should derive 
from using multi-object models built from populations, 
extending the Styner method [6] that presently applies to 
single objects. The extension will yield not only object 
model medial sheets and samplings, but also probability 
distributions for the figures and medial atoms to use in 
place of the manually weighted distance functions pres-
ently used for geometric typicality, probability distribu-
tions of neighbor relations to use in place of the manually 
weighted distance functions presently used, and probabil-
ity distributions of image intensities in an intrinsic multi-
object coordinate system in place of the normalized inten-
sity correlations presently used for geometry-to-image 
match. The ability to derive probability distributions of 
multi-object geometry will also lead to studies involving 
statistical geometric characterization of populations of 
multi-object complexes in normal vs. pathological classes. 

a) b) c)

f)e) d) 
Fig. 4. A multi-object segmentation of male pelvic structures:
successive scale levels and steps. a) After the right bone trans-
formation, vs. the windowed image that provided the image data.
b) After both bone transformations. c) Same layout as b, slice
view. d) Same slice as c after bladder position has been pre-
dicted. e) After bladder and rectum segmentations, the prostate’s
position is predicted. f) Prostate in final position vs. image data.  
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