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ABSTRACT

A variety of regression schemes have been proposed on im-
ages or shapes, although available methods do not handle
them jointly. In this paper, we present a framework for joint
image and shape regression which incorporates images as
well as anatomical shape information in a consistent manner.
Evolution is described by a generative model that is the analog
of linear regression, which is fully characterized by baseline
images and shapes (intercept) and initial momenta vectors
(slope). Further, our framework adopts a control point pa-
rameterization of deformations, where the dimensionalityof
the deformation is determined by the complexity of anatom-
ical changes in time rather than the sampling of the image
and/or the geometric data. We derive a gradient descent al-
gorithm which simultaneously estimates baseline images and
shapes, location of control points, and momenta. Experi-
ments on real medical data demonstrate that our framework
effectively combines image and shape information, resulting
in improved modeling of 4D (3D space + time) trajectories.

1. INTRODUCTION

Analysis of longitudinal data incorporating both spatial and
temporal information is essential for various clinical tasks
such as predicting patient outcome and measuring efficacy
of different therapeutic strategies. A crucial tool for longi-
tudinal analysis is regression of observed data, which enables
interpolation to generate continuous evolution models as well
as extrapolation to predict future observations. Regression
models are also necessary for conducting population studies
comparing the change trajectories of different subjects.

In medical imaging, it is important to consider image data
in anatomical context, which motivates regression on image
and shape data in different combinations (a multi-object com-
plex). A variety of regression schemes have been proposed on
images or shapes, although available methods do not handle
them jointly. For example, the extension of kernel regression
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for image data [1] or piecewise linear regression for time se-
ries of images [2] and shapes [3]. Combining intensity and
geometric information has been explored for registration [4].

To conduct statistical analysis on 4D (3D space + time)
data, it is particularly useful to consider compact generative
regression models which have low number of parameters sit-
uated at only one chosen time point. Geodesic regression is
such a model and is fully characterized by baseline images
and shapes (the intercept) and the tangent vector defining the
geodesic at the baseline objects (the slope). Geodesic regres-
sion frameworks for images [5, 6] and for shapes [7] have
been proposed using the LDDMM setting. However, no no-
tion of how to combine images and shape data is provided.

We propose a novel geodesic regression framework that
leverages image and shape data together to estimate a sin-
gle deformation of the ambient space. We use the currents
representation for geometric data that allows flexible repre-
sentation of a wide variety of shape objects such as point
sets, curves, or surface meshes, without the need for point
correspondence between shapes. Compared to image regres-
sion alone, shape data provides anatomical information that
constrains the regression, especially in cases where images
have low contrast, by placing larger weights on regions with
anatomical importance. Compared to shape regression alone,
image information provides data in areas where segmenta-
tions are not available, as well as providing context to re-
gions surrounding anatomical objects. Our framework uses
the control-point parameterization of geodesic flows intro-
duced in [8], which makes the parameterization of the defor-
mation independent from the data. This allows us to keep a
reasonable dimension of the parameterization, which is deter-
mined by the complexity of anatomical changes in time, and
not the sampling of the data. We therefore combine image
and shape data without introducing a complexity overhead.

2. METHODOLOGY

We perform regression on observed time-series data of images
Ii and shapesXi, each acquired at time-pointti. Shape data
may consist of a mix of point sets, curves, or surface meshes
where all vertices are concatenated into one vectorXi.



We use the control point formulation of [8] to generate
geodesic flows of diffeomorphisms. LetS0 = {c0,k, α0,k}
be a set of momentum vectorsα0,k attached to control points
c0,k distributed in the image domain. Geodesic flows are com-
puted by evolving control points and momenta by integrating
the following Hamiltonian equations over the time intervalof
interest:



























ċk(t) =
N
∑

i=1

K(ck(t), ci(t))αi(t)

α̇k(t) = −

N
∑

i=1

αk(t)
Tαi(t)∇1K(ck(t), ci(t))

(1)

with initial conditionsck(0) = c0,k andαk(0) = α0,k (as-
suming starting time-point to be0), andK is a Gaussian ker-
nel with varianceσ2

V which controls the spatial scale of de-
formation. For simplicity, we write these equations asṠ(t) =
F (S(t)) with S(0) = S0. The convolution of the momenta
defines the following time-varying velocity field:v(t, x) =
∑N

i=1 K(x, ci(t))αi(t) for any pointx in the domain. The
velocity is used to deform the domain: a particle at pointx

at time0 moves toφ(t, x) at later timet, whereφ(t, x) fol-
lows the integral curve of∂φ(t,x)

∂t
= v(t, φ(t, x)) starting with

φ(0, x) = x. In this formulation, the velocity of the particle
is given by the fieldv(t, .) at its current location. It has been
shown in [9] that for allt, φ(t, .) is a 3D diffeomorphism.

Following this model, the vertices of a given baseline
shape complex concatenated into a vectorX0 move at timet
to X(t) = φ(t,X0), which satisfies the ordinary differential
equation (ODE):Ẋ(t) = v(t,X(t)) with X(0) = X0. To
make explicit the dependency of the equation of motion on
S(t), we write it as:Ẋ(t) = G(X(t),S(t)).

A given baseline imageI0 is also deformed by the flow

Fig. 1. Conceptual overview of geodesic regression on multi-
object complexes containing both image and shape data. The
framework estimates parameters att = 0 which consist of the
baseline imageI0 and shapeX0 along with the deformation
model parameterized by control pointsc0 and initial momenta
α0 such that overall distance between the deformed objects
and the observations are minimal.

of diffeomorphisms and its trajectory is given asI(t) = I0 ◦

φ(t, .)−1. The inverse flow satisfies the equation∂φ(t,.)−1

∂t
=

−dφ(t, .)−1v(t, .). For the sake of simplicity, we denote
Y (t, .) = φ(t, .)−1, a L2 function that maps the pointx to
its position at timet under the inverse flowφ−1(t, x). This
maps satisfieṡY (t, .) = −dY (t, .)v(t, .) = H(Y (t, .),S(t)),
where we make explicit the dependency onS(t). At time t,
the intensity of the warped baseline image at voxel positionx

is given byI(t, x) = I0(Y (t, x)) using 3D interpolation.
A conceptual overview of our framework is shown in

Fig. 1 where regression is performed by minimizing the
overall distance between the observations and the deformed
baseline objects (shapes and/or images). Letd(X(ti), Xi)
be a metric between the deformed baseline shape complex
X0 at time ti and the data shape complexXi. This metric
may be a weighted sum over each component of the shape
complex of the currents metric between sets of curves or sur-
face meshes. This term essentially depends onX(ti) and is
denotedA(X(ti)). Similarly, we have a metricd(I(ti), Ii)
denoted asB(Y (ti, .)) that is the sum of squared differences
between the deformed baseline imageI0 ◦ Y (ti, .) and the
observed imageIi.

The geodesic regression problem amounts to finding the
deformation parametersS0 and baseline anatomical configu-
ration(I0, X0) such that the following criterion is minimized:

E(S0, I0, X0) =
∑

ti

(

λIti
A(X(ti)) + λSti

B(Y (ti, .))
)

+ L(S0)
(2)

subject to










Ṡ(t) = F (S(t)) S(0) = S0

Ẋ(t) = G(X(t),S(t)) X(0) = X0

Ẏ (t, .) = H(Y (t, .),S(t)) Y (0, .) = Id

(3)

where the regularizerL(S0) =
∑N

i,j=1 α
T
0,iK(c0,i, c0,j)α0,j

is the squared norm of initial velocity and weights on image
and shape matchingλIti

andλSti
.

As shown in the supplemental material (www.cs.utah.
edu/ ˜ jfishbau/docs/isbi2014_eqns.pdf ), the
gradient is computed by integrating 3 linear ODEs with
source terms from final time-pointTf back to time-point0:

∇S0
E = ξ(0) +∇S0

L ∇X0
E = η(0)

1

2
∇I0E =

∑

tj

SplatY (tj ,.)
(I0 ◦ Y (tj , .)− Ii)

with


























η̇(t) = −∂1G(t)T η(t)−
∑

ti

∇X(ti)Aδ(t− ti)

θ̇(t) = −∂1H(t)†θ(t)−
∑

ti

∇Y (ti,.)B δ(t− ti)

ξ̇(t) = −∂2G(t)T η(t)− ∂2H(t)†θ(t)− dS(t)F
T ξ(t)



with final conditionsη(Tf ) = θ(Tf ) = ξ(Tf ) = 0.
The vectorη is same size asX0, which brings back to time

t = 0 the gradients of the data matching terms, and is used to
update the position of the vertices of the baseline shape com-
plex. Similarlyθ is of the same size asY (0, .) (an image of
vectors in practice) which integrates the successive gradients
of the image matching terms that acts as jumps in the differ-
ential equation. Finally,ξ is a variable of the same size asS0

which is used at timet = 0 to update the deformation param-
eters (the position of the control points and their momentum
vectors). The gradient with respect to the baseline image in-
volves the splatting of the current residual images at positions
Y (ti, .) as done in [8].

3. RESULTS AND DISCUSSION

Pediatric Brain Development: We explore the impact of
joint image and shape regression in modeling pediatric brain
development. The data consists of T1W images of thesame
healthy child observed at 6, 12, and 25 months of age. Re-
gression on images alone is difficult in this case due to the
very low contrast in the 6 month old image. Despite the low
contrast, tissue segmentations can still be reliably and consis-
tently estimated [10]. We estimate a geodesic model using
only T1W images and a model jointly on images and white
matter surfaces to emphasize the development of the tissue
interface. We initialize120 control points on a regular grid
with the deformation kernelσV = 20 mm. Finally, due to
limited contrast at 6 months, we estimate the baseline at 25
months and follow the evolution backwards in time.

The results of geodesic regression are shown for several
snapshots in time in Fig. 2. The model estimated using only
images mostly captures the scale change, but does not cap-

Fig. 2. Images and deformations estimated by geodesic re-
gression using images alone (top) and jointly on images and
white matter surfaces (bottom). Regression jointly on image
and shape results in a more realistic evolution which captures
detailed changes in brain tissue in addition to the increasein
brain size. In both cases, geodesic regression was estimated
backwards in time.
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Fig. 3. Caudate volume extracted continuously after regres-
sion compared to observed caudate volumes (circles and x’s).
Volume is measured continuously from the modeled shape
trajectories, not fitted to discrete volume measurements. The
model estimated on images alone fails to capture the volume
loss. Evolution of caudates for the image only model isnot
estimated, but instead we shoot the baseline caudate shapes
along the geodesic estimated from images alone. Note: mea-
surements extracted continuously from non-linearly deform-
ing shapes can produce either linear or non-linear trends with
no prior assumption of linearity.

ture much deformation in the interior of the brain. The model
estimated jointly on image and shape captures more detailed
development as white matter stretches and expands.

Neurodegeneration in Huntington’s Disease: Next, we in-
vestigate the application of joint image and shape regression
to Huntington’s disease (HD) where accurate 4D models are
needed to measure the effectiveness of therapies or drug treat-
ments. In HD, degeneration of the caudate has been shown to
be significant [11]. Here we explore T1W image data from a
single patient diagnosed with HD scanned at 58, 59, and 60
years of age. Sub-cortical structures are segmented, manually
verified, and cleaned. Models are estimated using only T1W
images as well as T1W images plus caudate surfaces. Control
points are initialized on a regular grid with10 mm spacing
with kernelσV = 10 mm.

The trajectory of caudate volume extractedafter regres-
sion is shown in Fig. 3. The model estimated from images
alone fails to capture the volume loss observed in both cau-
dates, and rather, shows an increase in right caudate volume.
By incorporating caudate shape data in model estimation, we



Fig. 4. Top) Evolution estimated on images alone. Evolution of caudatesarenot estimated, but instead we shoot the baseline
caudate shapes along the estimated geodesic.Bottom) Evolution estimated jointly using images and caudate shapes. Regression
on images alone results in a slight expansion of ventricles,but does not capture the shrinking of caudates. Our method isable
to capture both the expansion of ventricles and the shrinking of caudates.

are able to capture the shrinking of the caudates. The corre-
sponding expansion of the ventricles is also captured, shown
in Fig 4, due to the inclusion of imaging data. By incorporat-
ing shape and image information jointly, we are able to model
both the expansion of the ventricles and the degeneration of
the caudates. Accurate models of change are essential when
extrapolating beyond the observation time interval, whichcan
provide insight into disease progression.

Conclusions: We presented a novel geodesic regression
framework that jointly considers image and shape information
in the LDDMM framework, where dense diffeomorphisms
are built using a control point formulation. This formulation
decouples deformation parameters from input object parame-
ters (e.g., voxels, surface points) providing greater flexibility
and consistency in mapping different object types across time.
Our regression model seamlessly handles images and multi-
object complexes consisting of points, curves, and/or surfaces
in different combinations. Experiments show that our frame-
work effectively combines image and shape information to
estimate a single deformation of the ambient space, resulting
in improved modeling of 4D trajectories.
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