Numerical Modelling of Thermal Effects in Elastohydrodynamic

Lubrication Solvers

R Fairlie** C.E.Goodyer,* M.Berzins,* and L.E.Scales,?

a&Computational PDEs Unit, School of Computing, University of Leeds, Leeds, UK

PShell Global Solutions, Chester, UK

The numerical modelling of thermal effects in elastohydrodynamic lubrication solvers is addressed by extending
the code of the authors. This code is used to investigate the important effect of shear upon the temperature
profiles for both a steady state and a transient line reversal example and also for a steady state point contact
problem. Additional equations for the modelling of mean and surface temperatures within an elastohydrodynamic
lubrication contact are described and are added into the existing multigrid driven solver. Temperature profiles
in steady line and point contact cases are presented and used to demonstrate that even small amounts of shear
produce temperatures in excess of those in the pure rolling case.

1. Introduction

Within an elastohydrodynamically lubricated
(EHL) contact the temperature of both the en-
trained fluid and the contact surfaces can vary
dramatically. In the pure rolling case tempera-
ture rises of only a matter of degrees may be ex-
pected, however when shear occurs the temper-
ature may rise in severe cases by in excess of a
hundred degrees [1]. Fluid temperature plays a
direct role in governing the density and viscosity
of a fluid, which in turn affects the pressure pro-
file and surface deformation across the contact.
Clearly, then, with temperature fluctuations of
this magnitude occurring it is important to in-
clude thermal effects in EHL models.

These thermal effects have been extensively
studied for many years since the initial theoret-
ical work by Crook [2] in 1961, with numerical
methods for the thermal solutions in line contacts
developed in the 1960’s by Sternlicht [3], Cheng
and Sternlicht [4], Cheng [5] and by Dowson and
Whitaker [6]. Recent papers, for example, those
by Lee et al [7], [8], by Kim et al [9,10] and by
Kazama et al [11] have utilised the multigrid tech-
niques applied to EHL problems by Venner and
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Lubrecht [12] to solve both line and point contact
cases.

In this paper the transient EHL model devel-
oped in the CPDE Unit at Leeds, [13,14] using the
multigrid techniques applied to EHL problems by
Venner and Lubrecht [12] is extended to include
thermal effects [16]. This involves extensions to
the non-Newtonian fluid model [16] governing the
density and viscosity and introducing three addi-
tional equations to the code, one for mean tem-
perature and one for each of the two contact sur-
faces. Inclusion of these into the equation set for
the line contact case will be discussed along with
the solution method. An extension to the point
contact case is also described.

Results are presented and discussed for an es-
sentially steady state line contact showing the
thermal effects at both pure rolling and at sev-
eral shear rates, followed by thermal profiles in a
line contact reversal problem, again for both pure
rolling and varying shear rates. A thermal point
contact solution will then be presented.

2. Notation
Dimensional Values

Cp spec heat capacity (Jkg 1K 1)

Cp :a spec heat capacity of roller A (Jkg 'K !)



py  density of roller A/B (Nm~1)
up  velocity of roller A/B (ms—!)

Cp:b spec heat capacity of roller B (Jkg *K~1) p density (p = p/pz)

P pressure (Pa) 7 viscosity @ =n/n:)

h film thickness (m) [ temperature 6 =6/6,)

p density (Nm™1) [, mean shear rate (I'y, = |Up — Uu|/H)
Pas

Uq,

Ue entrainment velocity (ms™!) 3. Governing Equations

7 viscosity (Pas) . .

9 temperature (K) There are five governing equations for the
" distance (m) standard non-thermal line contact EHL problem,
‘ time (s) thOS(.E of pres§ure,‘ﬁlm thick'nfass, force balance,
u Dowson-Higginson mu parameter (Pa) densm'y anq v1scosm.y. In addition there are three
y Dowson-Higginson nu parameter (Pa1) equations linked with the thermal model, these

being the energy equation and a surface temper-

Be:o thermal expansion coefficient (K1) ;

Ke pressure coeff of thermal expansion (Pa~1!) ature equation for. ea(?h sgrfa(?e.

9, reference temperature (K) The pressure.dlstrlbutlon is H‘lodellfﬁd by the
b Hertzian radius (m) R(?yr}olds Equation [17]. In non-dimensional form
Dh maximum Hertzian pressure (Pa) this is:

R reduced radius (m) o(pH) _ 0 (@ 8_P> U (T)c’)(ﬁH) 1)
20 standard density (Nm~") oT 90X \ 7\ 0X ¢ X

7o standard viscosity (Pas) b

ag pressure coefficient of viscosity (Pa 1) where

20 Roelands z0 parameter Uc(T) = Uu(T) + Uy(T), (2)
21 Roelands z1 parameter

0, ref temp. in Roelands law (K) and

0o ref temp. for density and viscosity (K) \ = 61y uc R? (3)
k thermal conductivity coeff (Wm 1K ~1) T B3p,

—17r—1
ka,ky  thermal con. coeff of A/B (Wm™ K™ The Film Thickness Equation represents the

geometry of the roller and is given, in non-

Reference Values dimensional form, by:

up reference velocity (ms™!) X2

n: ambient viscosity (Nm™!) H(X) = Ho+ > (4)

p: ambient density (Nm 1) 1 1%

6, ambient temperature (K) —;/ In|X — X'|P(X")dX",
Non-Dimensional Values where Hyg is the central offset film thickness,

) . which defines the relative positions of the surfaces

B Hertma‘n radius (B = 2b/R) if no deformation was to occur. The parabolic

H  film thickness (H = Rh/v?) term represents the undeformed shape of the

P pressure (P = p/pn) rollers, and the integral defines the deformation of

T time (T' = uot/2b) the surface due to the pressure distribution across

X  distance (X = z/b) the domain.

Ua veloc?ty of roller A (Ua = ta/uo) The Force Balance Equation relates the pres-

Up  velocity of roller B (U = up/uo) sure distribution across the domain to the applied

U, entrainment velocity (Ue = we/ug) load. Tt is given by:

U,, mean velocity (U, = U [uo)

[fpamng. (5)



The density of the fluid is normally modelled
as a function of pressure only using the Dowson
and Higginson [18] model. In this work we con-
sider the density as being a function of both pres-
sure and temperature and use an extended form
of the Dowson and Higginson model in dimen-
sional form:

p(p;0) = po <1 +

where

Be(p) = Besoexp(—Fkep). (7)

Similarly to the density, in this work the viscos-
ity is considered to be a function of both pressure
and of temperature, instead of merely pressure.
As a result the viscosity model used is a modified
version of the Roelands law [19], this is:

) (1= )0~ d)1(6)

n(p,0,%) = noexp(y), (8)
where
z(0) —s
@oPo P 0 —0, )
- 1+ 2 —1% .09
T {( po) (90—& } ©)
0 -0,
z(0) = zp — z1ln (00 — 9r> , (10)
and
Bozo
= 0o —06,). 11
2% (60 6,) 1)

Temperature varies not only in the direction
of flow through the contact which is solved for
but also in the direction across the flow, between
the rollers which is not solved for. Consequently
an approximation must be made to take this into
account. We assume a parabolic temperature ap-
proximation [15].

The appropriate Energy Equation for EHL
problems [16] assuming the parabolic tempera-
ture approximation is given in non-dimensional
form as:

[LOB 0B (BB (U~ Uy O
2(9T "X H o0X
3k 10P oP
QB2H2 (0 +9b —29)4—,36 (58_T +Um8—X>
_ 0P Bpk__,
—2B m 7108 12
I (U > X + — 3 (12)

where

nm (13
fi= % (14)
K= 76’7;%?2 (15)
Be = g’;—i;, (16)
and
k= ﬁ. (17)

The term on the left is heat convection, while
the terms on the right of the equation model ther-
mal conductivity, compression heating, viscous
heat generation due to Pouseille flow and viscous
heat generation due to Couette flow.

There are two equations for surface tempera-
ture, one for each surface. In the pure rolling
case, these will be identical. The equations are
given in non-dimensional terms as:

Xa [ (360 —20, —6))

0,(X)=1+2 dc,(18
W=t | —oereo MY
and
EXb (30 — 0, —20,) -

0, (X) =142 _ dc,(19
b( ) + m ( C)I/QH(X) C( )
where
_ b’ pr
YT LRz (20)
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K= oo’ (21)
_ 6R?
V= b—2, (22)
Yo = G (23)

/TPpaCp:akatob
% = 2 (24)
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Extension for Point Contact

The equations for the isothermal point con-
tact model are well documented. After
non-dimensionalisation, additional y-directional
terms occur in the Reynolds equations, the force
balance equation is altered and there are changes
to the integral in the film thickness equation.
The density and viscosity equations remain un-
changed.

The Reynolds equation (1) becomes,

A _ 0 (B0

aT ~ 90X \ mr 0X

0 (pH 3oP
Y 77>\ )% Ue(O) 0X ’
The Force Balance equation in the point con-
tact case is given by:

/O:O /O:O P(X,Y)dXdY = %” (26)

The film thickness equation is given by,

X2 y?

H(Xay):HOO‘i‘T‘F? (27)

/ / \/X X’ )dXYdYIY')

The mean energy equation has extra terms in
the two dimensional case. The two-dimensional
form of this equation is given by,

(108 o8 o0
{56_T+Uma_X+Vma_Y
6—6, OH OH\\ _
+T<(Um_U”)a_X+Vma_Y>}_

3% _ _ _  DBhE
W(Ha—l-eb—QG)—l-Tuﬁan
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+5.8 (555 + Ungy + Vg

_ e\ OP oP
—2BJi { <Um 7) - Vma_y} o (28)

where

H? 0P

4. Discretisation

A uniform mesh is used with N elements where
N = 2¥ 4+ 1. The level of refinement on a grid can
then be described as grid level k refinement. The
equations are discretised using first order upwind
differencing, or second order central differencing
where appropriate. This discretisation has been
documented elsewhere [20] for the non thermal
equations, so here we shall only consider the en-
ergy and two surface temperature equations.

The Energy Equation (12) is discretised as:

gin _ gin—1 9 — 0.,
E{wi o) Ly @B

2AT AX
" (9_i1—{9_b) ((Um _ Ub)Hi ;)?’-1)
st B— ) +
X ((Pf";A?tnfl) LU, (2 ;)?—1)) _
2BH (Um = %) (Fs < )};"‘1) + B?”ﬁrfn, (30)
where,

The Surface Temperature Equations (18) and
(19) become:
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5235_2Z_0_b7 (34)
and
95 = 30 — 9, — 20, (35)



5. Solution Method

The equations, excluding the thermal equa-
tions, are solved using multigrid techniques in in
the standard manner as described in [21,20,22]
and utilising the multilevel multi-integration al-
gorithm of Brandt and Lubrecht [23].

The temperature, both at the surface and in
the fluid is calculated only on the finest mesh.
First the surface temperatures are calculated us-
ing equations (32) and (33). This can be an ex-
pensive process as at each point a summation
along the line up to that point is required. Fur-
thermore the calculation at each point is expen-
sive when repeated. Following the surface calcu-
lation, the Energy Equation (30) is calculated at
each point using a Newton method. The relax-
ation factor is initially small but can be allowed
to increase once the solution is converging.

In the multigrid method the temperature is also
required on the coarser grids. This is obtained
by coarsening the temperature on the fine mesh,
no temperature solve being carried out on these

meshes.

6. Results

Moes Parameter M

Moes Parameter L

Speed Parameter U

Material Parameter G

Load Parameter W

Pressure-viscosity index «
Maximum Hertzian Pressure py,

Minimum Domain Bound
Maximum Domain Bound

Number of Points

27.68
9.53
1.6x10 1t
4000
1.57x10~*
2.0x10~% Pa~!
1.0x10° Pa
-4.6x1073 m
4.6x107% m
2049

Table 1

Operating Parameters for Line Contact Case
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Figure 1. Temperature Profile in Pure Rolling
Case

6.1. Steady State Line Contact

Figure 1 shows the mean fluid and surface tem-
perature profiles for a pure rolling case, as de-
scribed in Table 1, with both rollers always trav-
elling with an identical velocity of 3.0ms™!. The
mean temperature can be seen to smoothly rise
to a peak upstream of the contact region, be-
fore rapidly decreasing as the contact region is
entered. The temperature then slowly decreases
across the contact region until a spike coincid-
ing with the exit of the contact region. The sur-
face temperature follows the same profile but at a
lower temperature and translated slightly further
downstream than the mean temperature profile.

If small amounts of shear occur then very differ-
ent solution profiles are obtained. Figure 2 shows
three mean fluid temperature solutions, the first
solution is for pure rolling and the subsequent two
are with slight amounts of shear. The structure
of the pure rolling profile can barely be made out
as the rise in temperature in the middle of the
contact region is so large. The shear profile does
exhibit these features but they remain of the same
size as in the rolling case.

6.2. Transient Line Contact

The behaviour of the model in Table 1 under
transient conditions is investigated using a rever-
sal case. Each roller at ¢ = 0 has a velocity and
over a time period this is gradually changed until
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finally it is travelling at the opposite velocity.

In the first case pure rolling is considered with
both rollers always travelling at identical veloc-
ities to each other. Initially they are travelling
at 3.0ms ! and decrease linearly over a period of
0.2s to a final velocity of -3.0ms™!. There are
500 timesteps of 0.0004s taken.

In the second and third cases shear is intro-
duced, at a low level and at a high level. The sec-
ond model has the rollers initially with velocities
of 2.5ms~! for Roller A and 3.5ms! for Roller
B, the third with velocities of 1.0ms~! for Roller
A and 5.0ms™! for Roller B. In both cases these
velocities vary linearly with time over a period of
0.2s to final opposite velocities. There are 500
timesteps of 0.0004s taken.

Figures 4 show the temperature profiles for all
three cases at 5 points during the reversal run.
As can be seen the temperature of the model with
the largest shear dominates the profiles displaying
a maximum rise in excess of 100 degrees. This
decreases as the velocity is reduced and at the
point of reversal the temperature has reduced to
ambient throughout the domain.

A similar effect can be seen with the temper-
atures at the surface of the roller. Figures 5
show the surface temperatures on the two rollers.
The temperature profile on each roller is clearly
the same as for the other roller, but at different
values. Roller A, the slower of the two rollers
clearly has lower temperature profiles than the
faster roller.

7. Steady Point Contact

Figure 6 shows two mean fluid temperature
solutions in the point contact case with operat-
ing parameters detailed in Table 2. The lower
of the two solutions is for the pure rolling case,
the higher solution is for a case with a small
amount of shear. The pure rolling model has both
rollers travelling with a velocity of 4.0ms!, the
shear case has roller velocities of 4.01ms~! and
3.99ms~! giving a shear rate of s = 0.005. In the
pure rolling solution the temperature can be seen
to rise upstream of the contact region, falling to
ambient within this region, before a spike at the
exit of the contact region. The case with the shear
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Moes Parameter M 33.38
Moes Parameter L 17.90
Speed Parameter U 1.6x1010
Material Parameter G 4200
Load Parameter W 2.58x106
Pressure-viscosity index o 2.1x1078Pa~1!
Maximum Hertzian Pressure pj 1.0x10°Pa
Minimum Domain Bound -4.86x107%m
Maximum Domain Bound 2.50x107%m
Number of Points 257x257
Table 2

Operating Parameters for Point Contact Case

displays the same features except that there is a
large temperature rise in the centre of the contact
region relative to the rolling case, the ambient
temperature being 373K and the peak tempera-
ture 384 K.

8. Conclusions

It has been shown that an energy equation
can be successfully incorporated into the EHL
solver of [14] to obtain mean and surface tempera-
ture solutions for both steady state and transient
cases. The importance of shear in an EHL con-
tact has also been demonstrated with even small
amounts of shear producing temperatures far in
excess of those found within the contact under
pure rolling conditions. This increase in temper-
ature can also be seen to influence the spike in
the pressure profile.
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