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Abstract—1In this paper we introduce a framework for the
solution of the multi-dipole, time-dependent, source local-
ization problem in realistic head models. Our technique
combines a PCA/ICA signal decomposition with an FEM-
based lead-field approach to source localization. This com-
bination enables the efficient localization of multiple dipole
sources.
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I. INTRODUCTION

In this paper we combine and further develop the ideas
first proposed in [1] and [2]: we present an efficient tech-
nique for performing multi-dipole source localization in a
realistic head model on time-dependent data. The first
part of our algorithm considers just the geometry of the
problem, building a finite element method (FEM) lead-
field matrix for the head model that projects all possi-
ble source configurations onto electrodes. The second part
applies principal component analysis (PCA) and indepen-
dent component analysis (ICA) to the temporal electroen-
cephalography (EEG) data, finding the signal subspace of
the data and the mixing matrix for statistically indepen-
dent sources. Finally, we use the lead-field and mixing
matrices to spatially localize all contributing sources via
an exhaustive search or standard optimization method.

The major assumptions used in this paper are that the
dipole source are independent and stationary. That is, ev-
ery source is fixed in space, and has an activation pattern
that is independent from all other dipoles. The number
of active dipoles is assumed to be less than the number of
recording channels.

II. FEM LEAD-FIELDS

The lead-field matrix, L, defines a projection from cur-
rent sources at discrete locations in the cranium to po-
tential measurements at discrete recording sites on the
scalp and is depicted graphically in Fig (1). Every entry
Lij = (L%, L3, L;) of the matrix corresponds to the poten-
tial that would be measured at recording site ¢; due specif-
ically to dipole source p; with components (p, pg, pi):

¢i = Lijp; = LYol + LYpY + Lps- (1)

Then a column I_JJ = [I_/l,j7E2,ja ..,EN,J']T of the lead-field
matrix projects a source p; in the element j onto all of the
electrodes:

¢ =L;p;. (2)
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Fig. 1. Depiction of the lead-field matrix. The dipole in each element
corresponds to a major column of L, each electrode corresponds to a
row of L, and each entry of L corresponds to the potential measured
at a particular electrode due to a particular source.

With the lead-field approach, sources are generally lo-
cated in every element of the mesh covering the domain
of interest and form the source vector p. Electrode po-
tentials are the linear combinations of those sources with
weights provided from the lead-field matrix. When con-
sidering time dependencies, the three dipole components
are assigned the same time activation s;(¢;). The lead-
field matrix does not depend on time, and the vector of
electrode potentials is then given by:

o(tr) = Z L;p;s;(t). (3)

Detailed descriptions of different possible lead-field matri-
ces and efficient ways of computing them for FEM models
can be found in [1].

III. STATISTICAL PROCESSING - PCA anD ICA

For a given electrode configuration, the time-dependent
data can be arranged as a matrix, where columns corre-
spond to time and rows correspond to channels (electrodes)
® = ¢(tk)-

Below, we follow the procedure described in [2]. We be-
gin by applying PCA (SVD) decomposition to the covari-
ance matrix of the data R = &' and constructing the sig-
nal and noise subspaces spanned by the eigenvectors of the
covariance matrix. The signal subspace will consist of the
singular vectors with singular values greater than a chosen
noise threshold, and the noise subspace will be composed
of the remaining eigenvectors [3].

R=U-A-UT'=U,;-A,-UT+U,-A,- UL (9

The projection of the original data onto the signal subspace
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Fig. 2. First 32 singular values of the covariance matrix. Only the
first three singular values contribute to the signal subspace, with the
rest constituting the noise subspace.

is given by:

,(t) = VA, UT - g(t), (5)

where A; and U, are the signal subspace singular values
and singular vectors, respectively.

Next, we apply the ICA algorithm to decompose the sig-
nal subspace into independent components. That is, we
find an “unmixing” matrix W, such that:

W - ¢,(tr) = s(tr), (6)

with E{s"(tx)s?(tx)} = O for all values m and n. There
exist several algorithms for ICA decompositions. We use
the infomax algorithm [4], which is based on minimization
of mutual information between channels.

Combining the two previous equations, Eq (5) and
Eq (6), we construct the projection matrix

M=U, /A, - WY, (7)
such that
o(tr) = Ms(ty)- (8)

IV. ALGORITHM

Comparing Eq (3) and Eq (8) we note that though ma-
trices L and M were derived from separate analyses of the
geometric data and the temporal channel data, they both
describe the projection of sources onto electrode record-
ings. Specifically, L describes the signature that a sin-
gle dipole leaves when projected onto the electrodes, and
M defines how a collection of independent signatures are
mixed to produce the recorded channel data. Looking at
the shape of the matrices, we note that the computed ma-
trix M has dimensionality Ngjee X Ngource, as it provides
mixing columns only for ezisting sources. In contrast, ma-
trix L describes the projection of all possible sources in
every element onto the electrodes, and thus has a dimen-
sionality of Nejee X Nejemn- Then for every separate “source”
column of M, we search for the column from L (and cor-
responding dipole components 5) that can best reproduce
that source in the least squares sense. In linear FEM, all
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Fig. 3. ICA activation maps obtained by unmixing the signals from
the signal subspace.

positions of the dipole within an element are equivalent, so
the dipole location is fully specified by an element (column)
index j. We perform a minimization of the misfit function

(9)

with respect to a discrete ; and a continuous p;, under
the constraint that there exists only a single nonzero entry
D = (%, p?, p) in the solution vector p; that is, our source
is a single dipole. Since measured potentials are linear com-
binations of dipole components (see Eq (1)), we can split
the minimization problem into two parts and use a closed
form, least squares solution for the dipole orientation:

Ci(4,55) = [IMy — pj L7 — piLY — piL3]|2.

p; = (L] L)~ "LI M. (10)
Then the misfit function will explicitly depend only on the
location j:

Cr(j) = |[M}, — L;p; |2

To find the global minimum of the discrete function Cy(5),
we can use either an exhaustive search over all columns of L
or an advanced optimization algorithm, such as multi-start
downbhill simplex [5] or simulated annealing [6].

The described minimization procedure is then repeated
for all columns of matrix My, thus recovering the location
and orientation of all sources one at a time.

(11)

V. NUMERICAL SIMULATIONS

We constructed a realistic finite element head model from
a volume MRI scan. The MRI data was segmented at
the Brigham and Women’s hospital [7], and a mesh was
constructed using Krysl’s variational Delaunay algorithm
[8]. The full mesh contained 396,000 elements and 70,000
nodes. We then coregistered 129 digitized electrode loca-
tions with the MR scalp surface.

In order to simulate time-dependent recordings, we first
computed a forward solution due to each of three simu-
lated epileptic sources, assuming dipoles of unit-strength.
Fach source produced a signature of values at the simu-
lated electrode sites. To extend the single-instant values
at the electrodes into time-dependent signals, we scaled
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Fig. 4. Electrode

Activation maps for a single instant in time.
potentials have been interpolated across the scalp surface of our finite
element mesh for visualization purposes. The original “measured”
activation is shown in (a); the statistically separated activation maps
are shown in (b)-(d).

the values of each signature by pre-recorded clinical acti-
vation signals. Finally, we added the three simulated time
courses together, along with 2% noise to simulate physical
EEG measurements.

Then we followed the algorithm outlined above in order
to recover the original source locations and orientations.
We started by building L using the reciprocity method of
Weinstein et al [1]. We chose one electrode to be a current
sink, and for each of the remaining electrodes, we placed
a current source at that electrode and solved a forward
simulation. Each simulation computed the electric field at
each element in our model, which we then stored as a row
of L. Each solution required on average 8 seconds of wall-
clock time using 8 SGI MIPS R10000 processors. For the
128 pairings, this totaled 18 minutes to compute all of L.

We then performed PCA on the EEG time-dependent
data and obtained the singular values shown in Fig (2).
Analyzing the singular values, we made the conservative
deduction that the signal subspace consisted of the first
four singular vectors. Working with the contribution of
these four components, we performed ICA, resulting in the
mixing matrix and activation maps shown in Fig (3). (No-
tice that there are, in fact, only three signal components;
the fourth component is clearly noise.)

Finally, we used both the multi-restart simplex search
[6] and the simulated annealing [6] algorithms to find the
global minimum of the misfit function. Both algorithms
recovered the same source dipoles. The simplex search al-
gorithm was restarted eight times for each source in order
to improve the likelihood that we had localized the global
minimum. We validated our recovered minima through
an exhaustive search of the domain. Due to the 2% error

Fig. 5. Recovered dipole positions. One source was localized for each
of the activation maps in Fig (4b-d). Two of the three sources were
recovered exactly; the third was localized within 3 mm of its true
location.

that we added to the original signal, the misfit function
for the recovered sources was not equal to zero. For two
of the three sources, the optimal misfits were 0.0002 and
0.0009 (misfit = 1 — ||correlation coefficient||) . For the
third source, the optimal misfit was 0.053, and was ac-
tually localized one element (3 mm) away from the true
source location.

The summed activation maps are shown in Fig (4a), and
the recovered independent activations are shown in Fig (4b-
d). The positions of the recovered dipole sources are shown
in Fig (5).
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