
A First Study on Strategies for Generating
Workflow Snippets

Tommy Ellkvist
Linköping University

Lena Strömbäck
Linköping University

Lauro Didier Lins
University of Utah

Juliana Freire
University of Utah

ABSTRACT
Workflows are increasingly being used to specify compu-
tational tasks, from simulations and data analysis to the
creation of Web mashups. Recently, a number of public
workflow repositories have become available, for example,
myExperiment for scientific workflows, and Yahoo! Pipes.
Workflow collections are also commonplace in many scien-
tific projects. Having such collections opens up new oppor-
tunities for knowledge sharing and re-use. But for this to
become a reality, mechanisms are needed that help users
explore these collections and locate useful workflows. Al-
though there has been work on querying workflows, not
much attention has been given to presenting query results.
In this paper, we take a first look at the requirements for
workflow snippets and study alternative techniques for de-
riving concise, yet informative snippets.

1. INTRODUCTION
Scientific workflow and workflow-based systems [7, 10, 16,

17,20] have emerged as an alternative to ad-hoc approaches
for documenting computational experiments and design com-
plex processes. They provide a simple programming model
whereby a sequence of tasks (or modules) is composed by
connecting the outputs of one task to the inputs of another.
Workflows can thus be viewed as graphs, where nodes rep-
resent modules and edges capture the flow of data between
the processes.

Designing workflows is often a time-consuming task and
for many applications, workflows become complex and hard
to understand. The creation of shared workflow collections
has opened the possibility of reusing workflows so that they
can be re-purposed for new tasks [4,8,13,22]. An interesting
example is Yahoo! Pipes [23], where workflows are com-
monly built by refinement. Having a search engine for these
collections is essential to help users locate relevant work-
flows that can be used as building blocks for new tasks. A
search engine must support two important tasks: querying
and displaying the results. While there has been work on
the former [2,13–15], the latter has been largely overlooked.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KEYS’09, June 28, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-570-3/09/06 ...$10.00.

Figure 1: Snippets from Yahoo! Pipes. The quality of

snippets depends on the quality of the metadata asso-

ciated with a workflow. The snippet on the top has an

informative description, the one on the bottom does not.

In this paper, we study the problem of displaying results
of queries over workflow collections. There are different
pieces of information associated with a workflow, including
its specification (modules, connections and parameters) and
additional metadata, such as a textual description and the
workflow creator. To display query results, an important
challenge is how to summarize this information. Similar to
snippets generated by traditional search engines, workflow
snippets can help users more quickly identify relevant work-
flows, without having to inspect their details.

Existing workflow search engines, such as Yahoo! Pipes
and myExperiment [9], use metadata associated with work-
flows to derive snippets (see Figures 1 and 2). As a result,
the quality of the snippets is highly-dependent on the quality
of the metadata associated with the workflows. For exam-
ple, while the top snippet in Figure 1 provides a detailed
description of the workflow, the one on the bottom does
not. Although they also show a thumbnail with a visual
representation of the workflows, they do not exploit the ac-
tual workflow specification. We posit that by exploiting the
workflow specification, we can generate high-quality snip-
pets even when metadata is poor or non-existent.

An important challenge we need to address is how to dis-
play enough structural information given space constraints.
We are faced with conflicting requirements: snippets need
to be concise and, at the same time, informative. If snip-
pets are too large (see e.g., Figure 2), only a few will fit on
a page, forcing users to browse through multiple pages. If
they are too small, users will be forced to examine a poten-
tially large number of workflows. Since workflows can be
complex, contain several modules and many more connec-
tions, not only it is hard to fit multiple results on a page,
but also the complexity of the workflows may confuse the
users.

Figure 2: Snippets from myExperiment. While the top

snippet contains a detailed description of the workflow

and additional metadata, such as popularity and number

of downloads, the bottom snippet contains very little in-

formation making it hard for one to determine what the

workflow actually does.

Contributions. In this paper, we propose and evaluate
alternative snippet generation strategies that leverage the
information in the workflow graph. Unlike textual docu-
ments [18], the structure present in workflows makes the
problem of summarization more challenging. Our methods
take into account the fact that workflows can be large and
dissimilar, and that multiple workflows need to be presented
given limited space. Our contributions can be summarized
as follows:

•We discuss requirements for generating high-quality work-
flow snippets;

•We propose alternative techniques for selecting important
subsets of the workflow information to be displayed in a
snippet; and

•We present a user study where we evaluate the proposed
techniques, and compare them against existing workflow
snippet generation strategies. Our preliminary results show
that quality of the snippets (perceived by the users) im-
proves when structural information is included.

Outline. In Section 2, we define the problem of generating
workflow snippets and discuss the requirements for generat-
ing high-quality snippets. We describe different strategies
for generating and presenting the snippets in Section 3. In
Section 4, we evaluate these strategies and discuss our pre-
liminary results. We present related work in Section 5 and
conclude in Section 6, where we outline directions for future
work.

2. PROBLEM FORMULATION
In what follows, we first provide a formal definition of a

workflow and then discuss the requirements for generating
workflow snippets.

2.1 Definitions
A workflow is a set of partially ordered modules whose in-

puts include both static parameters and the results of earlier
computations. A parameter represents a data value. A mod-
ule m is an atomic computation m : PI → PO, that takes
as input a set of arguments (input ports PI) and produces a
set of outputs (output ports PO). The parameters are pre-
defined values for ports on a module and can be represented
as a tuple (module id, port, value). In addition connections
link modules through undefined ports whose values are pro-
duced at run time. In a connection {(mi, porti, mj , portj)},
the value output on porti of module mi is used as input
for portj of module mj . A set of modules M along with a
set of connections C define a partial order relation POM on
M . This partial order does not contain cycles—the work-
flow is a directed acyclic graph, or DAG—-and defines the
execution order of modules. Figure 3A shows a connected
set of modules. Pre-defined parameters on modules are not
shown. Besides the workflow specification W , workflows are
also associated with a list of annotations A. Annotations
are triples on the form subject, key, value where subject is
a component of the workflow (e.g., a module or sub-graph),
key is the type of annotation, and value is the actual an-
notation. Annotations are used to attach metadata to the
workflow.

A workflow collection C contains a set of workflows. A
search query consists of a list of query terms Q. Any word
w in the workflow specification such that w ∈ Q is considered
a keyword.1 A search query over C returns a result set R
where R ⊂ C and |R| = k. A workflow snippet S provides a
summary of a workflow specification. It consists of a subset
of the information in the workflow specification: S ⊂W ∪A.
Snippet Generation. Given a workflow w, we aim to con-
struct a snippet S that is informative and concise. The work-
flow collection (C), query (Q), and result (R) set are poten-
tial sources of information that can be included in the snip-
pet. We introduce a function FScore: {C, Q, R, W, S} → c,
which given these information sources, the snippet S and
workflow W , outputs a score c ∈ R, which indicates the use-
fulness of the snippet. Our goal is to generate a snippet S
the highest possible FScore.

2.2 Snippet Requirements
Snippets should allow users to browse and determine the

relevance of workflows more efficiently, i.e., a user should be
able to identify workflows that are relevant to her query by
examining the snippets, and should not need to inspect the
details of each workflow in the result set.

Huang et al. have studied the problem of generating snip-
pets for XML query results [5]. They outline four criteria to
evaluate snippets. Snippets should be: self-contained, rep-
resentative, distinguishable, and small. Below we describe
how we map these criteria to the workflow snippets, and in
Section 3, we discuss how these criteria are used as the basis
to design snippet generation strategies.
Self-contained. A snippet should show the context of key-
words in the query. Each module m is associated with a
set of keywords key(m) which are extracted from the mod-
ule name, type, annotations, and parameters. If a query
Q matches a module, key(m) ∩ Q 6= ∅, the module m and

1Although, in this paper we focus on keyword-based queries,
our techniques can be extended to support structural
queries [13,14].

Figure 3: (A) A workflow where darker modules indicate more uncommon modules (IDF-value). (B) A snippet

showing the neighborhood matching the query “vtkVolume AND 20000”. The query keywords are highlighted and the

keyword neighborhood is displayed as a set of paths. (C) A snippet showing the modules with highest IDF value. (D)

A snippet showing representatives for the most important groups.

other modules in its neighborhood should be included in the
snippet. Since there can be overlaps of the neighborhoods of
modules that match a query, the snippet generation strategy
must find the set of modules MS ⊂M that is most relevant.
Representative. A snippet should capture the essence of
each workflow—what the workflow actually does. This is
analogue to how sentences are selected to represent a docu-
ment in text snippets. We need to identify the most promi-
nent features in the workflow graph that best represent its
semantics, i.e., MR ⊂M .
Distinguishable. The difference between any pair of snip-
pets should be visible. To do so, we must find and display
the structural differences among the workflows in a result
set. In other words, we need to identify the set of most dis-
tinguishing modules MD ⊂M . This is analogous to cluster-
ing text documents and extends the usual representation of
snippets to also include information about other workflows
in the result set.
Small. Snippets should be compact so that many can fit
on a single result page. We do this by fixing the maximum
number of modules in each snippet to g.

Given these requirements, a workflow snippet can be con-
structed as a combination of the relevant modules S = {MS∪
MR ∪MD}, such that |S| ≤ g. Below, to understand the
implications of applying these different criteria, we exam-
ine each individually. We note, however, that in the general
case we need a mechanism to weigh them and select the best
combination of modules.

3. SNIPPET GENERATION
The focus of our work is on generating snippets that ex-

ploit the graph structure of workflows. To concisely repre-
sent a workflow graph, we propose different summarization
strategies that selectively display (or hide) components of
workflow graphs. Before presenting different strategies for
generating and displaying snippets, we describe two metrics
that capture the notion of importance of sub-components of
a workflow.

3.1 Structural Importance
In order to select the subsets of a workflow that should

be displayed (or hidden) in a snippet, we first need to define
a notion of importance. The intuition behind our choice

comes from two empirical observations: modules that are
present in a given workflow but that are unusual in the re-
sult set (or in the workflow collection) might be of interest
to the user—they are a distinguishing feature of the work-
flow. Furthermore, modules that occur together in many
workflows represents a semantic entity (a pattern) that can
be of interest to the users.

To identify distinguishing modules we apply a measure
that is widely used in information retrieval: the Inverse Doc-
ument Frequency (IDF) [1]. IDF is defined as:

idf(m) = log N/N(m)

where N = |C| and N(m) = |∀W : W ∈ C ∧m ∈W |. We
can then estimate, for each module type, how rare it is in the
collection. As an example, Figure 3(A) shows a workflow
where darker modules correspond to modules that have a
higher IDF value—the modules are more uncommon in the
collection.

By measuring module co-occurrence (or semantic prox-
imity), we can find interesting groups of modules. These
groups form semantic entities that can be represented in a
more compact way, e.g., by collapsing a group into a single
module. A similarity measure that fits our need is the Jac-
card distance [19]. The semantic distance between module
types MA and MB can be defined as:

dist(MA, MB) = 1− P (MA ∩MB)

P (MA) + P (MB)− P (MA ∩MB)

which requires the frequency of MA in C, the frequency
of MB in C, and the frequency of MA and MB occurring
together in C. Note that dist(MA, MB) = 0 when MA and
MB always occur together, and dist(MA, MB) = 1 when
they never occur together.

3.2 Module Selection Strategies
Below, we explore different strategies for selecting a subset

of the modules in the workflow to be included in the snippet.
Query-Neighborhood Strategy. This strategy identifies
important modules MS in the neighborhood of a set of mod-
ules that match the query keywords. We use the following
analogy to snippets for text documents: modules represent
words, and connected sets of modules correspond of sen-
tences. We first choose all modules MQ that match the
query Q, and traverse their connections to find the neigh-

Figure 4: Comparison between optimal and greedy

grouping algorithms. Left, difference in total error ver-

sus number of nodes. Right, the running time versus

number of nodes.

borhood. This can be done through a breadth-first search
from the initial set of modules that stops when g modules
are found. Since g is small, we select the modules with the
highest IDF value first, i.e., the most descriptive modules
are selected first. The snippet in Figure 3(B) shows a rep-
resentation of such a neighborhood split up into paths.
IDF Strategy. The goal of this strategy is to discover a
set MR of modules that are representative for a workflow.
Using the IDF measure, we can choose the top g modules
with the largest IDF value. This strategy is used for the
snippet in Figure 3(C). The main advantage of this strat-
egy is that common modules that do not contribute to the
understanding of the workflow are selected last. A possible
drawback is that the most uncommon modules may occur
within the same part of the workflow, which may leave other,
potentially important sub-graphs unrepresented. The next
strategy addresses this issue.
Grouping Strategy. This strategy attempts to group to-
gether modules that co-occur often. This is based on the ob-
servation that workflows may contain sub-graphs with spe-
cific functionality which can be presented as a single entity,
making for a more compact and yet useful representation.
We divide the graph into sub-graphs (groups) such that each
group Mn is a connected sub-graph of M . We want to find a
set of disjoint groups G = {M1...Mg} that covers the whole
graph. We use the Jaccard distance to measure the semantic
relatedness of specific groups using:

MScore(Mn) =

X
mi,mj∈Mn

dist(mimj)

|Mn|

The score for the workflow is:
GScore(G) =

X
Mi∈G

MScore(Mi)

Testing all possible G reduces to the Exact Cover prob-
lem [6], which is NP-complete. We have used a greedy algo-
rithm that, starts with a group for each module, and merges
the two adjacent groups that give the best GScore until g
groups remains. This approximation reduces the complexity
to polynomial time. Figure 4 shows the difference between
optimal and greedy versions. The optimal version fails when
|M | > 14 whereas the greedy scales well. The approxima-
tion error of the greedy version is small in most cases, but
was not computable for large workflows.

Once we have a set of groups we represent, for each group
G, we select the module with the highest IDF in G to be the
representative for that group. Another alternative would
be to select module with the lowest Jaccard distance, but
this leads to the selection of modules that are too common
and do not reflect the complexity of the group. The IDF

Figure 5: Multiple snippets having common groups.

The algorithm identifies shared groups and shows them

with colors. A legend showing the meaning of the colors

is shown on the top. (Best viewed in color.)

Figure 6: A snippet presented as a partial workflow

graph. x3 indicates that 3 modules have been collapsed.

method, in contrast, often selects uncommon (more special-
ized) modules and provides more meaningful labels for the
groups Figure 3(D) shows an example of a snippet derived by
this strategy. Although the groups are not shown explicitly,
notice the addition of VTKCell that represents a previously
unrepresented part of the workflow.
Difference Highlighting Strategy. This strategy aims to
display the differences and similarities among workflows in a
result set. Because workflows in a set may share sub-graphs,
seeing the differences and similarities may help users obtain
a global understanding of the workflows and identify specific
features (e.g., modules or groups that occur in many work-
flows). Since a result set consists of multiple workflows, it
is not possible (or even desirable) to show all differences, so
we focus on identifying the most prominent ones. The strat-
egy works as follows. First, the grouping strategy is used to
find common groups. To increase the number of matches,
we consider two groups if they contain the same types of
modules, disregarding the graph structure. Sub-groups can
then be selected that make it possible to match sub-graphs
of large workflows with small workflows. This attenuates
the effect of oversimplifying large workflows which leads to
the hiding of structures that they may have in common with
smaller workflows. Based on user feedback (see Section 4),
we have designed presentation method for highlighting the
group containment, which is illustrated in Figure 5. The
snippets have been aligned horizontally to make the differ-
ences clearer.

3.3 Snippet Presentation
As Figure 3 (right) illustrates, a textual representation for

a snippet can be compact and informative, but structural
information is lost since only a few paths of the workflow
are shown. As an improvement, we propose to present a
dynamic image of the a sub-graph of the workflow that rep-
resents the thumbnail, as shown in Figure 6, which uses the
same strategy as the snippet in Figure 3C. The idea is to
make the graph similar to that seen in a workflow editor,

Figure 7: A snippet presented as a graph with a color

legend describing the modules. (Best viewed in color.)

thus easier to interpret for experienced users. The disad-
vantage is that processing time increases—multiple graphs
must be dynamically rendered; and additional screen space
is needed for each snippet. As a compromise, we designed
a snippet where a textual legend is displayed next to the
graph (see Figure 7). The graph can then be very small and
still contain dynamic information. A problem seen with this
approach is that users must keep referring to the legend to
understand the graph.

When presenting differences of multiple snippets, user feed-
back suggests we should not represent each snippet individ-
ually, but together, and clearly highlight their differences
and similarities. Thus we need a more compact way of pre-
senting multiple snippets. A alternative we have tried is
to represent each snippet with a graph consisting of com-
mon groups, as shown in Figure 5. Groups that are similar
have the same color and differences are represented by white
groups. It is then easy to see if workflows are similar in
structure. One drawback of this method is that users must
refer to the legend to know what each group represents, and
groups without a legend are not useful. It is also sometimes
not intuitive to spot the differences between workflows; they
may have nothing in common; the group order may be re-
arranged, breaking spatial similarity; and some differences
may be hidden, due to lack of space. We intend to explore
these issues in future work.

4. PRELIMINARY EVALUATION
In order to evaluate the proposed snippet generation strate-

gies, we performed a user study where we sought both qual-
itative and quantitative feedback. In our study, we looked
at workflows created by students of a visualization course,
that make use of the VTK library [21].
Quantitative Feedback. In order to examine the effec-
tiveness of our methods we designed a questionnaire and
applied it to six subjects: three were experts and three were
knowledgeable users. The questionnaire consisted of three
parts. The first part asked users to score different work-
flow features. The results are presented in Figure 8(a). The
workflow description was seen as most important compo-
nent, followed by the module types in the workflow. This
supports our intuition that what the workflow does is impor-
tant, whether it is described (in text) or presented by show-
ing workflow specification (the graph). The actual structure,
i.e., connectivity and size, seems less important. Metadata
like popularity,author of the workflow and creation time
were seen as somewhat important, but orthogonal to con-
tents.

In the second part users were presented with four work-
flows which were chosen to reflect differences in size and
structure. Each user first chose the six most important mod-
ules in each workflow. We then counted how many module
types users selected that were common to the modules se-
lected using the IDF and grouping strategies. The resulting
scores are shown in Figure 8(b). The mean score for IDF

is 3.4 and the core for grouping is 2.8. The scores are
relatively low since not all users selected the same mod-
ules. Nonetheless, these scores indicate that IDF is a good
measure of importance with the grouping strategy slightly
behind. In the second task, users were asked to score four
different snippet types: Snippet 1 contained the same infor-
mation as the Yahoo! Pipes snippet in Figure 1, showing
a thumbnail of the workflow; Snippet 2 contained structure
presented as text as in Figure 3; Snippet 3 contained thumb-
nail with legend as in Figure 7; and Snippet 4 contained the
workflow sub-graph as in Figure 6. The results are presented
in Figure 8(c). Snippet 3 scores best and also contains the
most information. Snippet 4 comes second, indicating that
it may not be worth to have a bigger snippet at a higher
cost. Snippet 2 scores better than snippet 1, indicating that
users prefer to have structural information in the snippet.

We note that, overall, the scores seem low. This reflects
the scale we used, where 3 = good and 5 = excellent . But it
also suggests that there is room for improvement.
Qualitative Feedback. Preliminary user feedback gave
valuable insights. The users found that showing the neigh-
borhood of the query keyword and using IDF to find impor-
tant modules lead to better snippets. The labeling strategy,
on the other hand, was criticized because it splits the struc-
ture of the workflow and the contents of the modules. In
general, users found it inconvenient to see groupings that
lacked labels and whose structure greatly differed from the
structure of the original workflow (see Figure 5).

5. RELATED WORK
Current workflow search engines such as Yahoo! Pipes and

myExperiment use descriptions and coarse-grained thumb-
nails in their snippets. Our work extends this to consider
fine-grained structural information. The WISE [15] work-
flow search engine addresses the related problem of showing
sub-workflows containing keyword terms. Structural snip-
pets have been explored for XML documents [5]. In [5],
Huang et al. propose a set of requirements for snippets that
we used as the basis for designing workflow snippet gener-
ation strategies. Previous works on snippets for ontologies
on the Semantic Web uses semantic proximity of concepts
computed with different tools and databases such as Word-
net2 to calculate the query neighborhood [11]. They focus
on self-similarity and keyword proximity and have a num-
ber of important measures that could be useful for workflow
snippets and we plan to consider this in future work. Con-
siderable work exist on finding the query neighborhood for
text documents [18], our method is analogous but is applied
to the workflow graph. Our work was inspired, in part,
by approaches to compress network graphs [3]. Although
these take into account mainly the topology of the graph,
they can be combined with workflow heuristics. Computing
the maximum common sub-graph between any two workflow
graphs is a related problem [13], but not directly applicable
for snippet generation due to its computational complexity.
The problem can be simplified by reducing the workflow
structure to a set of module labels, or a multiset of labels.
This simplification have been shown to yield a good approx-
imation of the workflow structure [12]. We use this idea
for finding similar groups. Our grouping approach is re-
lated to document snippet clustering [24] but create groups

2http://wordnet.princeton.edu

Feature Importance

Importance

1 2 3 4 5

F
ea

tu
re

size

time

author

connections

popularity

modules

description

●● ●●

●● ● ● ●

●● ●●

●● ●

●● ●

● ●●

●●

(a)

Strategy Hits

Hits

0 1 2 3 4 5 6

S
tr

at
eg

y

Group

IDF

●● ●● ●

● ●●●●

(b)

Snippet Grades

Grade

1 2 3 4 5

S
ni

pp
et

Snippet 1

Snippet 2

Snippet 4

Snippet 3

●● ● ●

●● ● ●

●●●

●● ●●●

(c)

Figure 8: Results of questionnaire. Gray bars represents mean scores. Black circles represent observed scores: larger

black circles means more scores on that value. (a) Features that users found important sorted by mean importance.

(b) The scores for the IDF and Grouping strategy. (c) User grades for the four snippets sorted by mean value.

as a connected sub-graph. Grouping can be compared with
agglomerative clustering, whereas our optimal approach is
similar to k-means.

6. CONCLUSIONS
This papers presents a first study on constructing work-

flow snippets using information from the workflow graph.
Our preliminary results shows that structural information is
useful and conveys important information about the work-
flow. Our work hints that the simple IDF strategy is pre-
ferred to the more involved grouping strategy and that snip-
pets that resemble the actual workflows are preferred by the
users. The results also show that there is room for improve-
ment in the quality of workflow snippets, and we plan to
investigate additional strategies in future work.

7. REFERENCES
[1] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern

Information Retrieval. ACM Press/Addison-Wesley,
1999.

[2] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo.
Querying business processes. In VLDB, pages
343–354, 2006.

[3] A. C. Gilbert and K. Levchenko. Compressing network
graphs. In LinkKDD workshop, August 2004.

[4] A. Goderis, U. Sattler, P. Lord, and C. Goble. Seven
bottlenecks to workflow reuse and repurposing. LNCS,
3729:323, 2005.

[5] Y. Huang, Z. Liu, and Y. Chen. Query biased snippet
generation in XML search. In SIGMOD, pages
315–326, 2008.

[6] R. Karp. Reducibility among combinatorial problems,
85-103. In Proc. Sympos., IBM Thomas J. Watson
Res. Center, Yorktown Heights, NY, 1972.

[7] Kepler. http://kepler-project.org.

[8] D. Koop, C. Scheidegger, S. Callahan, J. Freire, and
C. Silva. Viscomplete: Automating suggestions for
visualization pipelines. IEEE Transactions on
Visualization and Computer Graphics,
14(6):1691–1698, 2008.

[9] myExperiment. http://www.myexperiment.org.

[10] The Pegasus Project. http://pegasus.isi.edu.

[11] T. Penin, H. Wang, D. T. Tran, and Y. Yu. Snippet
generation for semantic web search engines. In ASWC,
DEC 2008.

[12] E. Santos, L. Lins, J. P. Ahrens, J. Freire, and
C. Silva. A first study on clustering collections of
workflow graphs. In IPAW, 2008.

[13] C. Scheidegger, D. Koop, H. Vo, J. Freire, and
C. Silva. Querying and creating visualizations by
analogy. IEEE Transactions on Visualization and
Computer Graphics, 13(6):1560–1567, 2007.

[14] C. E. Scheidegger, H. T. Vo, D. Koop, J. Freire, and
C. T. Silva. Querying and re-using workflows with
vistrails. In SIGMOD, pages 1251–1254, 2008.

[15] Q. Shao, P. Sun, and Y. Chen. WISE: A Workflow
Information Search Engine. Demo Description. In
ICDE, pages 1491–1494, 2009.

[16] Swift. http://www.ci.uchicago.edu/swift.

[17] Taverna. http://taverna.sourceforge.net.

[18] A. Turpin, Y. Tsegay, D. Hawking, and H. Williams.
Fast generation of result snippets in web search. In
SIGIR, pages 127–134. ACM New York, NY, USA,
2007.

[19] C. Van Rijsbergen. Information retrieval.
Butterworth-Heinemann Newton, MA, USA, 1979.

[20] VisTrails. http://www.vistrails.org.

[21] VTK. http://www.vtk.org.

[22] X. Xiang and G. Madey. Improving the reuse of
scientific workflows and their by-products. In IEEE
ICWS, pages 792–799, 2007.

[23] Yahoo! Pipes. http://pipes.yahoo.com.

[24] H.-J. Zeng, Q.-C. He, Z. Chen, W.-Y. Ma, and J. Ma.
Learning to cluster web search results. In SIGIR,
pages 210–217, 2004.

