
Using Mediation to Achieve Provenance Interoperability

Tommy Ellkvist
Linköpings Universitet

David Koop
University of Utah

Juliana Freire
University of Utah and Linköpings Universitet

Cláudio Silva
University of Utah

Lena Strömbäck
Linköpings Universitet

Abstract

Provenance is essential in scientific experiments. It con-
tains information that is key to preserving data, to determin-
ing its quality and authorship, and to reproducing as well
as validating the results. In complex experiments and anal-
yses, where multiple tools are used to derive data products,
provenance captured by these tools must be combined in or-
der to determine the complete lineage of the derived prod-
ucts. In this paper, we describe a mediator-based architec-
ture for integrating provenance information from multiple
sources. This architecture contains two key components:
a global mediated schema that is general and capable of
representing provenance information represented in differ-
ent model; and a new system-independent query API that
is general and able to express complex queries over prove-
nance information from different sources. We also present a
case study where we show how this model was applied to in-
tegrate provenance from three provenance-enabled systems
and discuss the issues involved in this integration process.

1 Introduction

One of the greatest research challenges of the 21st cen-
tury is to effectively understand and leverage the growing
wealth of scientific data. To analyze these data, complex
computational processes need to be assembled, often re-
quiring the combination of loosely-coupled resources, spe-
cialized libraries, distributed computing infrastructure, and
Web Services.

Workflow and workflow-based systems have recently
grown in popularity within the scientific community as a
means to assemble these complex processes [4,5,13,15,18,
23–27]. Not only do they support the automation of repet-
itive tasks, but they can also systematically capture prove-
nance information for the derived data products [3]. The
provenance (also referred to as the audit trail, lineage, and
pedigree) of a data product contains information about the

process and data used to derive the product [6, 22]. It pro-
vides important documentation that is key to preserving the
data, to determining its quality and authorship, and to re-
producing as well as validating the results. These are all
important requirements of the scientific process.

Most workflow systems support provenance capture. But
each adopts its own data and storage models [3, 6]. These
range from specialized Semantic Web languages (e.g., RDF
and OWL) and XML dialects that are stored as files in
the file system, to tables stored in relational databases.
These systems have also started to support queries over
provenance information [16]. Their solutions are closely
tied to the data and storage models they adopt and re-
quire users to write queries in languages like SQL [1] and
SPARQL [9, 14, 31]. Consequently, determining the com-
plete lineage of a data product derived by multiple such
systems requires that information from these different sys-
tems and/or their query interfaces be integrated. Consider
the scenario shown in Figure 1. In order to determine the
provenance of the visualization, it is necessary to combine
the provenance information captured both by the workflow
system used to derive the simulation results and by the
workflow-based visualization system to derive the image.
Without combining this information, it is not possible to
answer important questions about the resulting image, such
as for example, the specific parameter values used in the
simulation.
Contributions and Outline. In this paper, we address
the problem of provenance interoperability in the context
of scientific workflow systems. Provenance interoperabil-
ity is a topic that has recently started to receive attention
in the scientific workflow community [8, 19]. In the Sec-
ond Provenance Challenge (SPC), several groups collabo-
rated in an exercise to explore interoperability issues among
provenance models [19]. Part of the work described in this
paper was developed in the context of the SPC.

We argue that although existing provenance models dif-
fer in many ways, they all share an essential type of in-
formation: the provenance of a given data product consists
of a causality graph whose nodes correspond to processes

1

Visualization!

Tool!

Simulation !

Tool!
Provenance!

Provenance!

Simulation

 results!

Salmon

catch data!

Data product!

Figure 1. The visualization on the right shows salmon
catch information superimposed with a model of the cur-
rents in the mouth of the Columbia River. The simula-
tion was run on a cluster of computers using a grid-enabled
workflow system. A workflow-based visualization system
was then used to display the simulation together with the
salmon catch data.

and data products, and edges correspond to either data or
data-process dependencies. Inspired by previous works on
information integration [28], we propose a mediator archi-
tecture which uses the causality graph as the basis for its
global schema for querying disparate provenance sources
(Section 2). The process of integrating a provenance source
into the mediator consists of the creation of a wrapper that
populates the global (mediated) schema with information
extracted from the source. As part of the mediator, we pro-
vide a query engine and API that support transparent access
to multiple provenance sources. We evaluate the effective-
ness of this approach by applying it to integrate provenance
information from three systems (Section 3). We discuss our
experiences in implementing the system and its relationship
to recent efforts to develop a standard provenance model.

2 A Mediation Approach for Integrating
Provenance

Information mediators have been proposed as a means to
integrate information from disparate sources. A mediator
selects, restructures, and merges information from multiple
sources and exports a global, integrated view of information
in these sources [28]. In essence, it abstracts and transforms
the retrieved data into a common representation and seman-
tics. An information mediator consists of three key com-
ponents (see Figure 2): a global schema that is exposed to
the users of the system; a query rewriting mechanism that
translates user queries over the global schema into queries
over the individual data sources; and wrappers that access
data in the sources and transform them into the model of the

Figure 2. Mediator architecture used to integrate three
provenance models. Queries over the global schema are
translated by the wrappers into queries over the provenance
sources, which are then executed and their results returned
to the mediator. In this example, pieces of a complex work-
flow (slice, softmean and convert) were executed by the
workflow systems. A, B, C and D are data items.

mediator.
In what follows, we describe the mediator architecture

we developed for integrating provenance information de-
rived by scientific workflow systems. In Section 2.2, we
present the global schema used and in Section 2.3 we dis-
cuss the query API supported by our mediator. Details
about the wrappers are given later, in Section 3, where we
describe a case study which shows that the data model and
query API can be effectively used to support queries over
(real) provenance data derived by different systems.

2.1 Scientific Workflows and Provenance

Scientific workflow and workflow-based systems have
emerged as an alternative to ad-hoc approaches for con-
structing computational scientific experiments. They pro-
vide a simple programming model whereby a sequence of
tasks (or modules) is composed by connecting the outputs
of one task to the inputs of another. Workflows can thus
be viewed as graphs, where nodes represent modules and
edges capture the flow of data between the processes.

In the context of scientific workflows, provenance is a
record of the derivation of a set of results. There are two
distinct forms of provenance [2]: prospective and retrospec-
tive. Prospective provenance captures the specification of
the workflow—it corresponds to the steps that need to be
followed (or a recipe) to generate a data product or class of
data products. Retrospective provenance captures the steps
that were executed as well as information about the execu-
tion environment used to derive a specific data product—a
detailed log of the execution of the workflow.

An important piece of information present in workflow
provenance is information about causality: the dependency
relationships among data products and the processes that
generate them. Causality can be inferred from both prospec-
tive and retrospective provenance and it captures the se-

quence of steps which, together with input data and param-
eters, caused the creation of a data product. Causality con-
sists of different types of dependencies. Data-process de-
pendencies (e.g., the fact that the visualization in Figure 1
was derived by a particular workflow run within the visu-
alization tool) are useful for documenting data generation
process, and they can also be used to reproduce or validate
the process. For example, it would allow new visualiza-
tions to be derived for different input data sets (i.e., differ-
ent simulation results). Data dependencies are also useful.
For example, in the event that the simulation code used to
generate simulation results is found to be defective, data
products that depend on those results can be invalidated by
examining data dependencies.

Although different workflow systems use different data
models, storage systems, and query interfaces, they all
represent the notion of causality using a directed acyclic
graph (DAG). In this graph, vertices are either data products
or processes and the edges represent dependencies among
them. As we describe below, the causality graph forms the
basis for the global schema used in our mediator architec-
ture.

2.2 A Data Model for Scientific Workflow
Provenance

A central component of our mediator is a general prove-
nance model, the Scientific Workflow Provenance Data
Model (SWPDM). The model captures entities and relation-
ships that are relevant to both prospective and retrospective
provenance, i.e., the definition and execution of workflows,
and data products they derive and consume. As a result,
besides queries over provenance, our model also supports
direct queries over workflow specifications. As we discuss
later, this is an important distinction between SWPDM and
the Open Provenance Model [17].

The entities and relationships of the SWPDM are de-
picted in Figure 3. At the core of the model is the op-
eration entity, which is a concrete or abstract data transfor-
mation, represented in three different layers in the model:
procedure, which specifies the type of an operation; mod-
ule, which represents an operation that is part of an abstract
process composition; and execution, which represents the
concrete execution of an operation.

A data item represents a data product that was used or
created by a workflow. A procedure represents an abstract
operation that uses and produces data items. A procedure
declaration is used to model procedures together with a list
of supported input and output ports, which have types (e.g.,
integer, real). It describes the signature of a module. A port
is a slot from/to which a procedure can consume/output a
data item. A workflow specification consists of a graph that
defines how the different procedures that compose a work-
flow are orchestrated, i.e., a set of modules that represent

Figure 3. Overview of the Scientific Workflow Prove-
nance model. Boxes represents entity types and arrows rep-
resents relationships between entities. Relationships can
have attributes, shown after the relationship name. The
procedure declaration specifies a list of typed input/output
ports for each procedure—the signature of the procedure.
The workflow specification contains the modules, connec-
tions and parameters that makes up the workflow. The exe-
cution log contains a record of executions of processes and
used data items.

procedures and connections that represent the flow of data
between modules. Parameters model pre-defined input data
on specific module ports. The execution log consists of con-
crete executions of procedures and the data items used in the
process.

Two points are worthy of note in our choice of enti-
ties. A workflow is assigned input data before execution,
but besides these inputs, a module may also have parame-
ters which serve, for example, to set the state of the module
(e.g., the scaling factor for an image). From a provenance
perspective, parameters are simply data items, but by us-
ing a finer grained division, we can support more expres-
sive queries. Furthermore, by modeling workflow connec-
tions as separate from the data items, we are able to query
for the structure of a workflow directly. These connections
can then be used to answer queries like ”which data items
passed through this connection”.

Another key component of workflow provenance is user-
defined information. This includes documentation that can-
not be automatically captured but records important deci-
sions and notes. This information is often captured in the
form of annotations, which are supported by most work-
flow systems. In our model, an annotation is a property of
entities in the model. Annotations can add descriptions to
entities that can later be used for querying. Examples are
execution times, hardware/software information, workflow
creators, descriptions, labels, etc. In the model, we assume
that any entity can be annotated.

Function Description
outputOf(data) get execution that created data
inputOf(data) get execution that used data
output(execution) get data created by execution
input(execution) get data used by execution
execOf(execution) get the module representing execution
getExec(module) get the executions of module
represents(module) get the process that module represents
hasModule(process) get module that represents process
derivedFrom(data) get data products used to create data
derivedTo(data) get data products derived from data
prevExec(execution) get execution that triggered execution
nextExec(execution) get executions triggered by execution
upstream(x) transitive closure operation, where x is a

module, execution or data
downstream(x) transitive closure operation,where x is a mod-

ule, execution or data

Table 1. List of API functions

2.3 Querying SWPDM
We have designed a new query API that operates on the

entities and relationships defined in the SWPDM model.
This API provides basic functions that can serve as the ba-
sis to implement a high-level provenance query language.
In order to integrate a provenance source into the mediator,
one must provide system-specific bindings for the API func-
tions. Figure 4 illustrates the bindings of the API function
getExecutedModules(wf exec) for three distinct provenance
models. As we describe in Section 3.2, each binding uses
the data model and query language supported by the under-
lying system.

Note that a given workflow system may not capture all
the information represented in our model (see Figure 3). In
fact, the systems we used in our case study only partially
cover this model (see Section 3). Thus, in designing API
bindings for the different systems, the goal is to extract (and
map) as much information as possible from each source.

Some of the API functions are summarized in table 1.1

Since the API operates on a graph-based model, a key func-
tion it provides is graph traversal. The graph-traversal func-
tions are of the form getBFromA, which traverse the graph
from A to B. For example, getExecutionFromModule tra-
verses the graph from a module to its executions, i.e., it re-
turns the execution logs for a given module.

Additional functions are provided to represent common
provenance operations which have to do with having both
data- and process-centric views on provenance. For exam-
ple, getParentDataItem returns the data items used to create
a specific data item. Such parent/child functions also exist
for modules and executions.

Note that the API contains redundant functions, e.g., get-
ParentExecution can be also achieved by combining getEx-
ecutionFromOutData and getInDataFromExecution. If data

1The complete API, and the bindings to Taverna, PASOA and VisTrails,
are available for download in:
http://twiki.ipaw.info/pub/Challenge/VisTrails2/api.zip

!"#$%&'&(%)*!+),-'./0%)
getExecutedModules(wf_exec)

VisTrails (XPath)
def getExecutedModules(self, wf_exec):

 newdataitems = []
 q = '//exec[@id="' + wf_exec.pid.key + '"]/@moduleId'
 dataitems = self.logcontext.xpathEval(q)

Pasoa (XPath)
def getExecutedModules(self, wf_exec):

 q = "//ps:relationshipPAssertion[ps:localPAssertionId='" +
 wf_exec.pid.key + "']/ps:relation"
 dataitems = self.context.xpathEval(q)

Taverna (SPARQL)
def getExecutedModules(self, wf_exec):

 " "
 q = '''
 SELECT ?mi

 FROM <''' + self.path + '''>
 WHERE

 { <''' + wf_exec.pid.key + '''>
 <http://www.mygrid.org.uk/provenance#runsProcess> ?mi }
 '''

 return self.processQueryAsList(q, pModuleInstance)

Figure 4. Implementations of the getExecutedModules
function for different provenance systems.

items are not recorded by the given provenance system, the
binding for getParentExecution might use another path to
find the previous execution. Although these redundant func-
tions are needed for some provenance systems, they can
make query construction ambiguous. It is up to the wrapper
designer to implement these based on the capabilities of the
underlying system and its data model.

Provenance queries often require transitive closure oper-
ations that traverse the provenance graph in order to trace
dependencies forward or backward in time. Our API sup-
ports transitive closure queries in both directions: upstream,
which traces provenance backwards (e.g., what derived a
given data item); and downstream, which traces provenance
forward (e.g., what depends on a given data item).

The upstream function is represented as upstream(x)
where x is an entity and the output is all its dependen-
cies. There is also a corresponding downstream function.
Since these queries can be expensive to evaluate, it is use-
ful to have additional attributes that can prune the search
space. A depth restriction specifies the maximum depth to
explore, and a scope restriction specifies entities that should
be ignored in the traversal. These restrictions are capture by
the function y = upstream(x, depth, scope), and the corre-
sponding downstream.

There are additional operations including getAll which
returns all entities of a specific type and is used to create
local caches of the provenance store. Two operations handle
annotations: getAllAnnotated returns entities containing a
specific annotation and is used for queries on annotations;
and getAnnotation returns all annotations of an entity.

2.4 Discussion and Related Work

Mediator Architecture. There are different approaches to
mediation [11]. In this paper, we explore the virtual ap-
proach, where information is retrieved from the sources

Figure 5. The basic concepts in the OPM. It maps directly
to the execution log of our SWPDM. The entity types and
relationships have different names but represent the same
concepts. Here, data items are called artifacts and ports are
called roles.

when queries are issued by the end user. Another approach
is to materialize the information from all sources in a ware-
house. The trade-offs between the two are well-known.
Whereas warehousing leads to more efficient queries, not
only can data become stale, but also the storage require-
ments can be prohibitive. Nonetheless, our architecture
can also be used to support a warehousing solution: once
the wrappers are constructed, queries can be issued that re-
trieve all available data from the individual repositories to
be stored in a warehouse.
Other Approaches to Provenance Interoperability. Thir-
teen teams participated in the Second Provenance Chal-
lenge, whose goal was to establish provenance interoper-
ability among different workflow systems. Most solutions
mapped provenance data from one system onto the model
of another. Although all teams reported success, they also
reported that the mapping process was tedious and time
consuming. To create a general solution, such approaches
would require n2 mappings, where n is the number of sys-
tems being integrated. In addition, they require that all data
from the different systems be materialized, which may not
be practical. In contrast, by adopting a mediator-based ap-
proach, only n mappings are required—one mapping be-
tween each system and the global schema. And as dis-
cussed above, both virtual and materialized approaches are
supported by the mediator architecture.
The Open Provenance Model. One of the outcomes of
the Second Provenance Challenge was the realization that
it is indeed possible to integrate provenance information
from multiple systems, and that there is substantial agree-
ment on a core representation of provenance [19]. Armed
with a better understanding of the different models, their
query capabilities, and how the can interoperate, Moreau
et al. [17] proposed a standard model for provenance: the
Open Provenance Model (OPM). The OPM defines a core
set of rules that identify valid inferences that can be made
on provenance graphs. Important goals shared by the OPM
and SWPDM include: simplify the exchange of provenance
information; and allow developers to build and share tools
that operate on the model. However, unlike the SWPDM,
OPM supports the definition of provenance for any “thing”,
whether produced by computer systems or not. In this
sense, OPM is more general than SWPDM. However, by

focusing on workflows and modeling workflow represen-
tations, SWPDM allows a richer set of queries that corre-
late provenance of data products and the specification of the
workflows that derived them.

We should note that many of the concepts model by
OPM can also be modeled in SWPDM. Figure 5 shows the
OPM representation of the relationships between processes
and data items. This representation can be mapped directly
to the execution log of SWPDM which contains the prove-
nance graph. The OPM also contains a number of inferred
relationships, namely transitive versions of the basic rela-
tionships. We support these by using transitive functions
in the API (upstream and downstream, see Section 2.3).
The OPM has an optional part component to represent time.
SWPDM supports time as an annotation which means we
can support any number of representations of time includ-
ing the one in the OPM. In the OPM there is also a notion of
an agent that is responsible for executions. These can also
be modeled as annotations.

3 Case Study: Integrating Provenance from
Three Systems

We implemented the mediator architecture described in
Section 2 as well as bindings for the query API using three
distinct provenance models: VisTrails [27], PASOA [10],
and Taverna [24]. Figure 2 shows a high-level overview of
our mediator.

In order to assess the effectiveness of our approach,
we used the workflow and query workload defined for the
Provenance Challenge [19]. The workflow entails the pro-
cessing of functional magnetic resonance images, and the
workload consists of typical provenance queries, for exam-
ple: what was the process used to derive an image? which
data sets contributed to the derivation of a given image? For
a detailed description of the workflow and queries, see [19].
Before we describe our implementation and experiences,
we give a brief overview of the provenance models used
in this case study.

3.1 Provenance Models

VisTrails is a scientific workflow system developed at the
University of Utah. A new concept introduced with Vis-
Trails is the notion of provenance of workflow evolution [7].
In contrast to previous workflow systems, which maintain
provenance only for derived data products, VisTrails treats
the workflows (or pipelines) as first-class data items and
keeps their provenance. The availability of this additional
information enables a series of operations which simplify
exploratory processes and foster reflective reasoning, for
example: scientists can easily navigate through the space
of workflows created for a given exploration task; visually

Figure 6. The different layers in the implementation of
the query API. Queries are processed starting from a known
entity (PQObject) and traversed by using relationship edges
in the mediator (PQueryFactory). The mediator executes
the query using the wrapper interface (Pwrap), that in turn
executes the query using a specific wrapper for each data
source.

compare workflows and their results; and explore large pa-
rameter spaces. VisTrails captures both prospective and ret-
rospective provenance, which are stored uniformly either as
XML files or in a relational database.
Taverna is a workflow system used in the myGrid project,
whose goal is to leverage semantic web technologies and
ontologies available for Bioinformatics to simplify data
analysis processes in this domain. Prospective provenance
is stored as Scufl specifications (an XML dialect) and ret-
rospective provenance is stored as RDF triples in a MySQL
database. Taverna assigns globally unique LSID [30] iden-
tifiers to each data product.
PASOA (Provenance Aware Service Oriented Architecture)
relies on individual services to record their own provenance.
The system does not model the notion of a workflow, in-
stead, it captures assertions produced by services which
reflect the relationships between services and data. The
complete provenance of a task or data product must be in-
ferred by combining these assertions and recursively fol-
lowing the relationships they represent. PReServ, an im-
plementation of PASOA, supports multiple backend storage
systems, including files and relational database, and queries
over provenance can be posed using its Java-based query
API or XQuery.

3.2 Building the Mediator

Our model was developed based on a study of the three
models above. Each of the models covers only part of the
mediated model. For both Taverna and PASOA, only the ex-
ecution log was available: the workflow specifications were
not provided. VisTrails stores both workflow specification
and the execution log. It uses a normalized provenance
model where each execution record points to the workflow
specification where it came from. But the system does not
explicitly identify data items produced in intermediate steps
of workflow execution.
Implementation. We implemented the mediator-based ar-
chitecture in Python. The different components are shown

in Figure 6. PQObject represents a concept in the global
schema; PQueryFactory the mediator; and XMLwrap (for
XML data using XPath) and RDFwrap (for RDF data us-
ing SPARQL) are abstract wrappers. The concrete wrap-
pers are in the bottom layer: for PASOA and VisTrails,
wrappers were built by extending XMLWrap; and for Tav-
erna using RDFWrap. These wrappers implement API
functions defined in Section 2.3 using the query inter-
faces provided by each system. Due to space limita-
tions, we omit the details of the API bindings. The
source code for the mediator and bindings is available at
http://twiki.ipaw.info/pub/Challenge/VisTrails2/api.zip.
Using and Binding the API. Here we show some examples
of how the API functions can be used to construct complex
queries. Since each function applies to an entity, as a first
step, it is necessary to obtain a handle for the entity instance
of interest. For example, to access the handle for a port, the
node corresponding to that port needs to be extracted from
the global schema:

m = pqf.getNode(pModule, moduleId, store1.ns)

The getNode method accesses the components of an in-
stance of the PQueryFactory (pqf), and it requires the
specification of the entity type (pModule), unique en-
tity identifier (moduleId), and a specific provenance store
(store1.ns). Once the handle has been retrieved, the prove-
nance graph can be traversed by invoking an API function
(i.e., to get all executions of a module e, we would call
e.getDataItemFromExecution()).

There are some issues that need to be considered during
query construction. First, there are different ways to repre-
sent a workflow. For example: modules can contain scripts
whose parameters are not properly exposed in the module
signature; and parameters can be modeled as input ports.
Thus, the actual implementation of a query depends on the
chosen representations and semantics implemented within
the wrapper. Another issue concerns the specification of
data items and inputs. Some systems record the concrete
data item used as input while others represents data items
by names that are stored as parameters to modules that use
the data item. This must also be resolved during the wrap-
per design, by modeling data items, inputs and parameters
consistently across distinct provenance stores.

Consider, for example, the provenance challenge query
6 which asks for “the process that led to the image Atlas X
Graphic”, i.e., the provenance graph that led to this specific
image. In VisTrails, the image is identified by atlas-x.gif
that is specified as a parameter to a FileSink module
in the workflow specification. Taverna uses the port name
convert1 out AtlasXGraphic—data items are handled inter-
nally and are not saved to disk. PASOA uses the string
atlas-x.gif that is passed between the two modules. This
means that the starting handle obtained for the different sys-

tems will be of different types. In VisTrails, it is a parameter
of a module; in Taverna it is an output port of a module; and
in PASOA it is a data item. Thus, once the handle for “Atlas
X Graphic” is obtained, different methods need to be used in
order to compute the required upstream modules. For Vis-
Trails, we find the FileSink module that contains the file
name, then find the executions of that module, and finally
compute the upstream of those executions. For Taverna, we
obtain the executions associated with the output port and
compute the upstream. For PASOA, we get the executions
that created the data item and compute the upstream.

3.3 Experiences
In what follows, we discuss some of our findings during

this case study as well as issues encountered while imple-
menting the mediator and how they have been addressed.

Mismatches between models. We found only a few mis-
matches between the models we considered. This indicates
that it is possible to create a general provenance model that
is effective. One mismatch was due to the labeling of mod-
ules. In Taverna, modules are assigned user-defined names
whereas VisTrails uses the name of the module type. This
can confuse users, for example, a VisTrails user looking at
a Taverna workflow may falsely assume that the label of
a module represents its type. In our implementation, this
was resolved by creating an abstract label that describes the
module. We mapped this label to the module label for Tav-
erna and to the module type for VisTrails.

Implementing wrappers. Wrapper construction is a time-
consuming process. A wrapper needs to provide a wide
range of access methods so that it can efficiently support
general queries. This is in contrast to n × n mapping ap-
proaches (see Section 2.4), where specifying an individual
mapping between two models can be much simpler. The
problem with the latter solution is that more mappings are
required for a comprehensive integration system.

Transitive closure. The implementation of transitive clo-
sure (i.e., the upstream/downstream functions) was prob-
lematic. Neither XPath nor SPARQL supports transitive
closure operations natively. Possible workarounds are to
use recursive functions for XQuery [29] and to add in-
ference rules to the SPARQL engine. However, in both
solutions, queries are expensive to evaluate. To over-
come this problem, we used two other methods: (1) wrap-
pers implement the closure as recursive calls of single-
step operations—this method is system-independent but not
very efficient; (2) cache the transitive relations on the me-
diator and perform the closure computation on the client
side—although fast, this method may not be scalable since
it requires loading transitive data from the data stores. Sup-
port for transitive closure computation is a topic that has
been well-studied in deductive databases (see e.g., [12]) and
we plan to experiment with alternative and more efficient
approaches.

We note that the optimizations for limiting the scope
and depth of transitive closures were useful for some of the
provenance challenge queries. For example, scope restric-
tions were used to discard everything before softmean in
Query 2; and in Query 3, the stages can be interpreted as
depth, in which case a depth restriction is useful.

Provenance interoperability and data identifiers. An-
other problem that needs to be addressed when reconstruct-
ing the provenance of a data item across multiple prove-
nance stores is how to identify the data items used. If a data
item is the product of a sequence of workflows, and the con-
nections among the workflows are represented only by the
data items they exchange, versioning of the files is required
to correctly connect the provenance records. Furthermore,
identifiers used in different models were of different types.
As a result, one could not assume any specific format or that
the identifiers were unique. We solved this by appending
the source model type to the identifier and treat the identi-
fier itself as a string. Essentially, our mediator creates its
own namespace. It would be preferable to use the names-
pace already present in the source data but since they were
of different types or not present at all, this was not possible.
Another potential solution for this problem would be the
adoption a common identifier type for provenance entities,
such as the LSIDs used in the Taverna model.

4 Conclusions and Future work

We addressed the problem of provenance interoperabil-
ity as data integration and proposed a mediator-based ar-
chitecture for integrating provenance from multiple sources.
We have identified a core set of concepts and access func-
tions present in different provenance systems, and used
them to develop a general provenance model and query API.
To validate our approach, we implemented the mediator
along with wrappers for three provenance models. We used
the system to evaluate a series of queries over provenance
data derived by the different systems. The preliminary re-
sults of our case study indicate that this approach can be
effective for integrating provenance information.

There are several avenues we plan to explore in future
work. An important goal of this work was to assess the
feasibility of the proposed architecture. As a next step,
we would like to evaluate the efficiency and scalability of
different approaches to provenance interoperability. One
challenge we currently face is the lack of a suitable bench-
mark for the evaluation. Another direction we plan to pur-
sue is to implement a mediator-based architecture that uses
OPM as the model for the global schema. Last, but not
least, we would like to explore usable languages and in-
terfaces for querying provenance. The query API we have
developed is low-level and can be complex for end-users
to specify queries. It can, nonetheless, be used as the ba-

sis for high-level languages and interfaces. Specifically, we
plan to develop automatic mechanisms for translating high-
level provenance queries into calls to the API, for example:
queries defined through a query-by-example interface [21];
and through domain-specific provenance languages [20].

References

[1] R. S. Barga and L. A. Digiampietri. Automatic capture
and efficient storage of escience experiment provenance.
Concurrency and Computation: Practice and Experience,
20(5):419–429, 2008.

[2] B. Clifford, I. Foster, M. Hategan, T. Stef-Praun, M. Wilde,
and Y. Zhao. Tracking provenance in a virtual data grid.
Concurrency and Computation: Practice and Experience,
20(5):565–575, 2008.

[3] S. B. Davidson and J. Freire. Provenance and scientific
workflows: challenges and opportunities. In Proceedings
of ACM SIGMOD, pages 1345–1350, 2008.

[4] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil,
C. Kesselman, G. Mehta, K. Vahi, G. B. Berriman, J. Good,
A. Laity, J. C. Jacob, and D. S. Katz. Pegasus: a
Framework for Mapping Complex Scientific Workflows
onto Distributed Systems. Scientific Programming Journal,
13(3):219–237, 2005.

[5] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera: A
virtual data system for representing, querying and automat-
ing data derivation. In Proceedings of SSDBM, pages 37–46,
2002.

[6] J. Freire, D. Koop, E. Santos, and C. T. Silva. Provenance
for computational tasks: A survey. Computing in Science
and Engineering, 10(3):11–21, 2008.

[7] J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Schei-
degger, and H. T. Vo. Managing rapidly-evolving scientific
workflows. In IPAW, pages 10–18, 2006.

[8] D. Gannon et al. A Workshop on Scientific and Scholarly
Workflow Cyberinfrastructure: Improving Interoperability,
Sustainability and Platform Convergence in Scientific And
Scholarly Workflow. Technical report, NSF and Mellon
Foundation, 2007. https://spaces.internet2.
edu/display/SciSchWorkflow.

[9] J. Golbeck and J. Hendler. A semantic web approach to
tracking provenance in scientific workflows. Concurrency
and Computation: Practice and Experience, 20(5):431–439,
2008.

[10] P. Groth, S. Miles, and L. Moreau. Preserv: Provenance
recording for services. In Proceedings of the UK OST e-
Science Fourth All Hands Meeting (AHM05), September
2005.

[11] A. Y. Halevy. Data integration: A status report. In BTW,
pages 24–29, 2003.

[12] Y. E. Ioannidis and R. Ramakrishnan. Efficient transitive
closure algorithms. In VLDB, pages 382–394, 1988.

[13] The Kepler Project. http://kepler-project.org.
[14] J. Kim, E. Deelman, Y. Gil, G. Mehta, and V. Ratnakar.

Provenance trails in the wings/pegasus system. Concurrency
and Computation: Practice and Experience, 20(5):587–597,
2008.

[15] Microsoft Workflow Foundation.
http://msdn2.microsoft.com/en-us/
netframework/aa663322.aspx.

[16] L. Moreau, editor. Concurrency and Computation: Prac-
tice and Experience– Special Issue on the First Provenance
Challenge, 2008.

[17] L. Moreau, J. Freire, J. Futrelle, R. McGrath, J. Myers, and
P. Paulson. The open provenance model, December 2007.
http://eprints.ecs.soton.ac.uk/14979.

[18] S. G. Parker and C. R. Johnson. SCIRun: a scientific pro-
gramming environment for computational steering. In Su-
percomputing, page 52, 1995.

[19] Second provenance challenge. http:
//twiki.ipaw.info/bin/view/
Challenge/SecondProvenanceChallenge,
2007. J. Freire, S. Miles, and L. Moreau (organizers).

[20] C. Scheidegger, D. Koop, E. Santos, H. Vo, S. Callahan,
J. Freire, and C. Silva. Tackling the provenance challenge
one layer at a time. Concurrency and Computation: Prac-
tice and Experience, 20(5):473–483, 2008.

[21] C. Scheidegger, D. Koop, H. Vo, J. Freire, and C. Silva.
Querying and creating visualizations by analogy. IEEE
Transactions on Visualization and Computer Graphics,
13(6):1560–1567, 2007. Papers from the IEEE Visualiza-
tion Conference 2007.

[22] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data
provenance in e-science. SIGMOD Record, 34(3):31–36,
2005.

[23] Y. L. Simmhan, B. Plale, D. Gannon, and S. Marru. Per-
formance evaluation of the karma provenance framework
for scientific workflows. In International Provenance and
Annotation Workshop (IPAW), Chicago, IL, volume 4145 of
Lecture Notes in Computer Science, pages 222–236, 2006.

[24] The Taverna Project. http://taverna.
sourceforge.net.

[25] The Triana Project. http://www.trianacode.org.
[26] VDS - The GriPhyN Virtual Data System.

http://www.ci.uchicago.edu/wiki/bin/
view/VDS/VDSWeb/WebMain.

[27] The VisTrails Project. http://www.vistrails.org.
[28] G. Wiederhold. Mediators in the architecture of future in-

formation systems. In M. N. Huhns and M. P. Singh, ed-
itors, Readings in Agents, pages 185–196. Morgan Kauf-
mann, San Francisco, CA, USA, 1992.

[29] XQuery 1.0: An XML Query Language, http://www.
w3.org/TR/xquery/, 2008.

[30] J. Zhao, C. Goble, and R. Stevens. An identity crisis in
the life sciences. In Proc. of the 3rd International Prove-
nance and Annotation Workshop, Chicago, USA, May 2006.
LNCS. extended paper.

[31] J. Zhao, C. Goble, R. Stevens, and D. Turi. Mining taverna’s
semantic web of provenance. Concurrency and Computa-
tion: Practice and Experience, 20(5):463–472, 2008.

