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ABSTRACT
Post-acquisition motion correction is widely performed in diffusion-
weighted imaging (DWI) to guarantee voxel-wise correspondence
between DWIs. Whereas this is primarily motivated to save as many
scans as possible if corrupted by motion, users do not fully under-
stand the consequences of different types of interpolation schemes
on the final analysis. Nonetheless, interpolation might increase the
partial volume effect while not preserving the volume of the diffu-
sion profile, whereas excluding poor DWIs may affect the ability to
resolve crossing fibers especially with small separation angles. In
this paper, we investigate the effect of interpolating diffusion mea-
surements as well as the elimination of bad directions on the recon-
structed fiber orientation diffusion functions and on the estimated
fiber orientations. We demonstrate such an effect on synthetic and
real HARDI datasets. Our experiments demonstrate that the effect
of interpolation is more significant with small fibers separation an-
gles where the exclusion of motion-corrupted directions decreases
the ability to resolve such crossing fibers.

Index Terms— Diffusion MRI, HARDI, motion correction, in-
terpolation

1. INTRODUCTION

Diffusion-Weighted Imaging (DWI) reveals, in a non-invasive man-
ner, the brain network connectivity by measuring the motion of water
molecules in biological tissues. The basic model that enables to in-
fer connectivity maps is Diffusion Tensor Imaging (DTI). Despite
its widespread use, it has been shown that DTI is inadequate to cap-
ture complex white matter configurations existing in various brain
regions. To overcome the limitations of DTI, a different modality
known as high angular resolution diffusion imaging (HARDI) [1]
has been adopted. In contrast to DTI, HARDI is capable of mod-
eling intra-voxel orientational heterogeneity, such as crossing and
merging fiber bundles.
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While being inherently a low-resolution and a low-SNR imag-
ing technique, an intrinsic artifact of DWI is its sensitivity to motion
[2, 3], which results in a significant signal phase shift, or signal loss
[4]. Motion is usually attributed to substantial vibration of the diffu-
sion gradients [5], cardiac pulsation, breathing and head movement
comparable to, or larger than the voxel size [6]. This sensitivity
is further increased with long acquisition times where subjects are
likely to move.

Motion effects can be reduced by real-time motion detection [7,
8], where the acquisition and the source of motion are synchronized,
however, this prospective approach for motion correction might af-
fect the acquisition time. A comfortable padding can also be used
to minimize subject head motion while urging the participant to re-
main without movement [9], but this is not always effective in studies
involving newborn and infants (e.g. autism diagnosis [10]). Alterna-
tively, the exclusion of one or more gradients bearing strong motion
artifacts can be exercised [11], however, this limits the ability to re-
construct crossing fibers especially at small separation angles. As
such, post-acquisition motion correction is imperative to guarantee
voxel-wise correspondence between different DWIs referring to the
same anatomical structure.

A typical motion correction algorithm involves two stages [6];
first, finding the global transformation parameters that would trans-
form all DWIs to the same coordinate frame, then, applying the es-
timated transformation to the diffusion data. Solving for the trans-
formation parameters usually involves rigidly registering the DWIs
to a reference image representing the same anatomical structure, but
without being contaminated by motion artifacts, e.g., a non-diffusion
weighted image, a T2-weighted image [2], or a model-based refer-
ence image for each diffusion weighted image [12].

However, applying the estimated transformation involves re-
orienting the diffusion gradient vectors [13] to incorporate the
rotational component of subject motion, as well as interpolating the
DWIs. Nonetheless, such interpolation might increase the partial
volume effect [14], while modifying the variance properties of the
original images [15]. Further, Euclidean-based interpolation, which
is being used by different motion correction algorithms, e.g. FSL-
MCFLIRT [16], has been known to not preserve the volume of the
diffusion profile [17]. Hence, interpolated diffusion measurements
would result in diffusion tensor swelling. This swelling effect might
even be more pronounced when dealing with HARDI measure-
ments where higher-order tensors are used to represent orientation
distribution functions.

The effect of different interpolation schemes on HARDI-based
reconstruction and subsequent analysis seems to have been mostly
disregarded by the scientific community. Chao et al. [18] investi-
gated such effects on the measurement of fractional anisotropy (FA),



as a result of interpolating diffusion tensor images in spatial normal-
ization for voxel-based statistics. Based on their experimentation on
simulated and real data, they concluded that spatial normalization
may affect the FA value in brain areas with predominantly crossing
fibers. To the best of our knowledge, no quantitative study has been
carried out on HARDI-data, although this may have a direct impact
on registration, atlas building, tractography, and group differences.
Therefore, the outcomes of a HARDI-based study can significantly
vary based on the employed interpolation scheme.

In this paper, we use simulated and real data to study the ef-
fects of different interpolation schemes, commonly used in motion
correction, on reconstructed fiber orientation distribution functions
(fODFs), and the detected fiber orientations. Also, we explore the
effect of excluding motion-corrupted DWIs, as an alternative to in-
terpolation.

2. METHODS
The effects of motion correction are demonstrated on two datasets;
(1) synthetic data, where motion (rotation in particular) parameters
are known before-hand, and (2) real data, where two HARDI ac-
quisitions of the same subject are mixed to mimic noticeable sub-
ject motion. In both cases we explore two different approaches for
motion correction. In the first approach, motion artifacts are cor-
rected by rotating the corrupted diffusion images, while re-orienting
the corresponding gradient directions. This approach involves im-
age interpolation, where various interpolation methods are studied.
The re-orientation step was performed using FSL-MCFLIRT [16]
with nearest neighbor, trilinear, sinc and spline interpolation tech-
niques. In the second approach, we exclude the affected gradient
directions from subsequent computations (i.e., diffusion profile re-
construction).

To study the impact of motion correction on reconstructed diffu-
sion profiles from HARDI scans, we use fiber orientation distribution
functions (fODFs). The fODFs were computed using the method
proposed by Weldeselassie et al. [19], which models diffusion by
estimating symmetric positive definite higher-order tensors. In this
work, we only consider fourth-order tensors to avoid the dominant
impact of noise on higher orders. The representation of the fODF as
a higher-order tensor enables us to extract the fiber orientations by
directly applying the tensor decomposition technique proposed by
Jiao et al. [20].

We use two different measures to quantify the impact of mo-
tion correction on the estimated fODFs. In order to quantify the
similarity between the original motion-free fODFs and the fODFs
corresponding to the motion corrected images, we use the Jensen-
Shannon divergence (JSD) which measures similarity between prob-
ability distributions, and has been used to quantify differences be-
tween ODFs in various studies [21, 22]. Given two probability dis-
tributions P and Q, the JSD metric is defined as follows:

JSD(P‖Q) =
1

2
[DKL(P‖M) +DKL(Q‖M)] , (1)

where M = (P + Q)/2 and DKL is the Kullback-Leibler di-
vergence. In our case, P and Q are represented as discrete dis-
tributions, therefore, the KL divergence takes the following form:
DKL(P‖Q) =

∑
i Pi log

Pi
Qi

, where i is the discrete sample index.
Note that in order to use the JSD, the fODFs need to be normalized
to sum up to 1.

Deviations in fiber orientations due to motion correction may
lead to erroneous fiber tracts, therefore, it is important to study this
effect by directly comparing the original fiber orientations to the
post-correction ones. To that end, we use the mean angular devi-

ation measure defined as follows:
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where k is the number of fibers compared, and vki and vkj corre-
spond to the orientations of fiber k, with and without motion cor-
rection. In the simulated data case, we restrict ourselves to two
fibers, therefore, N = 2 in every voxel. Since any image trans-
formation will not preserve the original fiber orientations ordering,
in each comparison we match the two closest fibers, such that θ1 =
min{θ11,1, θ11,2}, and then we compute θ2 for the remaining pair of
fibers. Note that while in the simulated data case we use the mean
deviation, in the real data case we use the angular deviation between
each pair of fibers, separately (that is, θ1 and θ2).

3. EXPERIMENTS
3.1. Synthetic Data
A synthetic, analytical phantom (matrix size 16x16) was created to
quantitatively assess interpolation performance and the amount of ar-
tifacts it produces. The phantom was generated based on two cross-
ing fiber bundles with a controllable separation angle. This design
enables us to rotate the phantom before simulating the diffusion sig-
nal in order to mimic the rotational component of the subject motion.

The diffusion signal is generated by simulating two crossing
fiber bundles with separation angle θ ∈ {45o, 60o, 75o, 90o} us-
ing the multi-tensor model as in [23]. Based on typical diffusiv-
ities found in the human brain [24], we assume a prolate tensor
model with eigenvalues λ1 = 1.7 × 10−3 mm2/s and λ2 = λ3 =
0.3 × 10−3 mm2/s. We used the HARDI-like sampling scheme of
ISBI-2013 HARDI reconstruction challenge with 64 gradient direc-
tions and b-value = 3000 s/mm2.

To simulate motion, we adopt the random subject motion model
in [13], where we studied three different cases with 30%, 50% and
70% of the gradient directions were corrupted by rotating the two-
fibers phantom about the z-axis. The rotation angle α was randomly
drawn from a normal distribution with zero mean and std of 5o.

Fig. 1 shows the quantitative comparison between the recon-
structed fODFs and the estimated fiber orientations from interpo-
lated diffusion measurements versus the ground truth reconstructions
(where there is no motion corruption). One can observe that the ef-
fect of interpolation on the fODFs, and on the detected fiber orien-
tations, becomes significant as the percentage of corrupted gradients
increases. The JSD is maximal in single fiber voxels indicating that
the reconstructed fODFs from interpolated diffusion measurements
show increase in the diffusion volume. Furthermore, the effect of
interpolation on the fODFs increases for small fiber separation an-
gles. Although excluding corrupted gradient might seem an alter-
native choice for motion correction, the fiber orientation deviation
increases for small fiber separation angles, especially when the per-
centage of directions being corrupted is increased, a situation which
is encountered in studies including newborn and infants.

3.2. Real Data
One healthy subject was scanned twice with a 3.0T Siemens Mag-
netom TrioTim scanner where Eddy current was compensated for
using the Twice-refocused Spine Echo sequence. To simulate no-
ticeable motion, the subject was allowed to move (rotation of about
10o) between the two scans. DWI datasets were acquired with FOV
= 20× 20 cm, slice thickness = 2.0 mm, matrix size = 106× 106
with 76 axial slices. The diffusion data consisted of one baseline
image with zero b-value and 64 DW-images with b-value = 2000
s/mm2.



Fig. 1. Simulated data results. Top: The average Jensen-Shannon divergence (JSD) values. Bottom: The average fiber orientation deviation
(in degrees). Both metrics are shown as functions of the fibers’ separation angles (where 0 indicates a single fiber), and the motion-correction
method.

Fig. 2. Real data results. Comparisons of fODFs and the estimated fiber orientations from interpolated diffusion measurements and motion-
free data. Left: The average Jensen-Shannon divergence (JSD). Middle: The average fiber orientation deviation of the first detected fiber
having the largest volume fraction. Right: average fiber orientation deviation of the second detected fiber having the second largest vol-
ume fraction. Those measures are shown as functions of the motion-correction scheme (removing directions versus different interpolation
schemes), and different percentages of motion-corrupted directions.

We arbitrarily considered the first out of the two acquisitions as
the uncorrupted (w/o motion), and used it as a reference for per-
formance evaluation of different interpolating schemes. A random
percentage of DW images (30, 50 and 70%) drawn from the sec-
ond scan were mixed with the first scan to construct three motion-
corrupted datasets. FSL-MCFLIRT [16] was then used to provide
the rigid transformation matrix (six degrees of freedom) for each
image volume having the baseline image as the reference for mo-
tion correction. The gradient directions for each of the three datasets
were re-oriented accordingly.

Fig. 2 summarizes the results for the real data case where the
effect of interpolation increases with the increase of subject motion,
regardless of the interpolation scheme employed. These results were
obtained by averaging over voxels within a white matter mask in
three consecutive axial slices. Being consistent with the results from
our simulations, removing bad direction affects the reconstructed
fODFs, as well as the estimated fiber orientations. Sample coronal
and axial slices are shown in Fig.3, where one can observe the effect
of excluding corrupted directions versus correction via interpolation.
The results presented in this figure confirm our observation from the
simulated phantom experiment, where less deviation in orientations
due to correction are seen in single fiber voxels, such as in the cor-

pus callosum, whereas in regions containing crossing fibers, such as
in the centrum semiovale, there are clearly larger deviations. This
is especially pronounced when the employed correction scheme was
elimination of directions.

Fig. 3. The average fiber orientation deviation (in degrees) for sam-
ple coronal (top) and axial (bottom) slices.



4. CONCLUSION
Although prospective motion correction can be used to reduce mo-
tion artifacts in diffusion weighted imaging, this might affect acqui-
sition times. Therefore, post-acquisition motion correction is needed
to guarantee voxel-wise correspondences. In this paper, we inves-
tigated the effect of various techniques typically employed in cor-
recting for subject motion on subsequent reconstructions. In par-
ticular, we showed that image interpolation, as well as removing
corrupted directions inevitably affected the reconstructed fiber ori-
entation distribution functions and the detected fiber orientations.
Based on simulated phantom of two crossing fibers, and in vivo
HARDI dataset, we demonstrated that the effect of interpolation in-
creases with the amount of gradient directions being distorted by
subject motion. Using the simulated phantom, we showed that as
the fiber separation angle gets smaller the impact of motion correc-
tion on the reconstructed fODFs and fiber orientations becomes more
pronounced. Furthermore, we showed that the exclusion of gra-
dients bearing strong motion artifacts affects the ability to resolve
fiber crossings, especially as the fibers separation angle decreases.
Although image interpolation introduces less distortion to the sub-
sequent reconstruction compared to gradients elimination, even in
highly motion-corrupted datasets, yet the question on how this devi-
ation would affect subsequent tasks, such as tractography and group
analysis, remains open.
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