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ABSTRACT

Precise knowledge of the 3D shape of clinical crowns is crucial for
the treatment of malocclusion problems as well as several endodon-
tic procedures. While Computed Tomography (CT) would present
such information, it is believed that there is no threshold radiation
dose below which it is considered safe. In this paper, we propose
an image-based approach which allows for the construction of plau-
sible human jaw models in vivo, without ionizing radiation, using
fewer sample points in order to reduce the cost and intrusiveness
of acquiring models of patients teeth/jaws over time. We assume
that human teeth reflectance obeys Wolff-Oren-Nayar model where
we experimentally prove that teeth surface obeys the microfacet the-
ory. The inherent relation between the photometric information and
the underlying 3D shape is formulated as a statistical model where
the coupled effect of illumination and reflectance is modeled us-
ing the Helmhotlz Hemispherical Harmonics (HSH)-based irradi-
ance harmonics whereas the Principle Component Regression (PCR)
approach is deployed to carry out the estimation of dense 3D shapes.
Vis-a-vis dental applications, the results demonstrate a significant
increase in accuracy in favor of the proposed approach where our
system is evaluated on a database of 16 jaws.

Index Terms— image irradiance, statistical shape-from-shading,
jaw modeling, statistical priors, harmonic expansion

1. INTRODUCTION

Dentistry usually requires accurate 3D shape of clinical crowns (the
visible part of the human jaw) for the treatment of malocclusion
problems and several endodontic procedures. This can also bene-
fit the construction of tooth implants where crowns and bridges of
high quality are needed. While Computed Tomography (CT) scan-
ning would present 3D information, it is believed that there is no
threshold radiation dose below which it is considered safe [1]. Fur-
ther, CT-scanning is considered expensive and not paid by insurance
companies unless disease oriented. Meanwhile, dental offices in ru-
ral areas do not have such a luxury. Thus our intent is to develop
a purely image-based shape reconstruction mechanism as a cost-
effective and non-invasive tool for doctors, dentists, and researchers
to obtain crown models in vivo, without ionizing radiation. This is
a challenging problem due to the unfriendly environment of taking
measurements inside a persons mouth. Further assumptions of the
presence of distinct features on the object in stereo images and the
photo consistency in space carving are rarely valid in practice.

Due to the lack of surface texture, shape-from-shading (SFS)
algorithms have been used to reconstruct the 3D shape of human
teeth/jaw due to the significant shading cue presented in an intra-
oral image, e.g. [2]. Nonetheless, in principle, SFS is an ill-posed
problem whereas most SFS approaches assume known parameters
of surface reflectance and simple point light source with known di-
rection. Prados and Faugeras [3] showed that constraining the SFS

problem to a specific class of objects can improve the accuracy of
the recovered shape. Thus the main objective of the presented work
is to develop and validate a holistic approach for image-based 3D
reconstruction of the human jaw. Our approach is based on a sin-
gle captured optical image and a statistical shape recovery approach
which makes use of a small number of measured points to construct
a plausible 3D model through a learned correspondence based on a
measured human jaw dataset. We believe that this approach has the
potential to greatly improve plausibility of the resulting SFS models.

2. RELATED WORK

Several works have been conducted in the reconstruction of tooth oc-
clusal surface based on 3D surface measurements and a training teeth
dataset. For example, Zheng et al. [4] considered teeth anatomical
features where they improved the snake model to automatically cap-
ture the features on the tooth surface such as marginal ridges, cusps
and groove lines. In [5], manual alignment between each training
tooth and a generic tooth was done, in order to have a point-to-
point correspondence between different specimens. A point distribu-
tion model was then computed using Principal Component Analysis
(PCA) to describe the shape. Sporring and Jensen [6] proposed a sta-
tistical model of a selection of tooth shapes and a reconstruction of
missing data by including information the position and anatomy of
other teeth. Their system depended on hand picked landmark detec-
tion. Alternatively, Blanz and Vetter [7] proposed a statistical model
of a selection tooth shapes by warping each training shape landmark
to a template shape, where the mesh of this template is projected
onto the shape space before warping landmarks and mesh vertices
back. Yet they rely on manual annotation to achieve onlay and inlay
restoration while they did not handle the recovery of missing crown
as their model is a tooth-based model.

Our earlier work in [8] presented a model-based human jaw
shape reconstruction, yet this work is lacking in the following as-
pects: (1) We assumed the simple Lambertian model for tooth re-
flection to model its appearance. However, the tooth surface is rough
and wet, giving rise to Fresnel reflection due to different refractive
indices of the saliva and the tooth material. (2) Shape prior infor-
mation was constructed assuming a bijective mapping between the
xy-plane and the z-direction, enabling the reconstruction of 2.5D
shape in contrast to full 3D representation. This inhibited the re-
construction of labial, buccal and lingual surfaces as well. (3) The
appearance prior model was constructed under the assumption of a
very low-frequency illumination while natural illumination exhibits
higher-frequencies. (4) We ignored the color information which is
available in the given intra-oral images.

In this paper, we propose a method to overcome the afore-
mentioned limitations. In particular, prior shape (full 3D), albedo
(colored) and appearance (non-Lambertian) models from real data,
which are metric in nature, are incorporated into the shape recov-
ery framework in order to resolve the concave/convex ambiguity of
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Fig. 1.

Block diagram of the proposed model-based human jaw shape recovery: (a) An aligned ensemble of the shapes and albedos of human jaws is

used to build the 3D shape and albedo models. (b) Given the albedo and surface normals of a certain jaw in the ensemble, the proposed appearance bases

are constructed. Given an input oral cavity image under general unknown illumination and a set of human jaw anatomical landmark points: (c) Dense
correspondence is established between the input irradiance and the mean jaw shape using 3D thin-plate splines. (d) The input image, in the reference frame, is
projected onto the subspace spanned by the appearance basis of each jaw sample which are scaled and summed-up to construct the harmonic projection (HP)
irradiance that encodes the illumination and reflectance conditions of the input image. Such images are then used to construct an HP model of the input image.
The inherent relation between the HP irradiance and the corresponding shape and albedo is cast as a regression framework to recover the shape and albedo of

the input image.

conventional SFS approaches. Moreover, we relax known illumi-
nation and reflectance assumptions using the harmonic expansion
of the image irradiance equation where we are able to incorporate
prior information about natural illumination and teeth reflectance
characteristics. Refer to [8] for more algorithmic details regarding
the shape recovery process, see Fig. 1 for illustration. The results
demonstrate the effect of adding statistical prior as well as appear-
ance (illumination and reflectance) modeling on the accuracy of the
recovered shape.

3. AWAY FROM LAMBERTIAN ASSUMPTION

While the graphics community has developed comprehensive mod-
els to account for translucent materials such as human teeth for
photo-realistic image synthesis, such models require computation-
ally expensive rendering techniques. Thus the vision community
has opted to discount subsurface scattering where the notion of
surface reflectance can be analytically modeled by surface bidirec-
tional reflectance distribution function (BRDF) which depends on,
among other factors, the microscopic surface characteristics. In our
university facility, we have 3D optical surface profiler, NewView
700s from Zygo company which is based on Scanning White-Light
Interferometry technology. The field of view ranges from 0.35mm
to 3.5mm. We measured height variations of different visual tooth
surfaces from an area of 0.35mm? using 10X optical zoom, see
Fig. 2. The average surface profiles provide us a physical validation
that the appearance of a tooth surface can be modeled using the
microfacet-theory which assumes that the surface consists of a large
number of small flat facets while microfacet reflectance models tend
to be intuitive with tractable analytical expressions. Accounting
for surface roughness and Fresnel reflection, we assume that teeth
reflectance obeys Wolff-Oren-Nayar model [9].

4. PROPOSED TEETH APPEARANCE MODEL

Known illumination with simple point source models are widely as-
sumed by conventional SFS algorithms. One way to relax such as-
sumptions is to construct a generative appearance model which pre-
dict the appearance of an object (human jaw in particular) under nat-
ural illumination. The mathematical abstraction of the image forma-
tion process can be devised to construct such a model. In particular,
the harmonic expansion of the image irradiance equation, being for-
mulated in a convolution framework [10, 11], can be used to derive
an analytic subspace to represent images under fixed pose but differ-

ent complex illumination conditions.

The convolution theory implies a multiplicative framework in
the frequency domain where an image is represented as a linear
combination of pre-computed basis functions, which we term as ir-
radiance harmonics, {B;}, that are pose and geometry dependent.
Representing the illumination by its spherical harmonics (SH) coef-
ficients [;;' as in [11] and the surface reflectance by its coefficients
al, in the Helmholtz HSH-based basis [12], the image irradiance
can be defined as,

E(a,B) = csBs(, B) M

where («, 8) are the spherical coordinates of the surface normal,
¢s = ly'af, with s and its corresponding indices n, m, p,  and ¢
are given by an ordering function of the basis functions and the irra-
diance harmonics is defined as,

Bug(o,8) = Dpgla,B) [ YI(I)
Q!
X ’ng(eg,a, |¢; — |) cos 0;da;  (2)

where {Y,?} are the real SH bases, {#{1,.} are the Helmhotlz HSH-

based reflectance bases and D" are Wigner’s rotation matrices which
encodes how to express a rotated SH basis function in terms of all
other SH bases of the same order.

We cast the process of finding such subspace as establishing a
relation between its principal components and that of the irradiance
harmonics. This resolves the issue of dimensionality since the source
of randomness in the imaging process becomes the irradiance har-
monics coefficients rather than the whole image realization. Let a D-
pixel image be represented in the vector space as € € RP. The ob-
jective is to define an orthonormal projection matrix W e RP*P’

which maps the image space to a lower-dimensional subspace R” l,
with D’ < D, which captures most of the variations due to illumi-
nation and reflectance. For y = W7e, the projection matrix W
should maximize the total vector scatter such that,

W =argmax ¥y s.t. Uy =E{|ly-y[F}  ©)
w

Let the s-th irradiance harmonics be represented in the vector

space as by € R which can be written as by, = Wgc? with

W5 € RP*P and ¢ € R”'. The optimal W is determined

from the D' —eigenvectors of B = [b; ... bg] corresponding to its
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Fig. 2. The roughness parameter is estimated based on the measurement of microscopic height variation of a 0.35mm? surface patches of different surface
types for incisor and molar teeth (see left for a sample). According to the distribution, the parameter tends to lie between 0.7 to 2 radians regardless the tooth

surface type.

largest D’-eigenvalues. Relating the principal components of the
image space to that of the irradiance harmonics in the vector space
results in W7 = AWWE where Aw € RP' %P’ The solution of
this matrix is given by the D’-eigenvector of Y7 such that,

Y=Y B{lcs —e)(cw —e)}el(e) @

where E{(cs — Cs)(cor — Cor)} = E{cscer} — E{cs}E{cs}. As
such, given the shape and albedo of a jaw data sample, we can con-
struct its appearance subspace while incorporating natural illumina-
tion (e.g. [13]) and teeth reflectance properties. In particular, spher-
ical harmonics is used to compute the illumination spectrum of a
database of environment maps [13] while our Helmholtz hemispher-
ical harmonics (HSH)-based basis [12] is used to compute the re-
flectance spectrum of a database of teeth reflectance. We uniformly
sample the roughness (according to Fig. 2) and the enamel’s refrac-
tive index (1.62 £ 0.02[14]) domain.

5. JAW PRIOR MODELS

The model-based shape recovery in [8] (see Fig. 1 for illustration)
involves the construction of three models; namely the shape, albedo
(also referred to as texture) and appearance (net result of illumination
and reflectance) models'. While the first two models are constructed
in an offline stage, the appearance model is constructed at runtime
when an input image is presented to our shape recovery framework.

5.1. Shape Model - Full 3D

The jaw’s shape model is constructed from a training data ensemble
of 3D triangular meshes where each mesh is obtained from a high
resolution computed tomography (CT) scan of human jaw molds.
We follow the work by Patel et al. [15] in obtaining dense corre-
spondence between different jaw surfaces where a finite set of sparse
landmark points are manually annotated for all the database sam-
ples. Generalized Procrustes Analysis (GPA)[16] is then performed
to provide an initial rigid alignment of the dense shapes to a com-
mon reference frame. The 3D thin-plate spline [16] is then applied
in an iterative manner in order to obtain a dense correspondence be-
tween all shapes in the database. PCA is then performed on the set
of shape vectors, where the resulting shape model can be written as
s = § + PsA; where P, = [s1, 82, - - -] are the shape eigenvectors
and A; is the set of shape coefficients.

5.2. Albedo Model - Color Incorporated

Shadows due to non-convex jaw regions and non-uniform distribu-
tion of illumination inhibit using occlusal images as albedo. As such,
we factor out the reflectance information (albedo) from the given
texture using the intrinsic image decomposition proposed by Barron
and Malik [17]. We use 3D thin-plate spline to provide a warping
function between image pixels (assumed to be on the xy-plane in
the 3D space) and surface points using image landmarks and surface

'n contrast to the proposed appearance model, the appearance model in
[8] encodes only a Lambertian reflection.

landmarks as control points. Mapping ambiguities are resolved us-
ing a least-squares plane fit to the cervical landmark points. In order
to incorporate color information, we use the Lab color space instead
of RGB since the latter suffers from strong correlation among its
color channels as well as non-linearity. PCA is then performed on
the set of albedo vectors, where the resulting albedo model can be
written as a = a + Pq A, where P, = [a1, ag, - - -] are the albedo
eigenvectors and A, is the set of albedo coefficients.

5.3. Harmonic Projection (HP) Irradiance Model

Representing the surface reflectance function in terms of the pro-
posed appearance basis allow us to infer the coupled effect of il-
lumination and reflectance of the input irradiance signal as follows.
Given an input image irradiance F (being warped to the mean shape)
and the appearance basis matrix W of a jaw sample, the irradiance
coefficients y are deduced to best match the input irradiance s.t.
e = Wy which can be solved using singular value decomposition
(SVD). As such, the harmonics projection (HP) irradiance can be
defined as as h = Wy where h provides a mean of encoding the il-
lumination and reflectance of the input irradiance while maintaining
the identity of the object whose basis are used in the reconstruction
process.

While the shape model and the albedo model are constructed in a
pre-processing (offline) step, the HP model is constructed when the
input irradiance is given to our framework in order to incorporate
the illumination and reflectance conditions of the given irradiance
into the prior information. The resulting HP model can be written as
h = h 4 P\, where Pj, = [hy, ho, - - -] are the HP eigenvectors
and Ay, is the set of HP coefficients.

6. EXPERIMENTAL RESULTS

Upper and lower jaw models are constructed from eight subjects (5
males and 3 females with ages range from 16 to 46 years old) using
their oral cavity images and the CT-scan of their respective molds
(lower and upper jaws)*. We compare our approach with a recently
evaluated SFS approach [18] for tooth surface reconstruction. In or-
der to share the same metric coordinate frame, the average jaw shape
is used as a reference to establish a dense correspondence between
the groundtruth CT scan of the jaw mold corresponding to each test-
ing image and the reconstructed shape.

Out-of-training jaw samples are reconstructed where four types
of samples are considered: (a) pre-repair and (b) post-repair lower
jaw, (c) pre-repair and (d) post-repair upper jaw. Fig. 3 shows a
sample of shape and albedo reconstruction of an upper jaw. It im-
portant to note that SFS only recovers a height map (2.5D) of the
input image where there is no metric information reserved. With
the metric prior used to train the offline shape model, our approach
reconstructs the triangular mesh (3D) corresponding to the input im-

2A key requirement for successful statistical SFS is the availability of a
comprehensive database that describe the teeth/jaw variability per age, gen-
der and ethnic factors. Our ongoing efforts aim to undertake such a task and
make the databases available for researchers worldwide.
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Fig. 3. Sample reconstruction result of an upper (post-repair) jaw (bottom row shows the top-view of the occlusal surface).

age. In Fig. 3, one can observe the closeness of our reconstruction
to the groundtruth shape when compared to the recovery shape from
SFS. This emphasizes the role of incorporating prior-information for
shape recovery as well as appearance modeling.

Table 1 reports the Root Mean Square (RMS) error in mm be-
tween the 3D points from the CT-scan and the corresponding recon-
structed surface points. For the sake of comparison, we also include
our earlier results in case of assuming Lambertian reflectance [8].
Notice that the error values of our reconstructions are minimal when
compared to SFS-based reconstruction. Pre-repair error values are
also smaller than post-repair values in most of the samples, indicat-
ing that the statistical prior capability of capturing irregular tooth
shapes and locations.

A natural question arises where even smaller reconstruction er-
rors are needed, to that end we need to point out that these results
are based on a model that is being trained on a small ensemble of
16 jaws. With a large enough ensemble of objects, credible shape,
albedo and appearance models would be possible, which when mor-
phed to the crown reconstructions would produce a more realistic
jaw.

Table 1. Average whole jaw surface reconstruction accuracy (RMS)
in mm

Jaw Type Proposed non- | Lambertian| SFS
Lambertian SSFS [8] [19]
SSFS

Upper, Pre-repair 0.6289 2.08999 15.2995

Upper, Post-repair 0.6689 2.02334 16.3098

Lower, Pre-repair 0.6714 3.11911 12.1241

Lower, Post-repair 0.8073 2.57112 13.4959

7. CONCLUSION

In this paper, we presented an affordable, flexible, automatic dental
tool for the reconstruction of the clinically visible part of the hu-
man jaw based on a single captured optical image and a statistical
shape recovery approach. While most shape-from-shading (SFS) ap-
proaches assume known parameters of surface reflectance and point
light source with known direction, our work has relaxed such as-
sumptions using the harmonic expansion of the image irradiance
equation where we were able to incorporate prior information about
natural illumination and teeth reflectance characteristics. We further
presented an experimental justification that human teeth obeys mi-
crofacet theory where its reflectance was assumed to follow Wolff-
Oren-Nayar reflectance model. The results demonstrated the effect
of adding statistical prior as well as appearance (illumination and
reflectance) modeling on the accuracy of the recovered shape. The

next step is to investigate the fusion of SFS and statistical SFS where
SES provides the object-specific constructions while statistical SFS
is perform shape recovery based on partial information.
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