
Aggregate Gaze Visualization with Real-time Heatmaps

Andrew T. Duchowski ∗
School of Computing, Clemson University

Margaux M. Price∗
Psychology, Clemson University

Miriah Meyer†
Harvard University

Pilar Orero‡
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Figure 1: Gaze visualizations (24 scanpaths) on a frame of video.

Abstract

A GPU implementation is given for real-time visualization of ag-
gregate eye movements (gaze) via heatmaps. Parallelization of
the algorithm leads to substantial speedup over its CPU-based im-
plementation and, for the first time, allows real-time rendering of
heatmaps atop video. GLSL shader colorization allows the choice
of color ramps. Several luminance-based color maps are advocated
as alternatives to the popular rainbow color map, considered inap-
propriate (harmful) for depiction of (relative) gaze distributions.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms. I.3.6 [Computer Graphics]:
Methodology and Techniques—Ergonomics.

Keywords: heatmaps

1 Introduction

Visualization of eye movements collected from observers viewing a
given stimulus, e.g., image, web page, etc., can lead to insights into
how the stimulus was perceived, or to why observers chose to act a
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certain way following visual inspection. Examples include analysis
of graphical elements perceived by viewers, e.g., do viewers notice
specular highlights, shadows, etc., or analysis of human-computer
interaction, e.g., where did users look when browsing web pages?
Data from individuals leads to isolated analytical instances; meth-
ods of gaze visualizations are sought that enable depiction of gaze
patterns collected from multiple viewers, possibly over prolonged
viewing periods. Currently, visualization of gaze aggregated from
multiple viewers of dynamic media such as video tends to be cre-
ated offline, largely due to excessive rendering time.

Scanpaths and heatmaps are the two currently predominant meth-
ods of eye movement (gaze) visualization (see Figure 1; and see
Špakov [2008] and Stellmach [2009] for reviews). Scanpaths are
drawn as linearly connected dot sequences, depicting raw gaze
points (x, y, t) or a subset of those points that satisfy criteria for
labeling as fixations, the relatively stationary component of the eye
movement signal. When properly labeled, scanpaths depict the tem-
poral viewing order made by observers that usually serves as the
background image beneath the scanpath rendering. Circles or disks
of varying radius can be used to depict the variable duration of fix-
ations. Larger circles thus represent the areas of relative cognitive
importance that are associated with fixations of prolonged duration.
Scanpaths, however, are not well suited for visualization of aggre-
gate data, i.e., eye movements collected from multiple viewers. The
resultant overlay of multiple scanpaths is jumbled and individual
scanpath order is usually lost in the graphical cacophony.

Unlike scanpaths, heatmaps provide a much cleaner depiction of
aggregate gaze by combining gaze points (or fixations) from multi-
ple viewers and sacrificing depiction of the order of gaze points (or
fixations). Because different viewers are fairly consistent in what
regions they look at but not in what order they view them [Privitera
2006], the order of fixations is not necessarily as important as the
regions that are viewed. The heatmap can be thought of as an exten-
sion of the histogram, where an accumulation of viewing count is
recorded at each pixel. The resulting visualization is a height map
of relatively weighted pixels. Colorized representations vary, with
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Figure 2: CPU (multicore) and GPU (many-core) architectures.

one of the more basic renderings obtained by mapping the height in-
formation directly to the alpha channel, resulting in a transparency
map. Alternatively, the normalized height map can be colorized
from a choice of color gradients.

Heatmaps are a popular and intuitive visualization technique for en-
coding quantitative values derived from gaze points or fixations at
corresponding image or surface locations (e.g., in 3D virtual envi-
ronments, see Stellmach et al. [2010]). From a programming per-
spective, the heatmap is popular because it is easy to implement and
its execution is fast enough for rendering over still images. How-
ever, even though several speedups are available, e.g., as noted by
Paris and Durand [2006], rendering on the CPU is generally too
slow for visualization over dynamic media such as video. The bot-
tleneck is found in the O(n2) search time (given an n × n image)
for the maximum luminance (height) value during heatmap normal-
ization. Visualization of gaze over media such as feature film can
lead to better understanding of how media is perceived [Mital et al.
2011], and in turn, how its design and production can be altered to
affect its perception [Marchant et al. 2009], e.g., shot type, lighting,
camera or character movement [McDonnell et al. 2009]. Current
CPU-bound rendering makes this visualization impractical.

In this paper, heatmap rendering is parallelized on the GPU. The-
oretical and observed speedup benefits of parallelization are pro-
vided. Rendering time is reduced considerably, making the tech-
nique particularly well suited for gaze visualization atop dynamic
stimulus, i.e., video. To our knowledge, this paper is the first
to introduce a parallelized GPU implementation facilitating real-
time aggregate gaze visualization; heretofore offline rendering was
required, usually of individual video frames used for subsequent
video encoding.1 The GPU implementation enables real-time vi-
sualization of results and immediate response to the choice of col-
orization. This selection would allow selection of a color map best
visible atop specific video background, allowing quick changes to
gaze visualization without potentially time-consuming encoding of
the video. The GPU implementation may also be suitable for an-
alytical comparison of aggregate scanpaths—algorithms have re-
cently been developed, inspired by heatmap-like Gaussian similar-
ity metrics, that could likely benefit from GPU parallelization [Cal-
dara and Miellet 2011; Grindinger et al. 2010].

The contribution of this paper is thus two-fold: a GPU implementa-
tion of the popular heatmap rendering is provided, and a qualitative
argument is made for adoption of luminance-scale color gradients

1The DIEM project’s CARPE visualizer makes use of the GPU by virtue
of rendering via OpenGL, however, inspection of its source code (available
here: http://thediemproject.wordpress.com/) indicates that
its heatmap normalization is not parallelized.
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Figure 3: Max reduction, the parallelized algorithm central to
GPU-based heatmap generation, performed right-to-left in three
steps: the cells in the first step are color-coded showing their ori-
gin; the same pattern is repeated in the last two steps.

in lieu of the rainbow map. The latter point, while perhaps obvi-
ous to visualization specialists, appears to have been overlooked in
aggregate gaze visualization.

2 Background

The heatmap renders relative data distribution, and has become par-
ticularly popular for the representation of aggregate gaze points
(or fixations). In this context, the heatmap, or attentional land-
scape, was introduced by Pomplun et al. [1996], and popularized
by Wooding [2002] to represent fixation maps (both were predated
by Nodine et al.’s [1992] “hotspots” rendered as bar-graphs). Other
similar approaches involve gaze represented as height maps [Elias
et al. 1984; van Gisbergen et al. 2007] or Gaussian Mixture Models
[Mital et al. 2011].

Apart from Stellmach’s [2010] recent projection of heatmaps into
a 3D depiction of aggregate gaze collected in virtual environments,
heatmaps have received relatively little attention and have remained
virtually unchanged since their introduction. Stellmach provided
three visualizations: projected, object-, and triangle-based repre-
sentations. For the first, a 3D sprite was used to depict the projected
attentional map. For the latter two, the number of views counted
atop objects or triangles was normalized in order to select the color
gradient. Although several color gradients were available, no men-
tion was made of rendering time (complexity) or parallelizability.

The choice of the rainbow gradient can be re-examined because
the GPU-based implementation facilitates rapid exchange of color
maps. Since heatmaps depict relative frequency, a luminance-scale
color gradient is advocated as the preferred method for visualizing
this form of data. It is argued that the rainbow mapping tends to ar-
tificially label image regions with undue importance due to changes
in chromaticity, e.g., red regions can be perceived as more impor-
tant than green regions. Instead of visually distinct hues, either sin-
gle or multiple related hues can be used to indicate relative viewing
distribution. Popular single and multiple hue popular color maps
are offered as alternatives to the rainbow color map.

2.1 CPU vs. GPU Program Parallelization (and GPGPU:

General Purpose GPU Programming)

Due to energy-consumption and heat-dissipation issues, virtually
all microprocessor manufacturers have now switched from the well-
known von Neumann single CPU architecture to ones with multi-
ple processing units referred to as processor cores [Kirk and Hwu
2010]. Since 2003, the semiconductor industry has focused on two
main microprocessor designs: multicore or many-core (see Fig-
ure 2). The former seeks to maintain the execution speed of se-
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quential programs on multiple cores, as exemplified by Intel’s i7
four-core microprocessors. In contrast, the latter many-core de-
sign favors massively parallel program execution, as exemplified
by NVIDIA’s 112 GPU core GT 8800 graphics card.

The essential difference between these two types of cores is the
style of operation permitted by each: each CPU core maintains in-
dependent clock control of its own thread, allowing MIMD (Multi-
ple Instruction Multiple Data) operation, whereas each GPU core is
a heavily multithreaded, in-order, single-instruction processor that
shares its clock control with other cores, allowing SIMD operation
(Single Instruction Multiple Data). Certain specialized operations
lend themselves readily to SIMD manipulation, e.g., applying the
same pixel operation to a large image (see the max reduction algo-
rithm shown in Figure 3), whereas sequential flow of control is bet-
ter carried out by a CPU core. In general, most applications will use
both CPUs and GPUs, executing sequential parts of the program on
the CPU and numerically intensive and highly parallelizable parts
on the GPU. The key to GPU programming is knowledge of how to
“fit” the data to the memory layout on a graphics card (think square
or rectangular image-like texture maps) and how to transfer both
memory and control between CPU and GPU.

Until 2006, GPU programming was largely restricted to access
through graphic application program interface (API) functions, e.g.,
OpenGL or Direct3D. For the former, a special SIMD “kernel” lan-
guage called OpenGL Shader Language, or GLSL, has been devel-
oped that allows writing of C-like kernel code that carries out oper-
ations on a per-fragment basis. Fragments, corresponding to pixels
of the final rasterized image, are comprised of attributes such as
color, window and texture coordinates, that are interpolated at the
time of rasterization [Rost and Licea-Kane 2010]. GLSL code that
is intended for execution on one of the GPU cores is referred to
as a shader. Generally there are two components to each shader:
a vertex and fragment part. Vertex shaders are typically used to
transform graphics geometry. In this paper, manipulation of image
(heatmap) colors relies on a very simple four-vertex quadrilateral,
and so all the shaders presented are fragment shaders.

Although the GPU-based heatmap generation technique is de-
scribed by GLSL fragment shaders, and hence, this paper still uses
a graphics-centric approach to heatmap rendering, it is worth men-
tioning that GPU programming has moved beyond this specializa-
tion and now also allows general purpose GPU programming by ab-
stracting away most graphics-related nuances. Knowing the GPU
architecture’s origins helps in designing GPGPU programs, but this
is no longer necessary. Two parallel programming languages have
emerged for massively parallel GPGPU tasks: CUDA and OpenCL
[Kirk and Hwu 2010]. CUDA is NVIDIA’s Compute Unified De-
vice Architecture, while OpenCL is an industry-standardized pro-
gramming model developed jointly by Apple, Intel, AMD/ATI, and
NVIDIA. Both CUDA and OpenCL programs consist of kernels
that execute on GPU cores along with a host program that manages
kernel execution (usually running on a CPU). For further informa-
tion on programming in CUDA, see Kirk and Hwu [2010] and for
OpenCL, see Munshi et al. [2012].

For even greater parallelization in High-Performance Computing
(HPC) applications, one can parallelize the CPU-bound host pro-
gram via the OpenMP API, and distribute the program to machines
on a cluster via MPI (Message Passing Interface).

3 Heatmap Generation

Heatmaps are generated by calculating pixel intensity I(i, j) at co-
ordinates (i, j), relative to a gaze point (or fixation) at coordinates
(x, y), by accumulating exponentially decaying “heat” intensity,

Figure 4: Rendering heatmaps by truncating the Gaussian kernel
beyond 2σ (left) produces noticeable blocky artifacts whereas ex-
tension of the kernel over the entire image frame (right) does not.

modeled by the Gaussian point spread function (PSF),

I(i, j) = exp
�
−((x− i)2 + (y − j)2)/(2σ

2)
�

. (1)

For smooth rendering, Gaussian kernel support should extend to im-
age borders, requiring O(n2) iterations over an n× n image. With
m gaze points (or fixations), an O(mn

2) algorithm emerges. Gen-
erally, the heatmap is intended to graphically visualize aggregate
scanpaths, e.g., recorded by a number of individuals, each perhaps
viewing the stimulus several times, as in a repeated-measures exper-
iment. Following accumulation of intensities, the resultant heatmap
must be normalized (O(n2)) prior to colorization (O(n2)).

Although luminance accumulation can be sped up by truncating the
Gaussian kernel beyond 2σ [Paris and Durand 2006], such an ap-
proach procures speed at the expense of blocky image artifacts (see
Figure 4). Rewriting the algorithm for the GPU preserves the high
image quality of extended-support Gaussian kernels while decreas-
ing computation speed through parallelization. With the exception
of maximum intensity localization for normalization, with enough
GPU cores, each O(n2) is essentially replaced by an O(1) compu-
tation performed simultaneously over all pixels.

4 Implementation on the GPU

Heatmap generation requires four basic steps:

1. accumulation of Gaussian PSF intensities;

// image dimensions for Gaussian patch scaling

uniform float img w,img h,sigma;

void main(void)
{

// for scaling distance ( r ) to image area

vec2 img dim = vec2(img w,img h);

// shift quad with normalized tex coords

// to center of current Gaussian patch

vec2 r = (gl TexCoord[0].st − vec2(0.5,0.5))
∗ dot(img dim,img dim);

// calculate intensity

float heat = exp(dot(r,r )/(−2.0∗sigma∗sigma));

// write to all FBO color buffers (using only R channel)

gl FragData[0] = vec4(heat,0.0,0.0,0.0);
gl FragData[1] = vec4(heat,0.0,0.0,0.0);
gl FragData[2] = vec4(heat,0.0,0.0,0.0);

}

Listing 1: Gaussian intensity at gaze point.



uniform sampler2D lum tex;
uniform float tw,th;

void main(void)
{

// normalized coords into texture

float du = 1.0/ tw, dv = 1.0/ th;

// tex coords into lower pyramidal level via 2i+0, 2i+1

vec2 uv = vec2(2.0 ∗ gl TexCoord[0].st);

// fetch samples from lum texture (texture coords normalized!)

vec4 bl = texture2D(lum tex,uv + vec2(0 , 0));
vec4 br = texture2D(lum tex,uv + vec2(0, dv));
vec4 ul = texture2D(lum tex,uv + vec2(du, 0));
vec4 ur = texture2D(lum tex,uv + vec2(du,dv));

// find max texel (check only R channel)

float m = max(max(bl.r,br.r), max(ul.r, ur. r ));

// output is max pixel (using only R channel)

gl FragColor = vec4(m,0.0,0.0,0.0);
}

Listing 2: GPU reduction to find max intensity.

2. search for maximum intensity for normalization;
3. the normalization step; and
4. colorization of the resulting normalized greyscale image.

The algorithm is straightforward to implement on the CPU, requir-
ing a doubly-nested loop in each step, iterating over each pixel to
either set its intensity, evaluate it for its candidacy as maximum,
normalization, or colorization.

Implementation on the GPU follows the four-step algorithm closely,
with its speed benefits garnered from parallelized manipulation of
image buffers. GLSL is used as the shader language choice. Com-
putation is performed on floating-point buffers attached to a frame-
buffer object (FBO) allowing render-to-texture operations.

Three texture buffers are attached to the FBO to facilitate eventual
heatmap normalization (and rendering). All three are 16-bit RGBA
floating-point buffers of size n×n (the actual implementation does
not rely on square images, and non-powers-of-two images are used,
allowing arbitrary w × h dimensions—this allows rendering atop
video frames whose dimensions can be unpredictable, often depen-
dent on the type of codec used). Note that 32-bit RGBA floating-
point buffers can be used, but their use dramatically decreases per-
formance (documented empirically later). Each of the four render
passes are detailed below.

Intensity Accumulation. A normalized texture quadrilateral is
drawn centered at (normalized) coordinates (x, y) relative to a gaze
point (or fixation) to accumulate luminance at those coordinates.
Gaussian support is extended to w× h and pixel intensity scaled to
�w, h� = w

2 + h
2 is accumulated via Equation 1 (see Listing 1).

Gaussian intensity is initially rendered simultaneously to all three
FBO color buffers via the glDrawBuffers() call. This facili-
tates GPU reduction in the next step in order to find the maximum.

Maximum Intensity via GPU Reduction. The search for maxi-
mum intensity is the major O(n2) bottleneck of the CPU-based im-
plementation. On the GPU, this operation is reduced to O(log2 n)

uniform sampler2D height tex;
uniform float maxval;

void main(void)
{

vec3 c = vec3(0.0,0.0,0.0);

// fetch sample from heightmap texture

// (using oly R channel)

float intensity = texture2D(height tex, gl TexCoord[0].st ). r ;

// normalize intensity by 1/maxval

// (maxval may be 0 if no fixations )

intensity = clamp(intensity/ maxval,0.0,1.0);

// ramp color

c = color ramp(intensity );

// ramp alpha (transparency)

// proportional to intensity

gl FragColor = vec4(c,clamp(intensity,0.15,0.85));
}

Listing 3: Heatmap colorization.

via GPU reduction [Buck and Purcell 2004]. As shown in Listing 2,
the technique, based on the bitonic merge sort [Batcher 1968], relies
on 2i and 2i + 1 indexing during each of the O(log2 n) ping-pong
rendering steps between two framebuffers. It may be helpful, how-
ever, to think of this operation in terms of (dyadic) access to image
pyramids, e.g., as in mip-mapping [Williams 1983] or wavelet im-
age decomposition [Fournier 1995], rather than in terms of bitonic
components (juxtaposition of two monotonic sequences).

Ping-pong rendering is achieved by toggling the texture handle ar-
gument to each of glBindTexure() and glDrawBuffer()
to select the read and write buffers, respectively. The texture quadri-
lateral must be resized during each iteration, but this is trivially ac-
complished by scaling the width and height dimensions by 1/2 each
time (or bit shifting right if using integer dimensions). The number
of reduction iterations required is log2(min(w, h)).

Following GPU reduction, one framebuffer readback is required to
fetch the maximum value in the last ping-pong render framebuffer.
Ostensibly, this lookup could be performed in the next GPU render
pass, unless image dimensions are not a power of 2, in which case
a small search of the readback buffer is required.

Intensity Normalization. Intensity normalization is performed
on the GPU by passing in the maximum value (maxval in List-
ing 3), and scaling the Gaussian intensity by its reciprocal. The
scaled intensity is then used as an argument to the color ramp()
function that colorizes the resultant image. This function should be
seen as a function pointer to whichever color mapping is chosen.

Colorization. The accumulation buffer is mapped to R,G,B color
space via a color gradient. Currently, the rainbow color map is the
most widely used, linearly interpolating between blue-green, green-
yellow, yellow-red, and red, given appropriate thresholds, e.g., 1/4,
1/2, 3/4 [Bourke 1996]. However, linear interpolation between dis-
crete colormaps can be applied for any sort of colormap, e.g., a
single-hued (purple) luminance-based map [Brewer et al. 2009].



(a) CPU-rendered heatmaps (single datum at left, aggregate data at right).

(b) GPU-rendered heatmaps (single datum at left, aggregate data at right).

Figure 5: CPU vs. GPU heatmap visualizations with traditional
rainbow color ramp: slight differences are seen in the GPU ren-
dering due to scaling (normalization) of the fragment’s texture co-
ordinates w.r.t. image size. (Alternative color map renderings are
shown in Figure 8.) The numbers and letters in the aggregate vi-
sualization are the targets viewers looked at in order: either in se-
quence 1-2-3-4-5-A-B-C-D-E or 1-A-2-B-3-C-4-D-5-E (for a de-
tails on this particular experiment, see Duchowski et al. [2010]).
Because heatmaps obscure order visualization, it is not possible
to tell which sequence was followed, only that in the aggregate, a
larger proportion of gaze fell atop the numbers.

5 Empirical Evaluation

Rendering speed performance was estimated empirically on a static
640 × 480 image, using scanpath data from an earlier study
(24 scanpaths from 6 viewers scanning each of 2 images twice)
[Duchowski et al. 2010]. Examples of heatmaps generated from
a single scanpath as well as from all 24 scanpaths are shown in
Figure 5 with the stimulus blended in the latter depictions. Note
that the CPU and GPU renderings are virtually identical, save
for a slight hue variation due to the coordinate scaling needed
by the GPU implementation—pixel distance r must be scaled by
�w, h� = w

2 + h
2, the squared diagonal, to preserve the relative

distances for the Gaussian heightmap that are calculated directly in
the CPU implementation: (x− i)2 + (y − j)2.

Rendering performance was recorded on three systems (see Ta-
ble 1) testing the effect of GPU, i.e., number of GPU cores, against
CPU. The 16-core 9400 M GPU was in a Mac Book Pro laptop,
the 8800 GT was in a Mac Pro workstation, and the 8800 GTX was
in a Sun Ultra 2 (running Linux CentOS). For GPU evaluation, the
float-point bitwidth was varied between 16 and 32 bits, and, for both
systems, timings were obtained by rendering 1 or 24 scanpaths.

From an experimental design perspective, analysis of CPU perfor-

Table 1: Systems tested.

CPU GPU GPU
(GeForce) cores

2.4 GHz Core 2 Duo 9400 M 16
2 × 2.8 GHz Quad-Core Xeon 8800 GT 112
2.2 GHz AMD Opteron 148 8800 GTX 128

Table 2: Single CPU timings acting as baseline measurements for
comparison to the GPU; note the large variance when averaging
across dataset size.

CPU Scanpaths Time
(no. of) (ms)

2.4 GHz Core 2 Duo 1 3,652
2 × 2.8 GHz Quad-Core Xeon 1 3,114
2.2 GHz AMD Opteron 148 1 6,142
2.4 GHz Core 2 Duo 24 86,437
2 × 2.8 GHz Quad-Core Xeon 24 73,751
2.2 GHz AMD Opteron 148 24 121,837

Table 3: Mean GPU timings during frame refresh (n = 10).

GPU FP Bitwidth Scanpaths Time
(no. of) (ms)

8800 GT 16 1 5
8800 GTX 16 1 5
9400 M 16 1 38
8800 GT 16 24 97
8800 GTX 16 24 73
9400 M 16 24 516
8800 GT 32 1 14
8800 GTX 32 1 28
9400 M 32 1 101
8800 GT 32 24 271
8800 GTX 32 24 521
9400 M 32 24 1,708

mance can be viewed as a 3 (CPU) × 2 (number of scanpaths) fac-
torial experiment, with two fixed factors and run time serving as
the random factor [Baron and Li 2007]. Two-way ANOVA shows a
significant main effect of the number of scanpaths (F(1,2) = 44.42,
p < 0.05) but not of the CPU. That is, holding the number of scan-
paths constant shows no significant difference between rendering
times across the CPUs, as indicated in Table 2. On average, how-
ever, there is a clear effect of increasing the dataset size from 1 to
24. Note that this difference is significant even with only two tim-
ings obtained per CPU (by varying the number of scanpaths; n = 2
for the statistics calculations).

Statistical analysis of GPU performance was obtained by consider-
ing the hardware combinations as a 3 (GPU) × 2 (number of scan-
paths) × 2 (bitwidth) factorial experiment, with three fixed factors
with run time again serving as the random factor. Because the per-
formance was so dramatically improved on the GPU, 10 timing runs
were captured per GPU × scanpath × bitwidth combination. Mean
GPU timings are reported in Table 3. A repeated measures ANOVA
revealed a significant main effect of GPU (F(2,117) = 4,352.95, p
< 0.01), number of scanpaths (F(1,117) = 11,199.67, p < 0.01),
and bitwidth (F(1,117) = 4,548.04, p < 0.01), indicating that each
of these factors has a significant impact on performance. The effect
of GPU is most likely due to the number of GPU cores. Pairwise
t-tests, with Bonferroni correction, show significant differences (p
< 0.01) between the 9400 M card (M=591 ms, SE=108 ms) and ei-
ther 8800 card, but no significant difference between the two 8800
cards themselves (M=97 ms, SE=17 ms; M=157 ms, SE=34 ms;
the effect of GPU can be seen in Figure 6).

For the larger of the two datasets tested, the slowest GPU perfor-
mance with a 16-bit floating-point width (516 ms) gives a 142-fold
speedup over the fastest recorded CPU time (73,751 ms), although
this comparison is not quite fair, as it pits a laptop against a work-



(a) Captured eye movements represented as scanpaths.

(b) Captured eye movements represented as rainbow-hued heatmaps.

(c) Captured eye movements represented as single-hued heatmaps.

Figure 7: Scanpath and heatmap visualizations of gaze over the The Pear Stories video [Chafe 1980]. The single-hued heatmap highlights
the same regions of interest as the rainbow-hued heatmap, but without undue emphasis on concentric regions.

(a) Single-hue color maps (from http://colorbrewer.org).

(b) Multi-hue color maps (from http://colorbrewer.org).

Figure 8: Figure 5 re-rendered with single- and multi-hue color maps.

http://colorbrewer.org
http://colorbrewer.org
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Figure 6: Speed performance averaged across dataset size; note
the order of magnitude difference between both y-axes.

station. A fairer workstation-to-workstation comparison yields a
1,010-fold GPU speedup (73 ms vs. 73,751 ms) although this mixes
CPU types. Considering just one CPU type (the Quad-Core Xeon
in this case), GPU implementation yields a 760-fold improvement;
the laptop’s GPU yielded a 167-fold speedup.

6 Dynamic Heatmap Visualization

The proposed algorithm for a static heatmap generated at a single
frame (the temporal parameter is implied) produces visualizations
over dynamic media with potentially rapidly appearing and disap-
pearing “hot spots”. This popping effect is especially noticeable
whenever the scene changes, e.g., due to camera movement. The
situation is somewhat analogous to the sudden onset and termina-
tion of an audio signal—a less jarring effect is produced by a fade-in
and fade-out of the signal.

To achieve temporal visual decay, and generate dynamic heat maps
[Daugherty 2000], the pixel intensity I(i, j) can simply be attenu-
ated via linear interpolation between video frames, e.g., I(i, j, t) =
(1 − h)I(i, j, t − 1) + hI(i, j, t). In practice, a value of h = 0.4
appears to work well, but because this approach parametrizes video
frames, it is only practicable when rendering frames offline. For
real-time rendering, past frames I(i, j, t − k) would need to be
stored in a buffer for blending with the current frame I(i, j, t).

When rendering in real-time, a similar fade effect is achieved by
parametrizing scanpath data instead of video frames, and then
stretching the temporal window from which gaze samples are re-
trieved. For the video frames rendered in Figure 7 for example,
each frame accumulated gaze points from a temporal window that
spanned t± 325 ms. That is, given the frame counter t, gaze points
(x, y, t± 325) were accumulated to form heatmaps on each frame.
This effectively samples about 10 past and future frames, when ren-
dering at 60 Hz.

Note that the above algorithm is presently confined to an image-
aligned quadrilateral (e.g., per video frame), however, the GPU
shader approach can be readily extended to a shader that can
smoothly render heatmaps over 3D surfaces, so long as the calcula-
tion is performed on a per-fragment basis, akin to Phong shading.
The GPU-based approach would thus produce smooth attentional
maps for any given mesh model, extending Stellmach et al.’s [2010]
3D attentional maps to arbitrary geometries.

7 Color Map Selection

The rainbow color map (Figure 7(b)) is the predominant choice for
aggregate gaze visualization although it is known to the visualiza-
tion community as harmful because it [Borland and Taylor II 2007]:

1. confuses viewers through its lack of perceptual ordering,
2. obscures data via uncontrolled luminance variation, and
3. actively misleads interpretation through the introduction of

non-data-dependent gradients.

For aggregate gaze visualization, the latter point is potentially the
most critical, since the rainbow color map introduces artificial
boundaries in its representation. Consider the aggregate visualiza-
tions at right of Figure 5. The boundaries between red, yellow,
green, and blue hues form “visual clusters” that serve as objectlike
units that can influence reasoning about the graph during cogni-
tive integration [Ratwani et al. 2008]. Coincidentally, Ratwani et
al. demonstrated the importance of these visual cluster boundaries
empirically by recording fixations at these boundaries. They state
that spectral (rainbow) color palettes should be used but only when
differentiation between colors is desired. For gaze visualization,
this is a key point, because it suggests the appropriateness of the
rainbow color map but largely for discrimination, or identification,
tasks. For relative judgements, Breslow et al. [2009] make a com-
pelling argument against the rainbow color map, advocating instead
color maps based on brightness (luminance) scales.

The heatmap visualization starts out as a luminance scale map, as
its intent is to depict the relative distribution of gaze over image re-
gions. Hence, colorization via a spectral color palette unnecessarily
transforms the heatmap into a visualization meant for identification
of regions instead of one showing regions of relative importance.
The rainbow color ramp inadvertently places undue emphasis on
regions colored with “hotter” hues, e.g., are hotspots colored red
any more important than ones colored yellow or green?

The GPU implementation is not tied to any particular color ramp
and allows selection from a variety of choices. There are numerous
single, dual, and multi-hue alternatives to the rainbow color map. A
large number is freely available at the Colorbrewer website [Brewer
et al. 2009]. The R,G,B thresholds provided at Colorbrewer are
easily encoded in GLSL shaders that interpolate between the se-
lected levels of quantization. For example, Figure 8 depicts several
alternatives to the rainbow color map, with 9 quantization levels.
Each of these color mapping shaders simply replaces the “generic”
color ramp() function. Applying the visualization principles
embodied by any of these alternatives to the color ramp should lead
to less biased qualitative analysis of recorded aggregate gaze.

8 Conclusion & Future Work

A GPU shader was given for real-time aggregate gaze visualiza-
tion via heatmaps. Timing performance shows substantial speedup
over CPU rendering, as expected. Shader implementation facili-
tates exchange of color ramps and several luminance-based color
maps were presented as alternatives to the popular rainbow color
map frequently used to depict aggregate gaze.

Future work could involve empirical investigation of the qualita-
tive nature of the hot spots’ temporal decay. Real-time exchange
of color maps could also be explored, along with the potential of
using several distinct color maps at the same time to represent two
different viewer groups, e.g., experts vs. novices.
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