
ShreX: Managing XML Documents in Relational Databases

Fang Du
OGI/OHSU

fangdu@cse.ogi.edu

Sihem Amer-Yahia
AT&T Labs – Research

sihem@research.att.com

Juliana Freire
OGI/OHSU

juliana@cse.ogi.edu

Abstract

We describeShreX, a freely-available system for
shredding, loading and querying XML documents
in relational databases.ShreXsupports all map-
ping strategies proposed in the literature as well
as strategies available in commercial RDBMSs.
It provides generic (mapping-independent) func-
tions for loading shredded documents into rela-
tions and for translating XML queries into SQL.
ShreXis portable and can be used with any rela-
tional database backend.

1 Introduction

As applications manipulate an increasing volume of XML
data, there is a growing need for reliable systems to store
and provide efficient access to these data. The use of rela-
tional database systems for this purpose has attracted con-
siderable interest with a view to leveraging their powerful
and reliable data management services.

In order to store an XML document in a relational
database, the tree-structure of the XML document must
first be mapped into an equivalent, flat, relational schema.
XML documents are then shredded and loaded into the
mapped tables. Finally, at runtime, XML queries are trans-
lated into SQL, submitted to the RDMBS, and the results
are then translated into XML.

There is a rich literature addressing the issue of stor-
ing XML documents in relational backends. Several map-
ping strategies (e.g., [3, 5, 6, 10, 9]) and query transla-
tion algorithms (see [7] for a survey) have been proposed.
In addition, support for XML storage is already available
in most commercial RDBMSs. Unfortunately, existing
XML-to-relational mapping solutions suffer from several
drawbacks. None of these solutions addresses all the stor-
age problems in a single framework. For example, works

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

on mapping strategies often have little or no details about
query translation [7]. Although it has been shown that
the efficiency of a mapping depends on the data and on
the requirements of the applications that use the data [3],
many of the available mapping solutions hard-code map-
ping choices; and whereas some of the solutions proposed
by relational vendors do provide flexible mechanisms to
define mappings, they are proprietary,i.e., tied to one rela-
tional backend, making the shredding and query translation
algorithms system- and mapping-dependent.

ShreX(Shredding XML) is a freely available system1

that addresses many of the limitations of existing map-
ping systems. To the best of our knowledge,ShreX is
the first system to provide a comprehensive solution to the
relational storage of XML data. InShreX, an XML-to-
relational mapping is specified through annotations over
an XML Schema, making the mapping easy to define as
well as validate. By combining different annotations, a
wide range of mappings can be expressed, including all
mapping strategies proposed in the literature as well as
strategies supported by database vendors.ShreXalso pro-
vides generic (mapping-independent) functions for docu-
ment shredding and query translation. This is made possi-
ble by an API which provides access to the mapping infor-
mation.

In what follows, we give an overview of the key features
of ShreX. In Section 2, we describe the architecture of the
system including the mapping interface, the shredder and
the query translator. The demonstration is described in Sec-
tion 3. We review related work in Section 4 and conclude
in Section 5.

2 The System

The main components of theShreXsystem are shown in
Figure 1. InShreX, a mapping is defined by adding annota-
tions to an XML Schema which indicate how elements and
attributes should be stored in a relational database (e.g.,as
columns, as tables). Theannotation processorparses an
annotated XML Schema, checks the validity of the map-
ping and creates the corresponding relational schema. In
addition, the mapping information is made persistent in the
mapping repository. Thedocument shredderaccepts as in-

1ShreXis available at http://www.cse.ogi.edu/f̃angdu/shreX.

1297

put a document and uses the mapping API to access the
information in the mapping repository to generate the tu-
ples and populate the tables in the relational schema. The
mapping repository is also accessed by thequery transla-
tor, which generates SQL queries from XML queries.

Relational

Database

Mapping

Repository

Mapping API

Validating Parser

And

Shredder

Annotation
Processor

Query

Translator

Annotated

XML Schema

XML

Document
XML answers

XML query

Tuples SQL

CREATE TABLE

statements

Tuples

Default Rules

Figure 1:ShreXArchitecture

Below, we give a brief overview of the mapping defini-
tion framework, and of the various modules ofShreX. The
reader is referred to [1] for more details.

2.1 Mapping Definition Framework

A ShreX mapping is expressed by annotating an XML
Schema. This not only makes the mapping definition
portable,i.e., independent from the underlying relational
database, but also expressive and extensible. Mapping
specifications also enable useful analyses, for example, to
ensure that a mapping is valid (Section 2.2).

Annotations can be associated to attributes, elements
and groups in the input XML Schema. Their syntax corre-
sponds to adding attributes from a namespace calledshrex
to a given XML Schema. The attributes supported byShreX
are shown in Table 1. Figure 2 illustrates the use of some of
the annotations (shown in boldface). The sample schema
describes information about shows, where aSHOWhas a
TITLE , a YEAR, zero or moreREVIEWs, and zero or more
alternative titles (AKAs).
Mapping document structure. An important aspect of
a mapping is how it captures element identity, document
structure and order. InShreX, the choice of structure map-
ping can be specified through thestructurescheme at-
tribute (see Table 1). For example, in Figure 2, the structure
scheme selected for the document is Dewey2 (see annota-
tion in the root element). Other supported schemes include:
key-foreign-key for parent-child relationships and ordinal
for siblings (“KFO”) [3]; and interval encoding [8]. The
ability to define multiple document structure schemes is a
feature that is unique toShreX.
Outline, tablename, columnname, sqltype.Annotations
are also used to specify how individual elements and at-

2http://www.oclc.org/dewey/about/aboutthe ddc.htm.

tributes in a document are represented in the relational
schema. Figure 3 shows the relational configuration for
the annotated schema of Figure 2. The annotationout-
line=“true” in the elementTITLE indicates it should be
mapped to a separate table; and the annotationtablename
specifies that this table should be namedShowtitle. The
elementYEAR, on the other hand, has itsoutline attribute
set to false, consequently it is inlined in the table corre-
sponding to its parent element,SHOW. The annotationssql-
type andcolumnnamein theYEARelement specify that it
should be mapped to a column namedShowyearand SQL
type NUMBER(4). Although not illustrated in the exam-
ple, an element can also be mapped into a CLOB, using the
annotationmaptoclob.

<element name="SHOW">
shrex :structurescheme="Dewey" />

<sequence>
<element name="TITLE" type="string"

shrex :outline="true"
shrex :tablename="Showtitle" />

<element name="YEAR" type="integer"
shrex :outline="false"
shrex :columnname="Showyear"
shrex :sqltype="NUMBER(4)" />

<element name="REVIEW" type="ANYTYPE"
minOccurs="0" maxOccurs="unbounded"
shrex :edgemapping="true" />

<element name="AKA" type="string"
minOccurs="0" maxOccurs="unbounded"/>

</element>

Figure 2: Annotated movie schema

TABLE SHOW(ID VARCHAR(128),
Showyear NUMBER(4))

TABLE Showtitle(ID VARCHAR(128),
ParentID VARCHAR(128), TITLE VARCHAR(512))

TABLE REVIEW(ParentID VARCHAR(128),
source VARCHAR(128),
ordinal VARCHAR(128),
attrname VARCHAR(128),
flag VARCHAR(128),
value VARCHAR(128))

TABLE AKA(ID VARCHAR(128),
ParentID VARCHAR(128), AKA VARCHAR(512))

Figure 3: Relational configuration for movie schema

Mapping schemaless documents and mixing strategies.
The use of annotated schemata inShreXdoes not preclude
the system from expressing generic (schemaless) map-
pings. For example, in Figure 2, the annotationedgemap-
ping=“true” in the elementREVIEWindicates thatREVIEW
and its descendants are mapped using Edge mapping [6],
i.e.,a single table to store all theREVIEWelements and con-
tents. This functionality is specially useful to map elements
whose structures are not known in advance, such as for ex-
ample, elements of typeANYTYPE.

Annotations naturally allow the definition of mappings
that combine different mapping strategies. Note that in this
example, part of the document is mapped using Edge, and
part is mapped using KFO.

1298

Transformation-based mappings. Additional mapping
strategies are supported by combiningShreXannotations
with the schema transformations proposed in [3]. For ex-
ample, if repetition split is applied toAKA in the original
schema,i.e., AKA* → AKA?, AKA*, the first occurrence of
AKAcould be inlined in the tableSHOW:

TABLE SHOW(ID VARCHAR(128),
Showyear NUMBER(4),

AKA VARCHAR(512))

2.2 Annotation Processor

This module is in charge of parsing an annotated XML
Schema, checking the validity of a mapping, generating a
mapping repository, and producing theCREATE TABLE
statements necessary to construct the relational schema. In
order to check the validity of a mapping, the annotation
processor validates the input (annotated) schema against an
XML Schema for annotations [1]. Validity checks include
verifying whether annotations are attached to the appropri-
ate elements, and if table names are unique in the mapping
definition. Additional checks, such as verifying whether a
mapping is lossless, are also possible.

Writing an annotation for every element and attribute
definition in an XML Schema can be tedious, especially for
large schemata.ShreXprovides a set of default rules that
is used tocompletemapping specifications. In fact, using
these default rules, the system is able to automatically map
an XML Schema without any user input. It is worthy of
note that users can add to or override these rules.

2.3 Mapping Repository and API

Mapping information is processed and stored in a database.
By making this information persistent,ShreXavoids the
need to re-parse a mapping specification each time a doc-
ument is loaded into the target database or that a query
needs to be translated into SQL.ShreXprovides an API
to the mapping repository that allows access to informa-
tion such as, how elements and attributes are mapped
(isInlined(ElemName|AttName)), which mapping is used
to capture document structure (getStructureScheme()),
and which tables are available in the relational schema
(getTableInfo(TableName)) (see [1] for details). This
API allows users to write mapping-independent code which
is not tied to specific features of a particular mapping.

The API also contains functions that expose informa-
tion about the schema being mapped. These functions are
useful both during shredding and query translation. For ex-
ample, in order to translate a descendent step//t, the query
translator needs to determine all paths from the root to tag
t – in ShreX, this can be done through a call topathToTag.

2.4 Document Shredder

The shredder is in charge of generating tuples, field values
and CLOBs from an input document. It was designed to be
generic and independent from the mapping specification: it
uses the mapping API to retrieve information about how a

particular element or attribute is mapped. Since mapping
annotations are specified using attributes from a different
namespace, the document shredder can validate the input
XML document against the annotated Schema. Tuples are
generated while the document is parsed, using a standard
XML parser. In our implementation, we use the SAX in-
terface of Xerces [11], which is both efficient and scalable.
For example,ShreXis able to shred and load a 1GB docu-
ment into DB2 in less than 30 minutes. It is worth pointing
out that even significantly smaller files cannot be loaded in
commercial RDBMSs using their XML extensions. Con-
sistently with what has been reported in [12], we were
not able to load documents larger than 10MB using DB2’s
XML Extender.

Users can set various parameters for the shredder,e.g.,
target database system, login information, bulk loading op-
tion. These parameters can be set either through the com-
mand line or through a configuration file.

2.5 Query Translator

In the current implementation, the query translator supports
a subset of XPath that includes child and descendant axes;
position-based predicates [position()=n]; and simple path
predicates, to SQL.3 Similar to the document shredder, the
query translator does not hard-code mapping choices, in-
stead it uses the information provided by the mapping API
to dynamically decide how to perform the translation.

3 Demonstration Overview

We will demonstrate the various features ofShreXand its
utility for building applications that need to store and query
XML data in relational databases.
Specifying mappings. We will show how differentstor-
age mapping strategiescan be represented using our map-
ping specification. Users will be able to define mappings by
choosing from a variety of XML schemata or creating their
own schema. UsingShreX, they will annotate a schema,
validate the corresponding mapping, and create the cor-
responding relational schemata. We will show how this
process is simplified by theShreXgraphical user interface
(GUI), which allows users to browse and select tables and
fields in the relational schema and visually see the corre-
sponding XML elements and attributes, and vice versa.
Shredding and loading. After a relational schema is cre-
ated, users will be able to select a target RDBMS and in-
struct the system toshred and load a documentinto the tar-
get RDBMS. Shredding and loading can be done through
the command-line, or from the GUI. Users can load the
XML documents directly into the relational tables (i.e.,
they can be bulk-loaded), or generate loading commands
and tuples.
Querying. Users will be able to input XPath queries and
see the corresponding (translated) SQL queries as well as
have these queries executed against the relational backend.

3An XQuery translator is currently under development, and will be
available in the next version ofShreX.

1299

Annotation attributes Target Value Action
outline attribute or element true, false If value is true, a relational table is created for the

attribute or element. Otherwise, the attribute or el-
ement is mapped to one or multiple columns in its
containing table (i.e., inlined).

tablename attribute, element or
group

string The string is used as the table name.

columnname attribute or element of
simple type

string The string is used as the column name.

sqltype attribute or element of
simple type

string The string overrides the SQL type of a column.

structurescheme root element KFO, Interval, Dewey Specifies structure mapping.
edgemapping element true, false If value is true, the element and its descendants are

shredded according to Edge mapping [6].
maptoclob attribute or element true, false If value is true, the element or attribute is mapped to

a CLOB column.

Table 1: Annotation Attributes. Each row in the table contains an annotation attribute, its target (i.e., element, attribute,
and group to which it applies), its possible values and its action depending on its value.

4 Related Work

Bourret et al [4] developed XML-DBMS, a generic tool for
loading XML documents into relational tables. Although
similar toShreXin motivation, the mappings supported by
this tool are limited to the basic, shared, and hybrid tech-
niques described in [10]. In addition, XML-DBMS has no
support for query translation.

MXM [2] has been proposed as a declarative mecha-
nism to express XML-to-relational mappings. Our map-
ping specification shares the flexibility of MXM while hav-
ing the advantage of using an XML Schema syntax and
providing a comprehensive set of tools.

Although XML support in commercial relational en-
gines is improving rapidly, there is a wide variation in the
supported features. Some practical problems include pro-
prietary solutions, lack of flexibility and scalability. To de-
fine a storage strategy, the IBM DB2 XML Extender re-
quires users to write a Document Access Definition specifi-
cation; consequently, developers must learn a new language
in order to use DB2 (and only DB2) as a backend. The
mapping facilities provided by Oracle 9iR2 are not flexible
enough to specify many useful strategies, for example, it is
not possible to specify thatpart of the data is to be stored
using a generic mapping such as Edge [6]. SQLServer’s
OpenXML requires that documents be compiled into an in-
ternal DOM representation, which greatly limits its scala-
bility.

5 Conclusion

To the best of our knowledge,ShreX is the first compre-
hensive system for mapping, loading and querying XML
documents.ShreXhas many novel features including the
ability to mix mapping strategies and to specify a document
structure scheme. We designedShreXto be modular and
extensible. And by making the source code available, we
hopeShreXwill serve as a platform to develop and evaluate
new mapping strategies, query translation and optimization
algorithms.

Acknowledgments.The National Science Foundation par-
tially supports Juliana Freire under grant EIA-0323604.

References
[1] S. Amer-Yahia, F. Du, and J. Freire. A generic and flexi-

ble framework for mapping XML documents into relations.
Technical report, OGI/OHSU, 2004.

[2] S. Amer-Yahia and D. Srivastava. A mapping scheme and
interface for XML stores. InProc. of WIDM, 2002.

[3] P. Bohannon, J. Freire, P. Roy, and J. Siméon. From XML
schema to relations: A cost-based approach to XML storage.
In Proc. of ICDE, pages 64–75, 2002.

[4] R. Bourret, C. Bornhvd, and A. P. Buchmann. A generic
load/extract utility for data transfer between XML docu-
ments and relational databases. InWECWIS, pages 134–
143, 2000.

[5] A. Deutsch, M. Fernandez, and D. Suciu. Storing semi-
structured data with STORED. InProc. of SIGMOD, pages
431–442, 1999.

[6] D. Florescu and D. Kossman. Storing and querying XML
data using an RDMBS.IEEE Data Engineering Bulletin,
22(3):27–34, 1999.

[7] R. Krishnamurthy, R. Kaushik, and J. F. Naughton. XML-
SQL query translation literature: The state of the art and
open problems. InProc. XSym, 2003.

[8] S. Paparizos and et al. Timber: A native system for querying
XML. In Proc. of SIGMOD, page 672, 2003. Demonstra-
tion.

[9] A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas. Ef-
ficient relational storage and retrieval of XML documents.
In Proc. of WebDB, pages 47–52, 2000.

[10] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. De-
Witt, and J. Naughton. Relational databases for querying
XML documents: Limitations and opportunities. InProc. of
VLDB, pages 302–314, 1999.

[11] Xerces Java parser 1.4.3.http://xml.apache.org/xerces-j.

[12] B. B. Yao, M. T.Özsu, and N. Khandelwal. XBench bench-
mark and performance testing of XML DBMSs. InProc. of
ICDE, pages 621–632, 2004.

1300

