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Abstract. We describe how we plan to convert a traditional data col-
lection sensor and ocean model into a DDDAS enabled system for identi-
fying contaminants and then reacting with different models, simulations,
and sensing strategies in a symbiotic manner. The sensor is just as useful
in water as it would be on Mars for material identification. A successful
terrestrial application of the sensor will lead to many new applications
of the device and possible technology transfer to the private sector.

1 Introduction

The Solid-State Spectral Imager (SSSI) is a new instrument to gather hydrolog-
ical and geological data and to perform chemical analyses. It is suitably small
and light to mount in remote sensing applications, and can scan ranges of up to
10 meters. Using a laser-diode array, photodetectors, and on-board processing,
the SSSI combines innovative spectroscopic integrated sensing and processing
with a hyperspace data analysis algorithm [1].

Ultraviolet (UV), visible, and near-infrared laser diodes illuminate target
points using a precomputed sequence, and a photodetector records the amount
of reflected light. For each point illuminated, the resulting reflectance data is
processed to separate the contribution of each wavelength of light and classify
the substances present.

Several prototype implementations of SSSI have been developed and are be-
ing tested at the University of Kentucky. A full-scale implementation of SSSI is
being designed with 25 lasers in discrete wavelengths between 300 nm and 2400



Fig. 1. SSSI emiter and collected spectrum.

nm with 5 rows of each wavelength. This full-scale version is designed to consume
less than 4 Watts and weigh less than 600 grams. The rugged laser diodes and
detectors allow SSSI to be packaged in a small, rugged, space qualified package.
For water monitoring in the open ocean, imaging capability is not needed, and a
single row of diodes (with one diode at each frequency) is sufficient, and power
consumption of the optical system can be reduce to approximately one watt.

The SSSI combines near-infrared, visible, and ultraviolet spectroscopy with a
powerful statistical classification algorithm to detect and identify contaminants
in water. Virtually every organic compound (e.g., polycyclic aromatic hydro-
carbons, paraffins, carboxylic acids, and sulfonic acids) has a near-IR spectrum
that can be measured, including two classes of terrestrial biomarkers, lipids, and
amino acids. Near-infrared spectra consist of overtones and combinations of fun-
damental mid-infrared bands, giving near-infrared spectra a powerful ability to
identify organic compounds while still permitting some penetration of light into
samples [2].

Fig. 2. SSSI processing

To further increase the signal-to-noise ratio, the SSSI uses Walsh-Hadamard
or CRISP encoding sequences of light pulses. In a Walsh-Hadamard sequence
multiple laser diodes illuminate the target at the same time, increasing the num-
ber of photons received at the photo detector. The Walsh- Hadamard sequence
can be demultiplexed to individual wavelength responses with a matrix-vector
multiply [3]. Benefits of generating encoding sequences by this method include



equivalent numbers of on and off states for each sequence and a constant number
of diodes in the on state at each resolution point of a data acquisition period.

CRISP encoding uses orthogonal pseudorandom codes with unequal numbers
of on and off states. The duty cycle of each code is different, and the codes are
selected to deliver the highest duty cycles at the wavelengths where the most
light is needed and lowest duty cycle where the least light is needed to make the
sum of all of the transmitted (or reflected) light from the samples proportional
to the analyte concentration of interest.

The initial deployment of the sensor and model will focus on estuarine regions
where water quality monitoring is critical for human health and environmental
monitoring. The authors will capitalize on an existing configuration of the model
to the Hudson-Raritan Estuary to illustrate the model’s capabilities. As shown
in Fig. 3 the model domain includes the Lower and Middle Hudson River, the
Hudson-Raritan Estuary, Newark Bay and Long Island sound. In the initial
experimentation stage only a portion of the grid will be for fast prototyping of
the different elements in the DDDAS system.

Fig. 3. Spectral element grid showing elemental partition of the New York/Newark
Bay estuarine system.

The forward model is based on the two-dimensional Spectral Element Ocean
Model (SEOM-2D) which solves the shallow water equations:

ut + u · ∇u + f × u + g∇η =
τw − τ d

ρh
+

∇ · (hν∇u)

h
(1)

ht + ∇ · (hu) = Q (2)

where h = H + η is the layer thickness, and H and η are the resting depth
and interface displacement, respectively, u is the depth-average velocity; g is the
gravity coefficient, f is the Coriolis parameter, ν the viscosity, τw the surface
wind stress, τ b the bottom drag, and Q is an area mass source. An advection-
diffusion equation tracks the evolution of passive tracers:

Tt + u · ∇T =
∇ · (αh∇T )

h
(3)



where α is the diffusion coefficient, and T stands for a generic tracer. The model
can be forced through winds, tides, and lateral injection of mass at inflow bound-
aries (e.g. river input).

The spectral element discretization is an h-p type finite element method
which relies on relatively high degree (5-8th) polynomials to approximate the
solution within each element. The main features of the spectral element method
are: geometric flexibility due to its unstructured grids, its dual paths to conver-
gence: exponential by increasing polynomial degree or algebraic via increasing
the number of elements, dense computational kernels with sparse inter-element
synchronization, and excellent scalability on parallel machines.

A sample tidal calculation is performed using a grid that encompasses the
Newark/New York bays regions, the Long-Island sound, and a substantial por-
tion of the Hudson River. The model is forced with tidal elevation obtained from
tide gauges located on the eastern edge of the Long-Island sound and in Sandy
Hook.

The SSSI is reprogramable in the field. When an interesting chemical trace
is discovered, the reaction from the application overseeing the SSSI is two-fold:
(a) invoke an appropriate application, and (b) request that the SSSI look for
specific other chemical traces. There is a symbiotic relationship between the
sensor network and the application simulation that is typical in a DDDAS.

Consider finding gasoline or diesel fuel in a body of water. This can be a sign
of innocuos pollution from a boat. Depending on what other traces are found,
it could be an indication that a boat sank recently nearby. The SSSI needs to
be reprogrammed in the latter case and a search and locate application must be
invoked to find the sunken boat. Emergency services, the coast guard, and the
news media may also need to be automatically informed of progress.

The SSSI has a modest amount of memory and computing capacity on board.
Some of the computing and decision making will be put onto the SSSI over time,
thus reducing the amount of time needed to reprogram the device.

2 Data assimilation and accurate predictions

Data collection is initiated by a signal sent to the serial interface of the SSSI. All
data is collected by the SSSI using a phototransistor connected to an operational
amplifier circuit. The analog signal is converted with an on-board 0.5-5 V analog
to digital converter at 12 bits. Each scan consists of 256 data points collected in
both the on and off states of 25 Hadamard encoded light sequences. The result is
50 total states with 12800 data points collected for each scan. The corresponding
values of the on and off states for each Hadamard coded light sequence are sub-
tracted to remove ambient light from the data. After subtraction, the resulting
256 data points from each of the 25 Hadamard coded light sequences are then
averaged to obtain 25 16 bit intensity values. The final 25 16 bit resulting values
are exported to Matlab via the serial connection to a graphical user interface
where data undergoes a reverse Hadamard transform to obtain intensity values
for each of the 25 diodes.



A single scan with MatLab processing takes less than 300 ms. The switching
speed of our transistors within the SSSI is significantly slow that this prototype
requires a 5 µs delay before each datum reading for signal stabilization after the
lights have switched states. Both times will be significantly speeded up if we
move to a commercial quallity device.

We can use the data to improve our prediction of the contaminant transport
by updating the initial conditions. Here, initial condition refers to the concentra-
tion distribution at some previous time step. This update reduces the computa-
tional errors associated with incorrect initial data and improves the predictions.
We consider contaminant transport described by (1)-(3). Initial data is sought
in a finite dimensional space. Using the first set of measurements, the approx-
imation of the initial data is recovered. As new data are incorporated into the
simulator, the initial data is updated using an objective function. We note that
the formulated problem is ill-posed because there are fewer sensors than the fi-
nite dimensional space describing the initial data. Consequently, the objective
function is set up based on both a measurement error as well as a penaliza-
tion term that depends on the prior knowledge about the solution at previous
time steps (or initial data). The prior information is refreshed using the updated
initial data. The penalization constants depend on time of update and can be
associated with the relative difference between simulated and measured values.
In the simulations, both the prior and penalization constants change in time.

To account for the errors (uncertainties) associated with sensor measure-
ments, we consider an initial data update within a Bayesian framework. The
posterior distribution is set up based on measurement errors and prior infor-
mation. This posterior distribution is complicated and involves the solutions of
partial differential equations. We could use a Metropolis-Hasting Markov chain
Monte Carlo (MCMC) method to generate samples from the posterior distribu-
tions. However, a sampling with MCMC is expensive since it requires iterative
steps and the acceptance rate is typically low. We developed an approach that
combines least squares with a Bayesian approach that gives a high acceptance
rate. In particular, we can prove that rigorous sampling can be achieved by
sampling the sensor data from the known distribution, thus obtaining various
realizations of the initial data. Our approach has similarities with the Ensemble
Kalman Filter approach, which can also be adapted to an initial data update.
These issues will be discussed in detail elsewhere.

3 Chemical identification process

A programmable, networked, portable low-cost mil-spec sensor and network for
DDDAS in extreme aqueous environments must be able to perform chemical
analyses to be effective in terrorist attack and accident scenarios. Most oil sensing
in the oceans is done by remote sensor systems [4].

A network of sensors immersed in the ocean water (either on fixed buoys or
as roving sensors) eliminates many of the problems with remote sensing. Bad
weather does not affect immersed sensors. A roving sensor can be programmed



to investigate beaches, weeds or debris. The SSSI is laser fluorosensor when a
filter is placed over the detector, so it can positively discriminate oil on most
backgrounds. Light scattering measurements reveal droplet size, and spectral
transmission and reflectance reveal droplet chemistry.

Once the spectrum of a sample has been collected, it must be classified to
determine the substance present. The Bootstrap Error-adjusted Single-sample
Technique (BEST) [5] is the analytical basis of SSSI, and the foundation for the
chemical library. Spectra recorded at n wavelengths are represented as single
points in a n-dimensional hyperspace. In this scheme, similar samples produce
similar spectra that project as “probability orbitals” or “clusters” into similar
regions of hyperspace. The BEST metric is a clustering technique for exploring
these distributions of spectra in hyperspace.

A sample spectrum is compared to each substance in a biogeochemical and
industrial library based on its direction and distance, measured in standard de-
viation (SD) units, from the known substances. BEST handles asymmetric stan-
dard deviations surrounding each substance nonparametrically, allowing very
precise discrimination. A sample within 3 SD units of a substance is considered
to be composed of the matching substance. Any substance more than 3 SD units
away from any known substance is considered an unknown substance.

For a given library entry, the BEST algorithm can be suitably approximated
using multiple linear regression (MLR) to substantially reduce computational
requirements (see Fig. 4). In this implementation, BEST SD units are precal-
culated before the SSSI is deployed in a large number of directions from the
population means, and MLR is used to fit the standard deviation contours as a
function of direction. With a sufficient number of terms (in the example, 10th
order with cross terms), the MLR version of the algorithm can predict BEST
distances to within 5% of the true value.

Fig. 4. Identification

Oil droplets can travel nearly anywhere in the ocean. The droplet size exerts
a major effect on droplet motion [6]. The rise velocity of oil droplets extends
from about 2.5 × 10−7 m/s for a diameter of 2 µm to 4.3 × 10−3 m/s for
a diameter of 260 µm. Droplets traveling at 2.5 × 10−7 m/s will ascend only



0.001 m and 0.02 m, over periods of 1 hour and 24 hours, while over equivalent
periods, droplets ascending at 4.3 × 10−3 m/s will climb 15 m and 370 m. In the
meantime, a vertical diffusivity of 51 cm2/s will distribute oil droplets (equally
upward and downward) about 6 m and 30 m over the same time. Therefore, the
smallest oil droplets act as though they are neutrally buoyant (transported only
by diffusion), while the largest droplets are advected largely by their buoyancy.

Using multiple linear regression the BEST classification algorithm can be
performed in situ, allowing a rover to classify many samples, only notifying
the simulation when an interesting substance is found. An initial library can
be computed based on substances likely to be found in the target environment.
When a substance unknown to the BEST library is found, the sensor can sample
nearby points with similar spectra to create a new library entry for the new
substance. Scientists can determine the type of substance present by further
analyzing raw spectra of the substance provided by SSSI and by using data from
their other instruments, apply these data to update the simulation. The SSSI
chemical library will comprise substances expected to be in the environment in
which the SSSI operates.

4 Matlab and SCIRun environments

The SCIRun-Matlab interface is designed such that SCIRun [7] detects at run-
time whether Matlab is available. Hence, SCIRun does not have to be linked
against any of the Matlab libraries. The way the interfacing is accomplished is
thorugh a virtual shell. SCIRun accesses Matlab through stdin and stdout and
files that are written to a temporary directory. The whole process of translating,
saving, and opening files is hidden from the user and is initiated automatically.
Data translation is also seamless for things like 0 or 1 based indices.

The module is designed in such a way that once the Module is executed it will
keep Matlab running in its internal engine, hence re-executing the module will
allow to access the variables that were left by a previous execution cycle. Hence
the Matlab Engine can be used as well for iterative processes. An example of
the matlabinterface module is depicted in Fig. 5. The figure shows how matlab
is integrated into the dataflow structure of SCIRun. Once the ”Matlab” mod-
ule receives all the dataflow objects that are connected to it, the specific code
in Matlab is executed and now dataflow objects are created for the dataflow
downstream.

Hence, moving the current Matlab interface for the SSSI sensor to a problem
solving environment like SCIRun is trivial.

5 Conclusions

We described how we plan to convert a traditional data collection sensor and
ocean model into a DDDAS enabled system for identifying contaminants and
then reacting with different models, simulations, and sensing strategies in a
symbiotic manner. A drone is being built so that the SSSI will be mobile. We



Fig. 5. SCIRun running the SSSI-cid module.

are already able to make measurements and are proceeding to program the
system for remote sensing and steering. Libraries will be created for interesting
contaminants during the coming year that we will use to reprogram the SSSI
dynamically while we switch to an appropriate simulation for the contaminants
identified to explore what else might be in the vicinity of the SSSI.
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