
Virtual Telemetry for Dynamic Data-Driven

Application Simulations

Craig C. Douglas1,2, Yalchin Efendiev3, Richard Ewing3, Raytcho Lazarov3,
Martin J. Cole4, Greg Jones4, and Chris R. Johnson4

1 University of Kentucky, Department of Computer Science, 325 McVey Hall,
Lexington, KY 40506-0045, USA

{douglas}@ccs.uky.edu
2 Yale University, Department of Computer Science, P.O. Box 208285

New Haven, CT 06520-8285, USA
douglas-craig@cs.yale.edu

3 Texas A&M University, College Station, TX, USA
{efendiev,lazarov}@math.tamu.edu and richard-ewing@tamu.edu

4 Scientific Computing and Imaging Institute, University of Utah, Salt Lake City,
UT, USA

mjc@sci.utah.edu and crj@cs.utah.edu

Abstract. We describe a virtual telemetry system that allows us to de-
vise and augment dynamic data-driven application simulations (DDDAS).
Virtual telemetry has the advantage that it is inexpensive to produce
from real time simulations and readily transmittable using open source
streaming software. Real telemetry is usually expensive to receive (if it
is even available long term), tends to be messy, comes in no particular
order, and can be incomplete or erroneous due to transmission problems
or sensor malfunction. We will generate multiple streams continuously
for extended periods (e.g., months or years): clean data, somewhat error
prone data, and quite lossy or inaccurate data. By studying all of the
streams at once we will be able to devise DDDAS components useful in
predictive contaminant modeling.

1 Introduction

Consider an extreme example of a disaster scenario in which a major waste spill
occurs in a river flowing through the center of a major city. In short time, the
waste will be on kilometers of the city’s shoreline.

Sensors can now be dropped into an open water body to measure where the
contamination is, where the contaminant is going to go, and to monitor the
environmental impact of the spill. Whether or not the procedure to drop the
sensors exists today is not relevant for the moment; only that it could be done.
Scrambling aircraft to drop sensors in a river is no longer such a far fetched
scenario.

A well designed DDDAS predictive contaminant tracking program will be
able to determine where the flow will go, the neighborhoods that have to be



evacuated, and optimize a clean-up plan. A backward in time DDDAS program
will offer help in determining where and when a contaminant entered the en-
vironment. For this to become reality data streaming tolerant algorithms with
sensitivity analysis incorporated for data injection, feature extraction, and mul-
tiple scaling must be developed for this to scenario to become a reality.

There are several approaches to designing DDDAS systems for disaster man-
agement. One is to collect real data and replay it while developing new data
dynamic algorithms. Another is to generate fictional data continuously over a
several year period with disasters initiated at random times or by human inter-
vention (possibly without informing the other researchers in advance).

In either case, data streaming is a useful delivery system. Like realistic teleme-
try, data arrives that is usually incomplete, not in any order, and occasionally
wrong. In short, it is an appalling mess.

In Sect. 2, we define an application that is our first test case. In Sect. 3, we
define the DDDAS components that are of interest in this paper. In Sect. 4, we
define model reduction for our application. In Sect. 5, we describe the telemetry
middleware that we are in the process of developing and what our choices are. In
Sect. 6, we discuss the programming environment that we are using to generate
useful prototypes quickly so that a final package, useful to others as well, can be
built. In Sect. 8, we draw some conclusions.

2 An Example Application

As an example application we consider a single component contaminant trans-
port in heterogeneous porous media taking into account convection and diffusion
effects. This simple model will be further extended by incorporating additional
physical effects as well as uncertainties. The mathematical formulation of the
problem is given by coupled equations that describe pressure distribution and
the transport equations,∇·k∇p = f , St+v·∇S = ∇·D∇S, v = −k∇p. We con-
sider two different permeability field scenarios. For the first case we assume that
a large horizontal permeability streak is located in the middle of the domain and
there are two vertical low permeability zones. The background permeability is
taken to be 1, the permeability of high streak region is taken to be 2, and vertical
low permeability regions have permeability 0.01. The second permeability field
is chosen as an unconditional realization of a fractal field whose semivariogram
is given by γ(h) = Ch0.5, where the semivariogram is defined as

γ(h) =
1

2
E[(ξ(x + h)− ξ(x))2].

A horizontal high permeability streak is added at the center of the domain. To
generate a realization of this field we use fractional Brownian motion theory de-
veloped in [1, 7, 15]. The realization of the field is generated from the generalized
Weierstrass-Mandelbrot function with fractal co-dimension β/2 (β = 0.5)

ξ(x) =

∞
∑

i=1

Aiλ
−i

β

2 sin(λix · ei + φi),



where Ai are normally distributed random numbers with mean zero and variance
1, ei are uniformly distributed on the unit sphere, φi are uniformly distributed
over [0, 2π], and λ > 1. This isotropic random field has an approximately power
semivariogram, i.e., 0 < chβ < γ(h) < Chβ . In all the examples the rectangular
domain [0, 2] × [0, 1] × [0, 1] is consider and the following initial and boundary
conditions are imposed. We assume the pressure at the inlet x = 0 to be p = 1
and p = 0 at the outlet x = 2. For the other faces we assume no flow boundary
conditions for the pressure equation. For the concentration field we assume that
the concentration is S = 1 at the inlet x = 0 and ∂S/∂n = 0 is imposed on the
other faces. Furthermore, D = 0.02 is taken to be constant. The computations
are implemented using 3-D finite element simulator developed at Texas A&M
employing the mesh generator NETGEN [16].

The concentration fields cannot easily be rendered in a grayscale. We have
decided to post the concentrations on the web at URL

http : //www.dddas.org/itr − 0219627/papers.html#iccs2003.

3 DDDAS Components

In contaminant movement predictions, it is common to run simulations for a few
hours or days as a batch process. Although the individual application simulation
periods are a few wall clock hours, they are built to update the early time steps
with real data as it becomes available.

Converting software from a data set oriented batch code to a data stream con-
tinuously running code requires significant, nontrivial changes. We are dissecting
contaminant transport models and associated codes in order to understand how
to convert these models into the DDDAS model. Underground situations (e.g.,
nuclear waste contamination from a leaky containment vessel) are different from
an above ground situation (contaminants in a lake and/or river). We are inves-
tigating both of these situations as well as the combination of the two.

The addition of DDDAS features to a system requires that aspects related
to the initial data must be identified. Additionally, the time-related updating
procedures must investigated. As we approach these requirements we will focus
on maintaining a solution that is generally useful to other application fields that
are initial boundary value problem (IBVP) based. Almost all IBVP formulations
preclude dynamic data or backward in time error checking, sometimes in quite
subtle ways.

The use of continuous data streams instead of initial guess only data sets
presents an additional challenge for data driven simulations since the results
vary based on the sampling rate and the discretization scheme used. Dynamic
data assimilation or interpolation might be necessary to provide a feedback to
experimental design/control. DDDAS algorithms also need to dynamically as-
similate new data at mid-simulation as the data arrives, necessitating “warm
restart” capabilities.

Modifying application programs to incorporate new dynamically injected
data is not a small change in the application program, particularly since the



incoming data tends to be quite messy. It requires a change in the application
design, the underlying solution algorithms, and the way people think about the
accuracy of the predictions.

Uncertainties in DDDAS applications emanate from several sources, namely
uncertainty associated with the model, uncertainties in the input data (streamed),
and the environment variables. Identifying the factors that have the greatest im-
pact on the uncertainty output of the calculations is essential in order to control
the overall processes within specific limits. Handling all output distributions
to provide error bounds is, for most realistic problems, a computationally pro-
hibitive task. Hence, using prior observations to guide the output distribution
estimations presents a possible approach to incorporating uncertainty in control
decisions.

Incorporating these statistical errors (estimations or experimental data un-
certainties) into computations, particularly for coupled nonlinear systems, is
difficult. This is compounded by the fact that tolerances may also change adap-
tively during a simulation. Error ranges for uncertainty in the data must be cre-
ated and analyzed during simulations. Sensitivity analysis must be performed
continuously during simulations with options in case of a statistical anomaly.

The common mathematical model in many DDDAS applications may be for-
mulated as solving a time dependent, nonlinear problem of the form F(x+Dx(t))=0,
by iteratively choosing a new approximate solution x based on the time depen-
dent perturbation Dx(t).

At each iterative step, the following three issues may need to be addressed.
Incomplete solves of a sequence of related models must be understood. In addi-
tion the effects of perturbations, either in the data and/or the model, need to be
resolved and kept within acceptable limits. Finally, nontraditional convergence
issues have to be understood and resolved. Consequently, there will be a high
premium on developing quick approximate direction choices, such as, lower rank
updates and continuation methods. It will also be critical to understand the
behavior of these chosen methods.

By generating telemetry in real time, we allow for the new, DDDAS code
to determine how well it has predicted the past, assuming the DDDAS code
runs much faster than real time. We run a simulation backwards in time to
a point where we can verify that we have not introduced too great an error
into a simulation at a future time. This is particularly important when deciding
whether or not to introduce all or just part of a data stream. For example, if a
data stream update causes a loss or addition of mass when it is conserved, the
data stream update will lead to an abrupt loss of usefulness unless a filtering
process is developed to maintain the conservation of mass. We are developing
new filters for our applications that resolve the errors introduced by converting
the applications to data streams.



4 Model reduction and multiscale computations

Model reduction will largely be accomplished with the use of upscaling tech-
niques. Due to complicated interactions and many scales, as well as uncer-
tainties, upscaling is desirable. The upscaling is in general nontrivial because
heterogeneities at all scales have a significant effect, and these effects must be
captured in the coarsened subsurface description. Most approaches for upscal-
ing are designed to generate a coarse grid description of the process which is
nearly equivalent (for purposes of flow simulation) to an underlying fine grid de-
scription. We will employ both static and dynamic upscaling techniques. Static
upscaling techniques will generally be used in coarsening the media properties,
while the dynamic upscaling will be employed to understand the effect of the
small scale dynamics on the larger scales. One of the important aspects of our
upscaling approach is the use of carefully selected dynamic coarse scale variables
in a multiscale framework.

To demonstrate the main idea of our static upscaling procedures we consider
our application model, the pressure equation ∇·k∇p = f . Within this approach
the heterogeneities of the media are incorporated into the finite element (or finite
volume element) base functions that are further coupled through the global
formulation of the problem We seek the solution of this equation in a coarse
space whose base elements φi(x) contain the local heterogeneity information,
Vh = span(φi). The numerical solution uh is found from

∫

D

k∇uh∇vhdx =

∫

D

fvhdx, ∀vh ∈ Vh.

This approach allows us to solve the saturation equation on the on the fine
scale grid as well as on the coarse scale grid since the fine scale features of
the velocity field can be recovered from the base functions. Consequently, we
can adjust the permeability at the fine scale directly. One of the advantages of
these approaches is that the local changes of the permeability field will only
affect few base functions. Consequently, we will only need to re-compute few
base functions and solve the coarse problem. This methodology will be useful in
backward integration for finding sources of inconsistencies within our DDDAS
application. We will also employ traditional approaches based on upscaling of
permeability field [2] and use mainly the upscaling of permeability field with
oversampling techniques [19]. The main idea of this approach is to use larger
domain (larger than the coarse block) in order to reduce the boundary effects.
To reduce the grid effects grid based upscaling techniques will be employed.

For the time dependent transport problems we will employ coarsening tech-
niques that are based on dynamic upscaling. For these approaches the dynamic
quantities (e.g., quantities that depend on concentration) are coarsened and their
functionality is determined through analytical considerations. Determining the
form of coarse scale equations is important for multiscale modeling. Our previous
approaches on this issue were mainly in two directions. First approach that is
based on perturbation techniques models subgrid effects as a nonlocal macrodis-
persion term [5]. This approach takes into account the long range interaction in



the form of diffusion term that grows in time. Our second approach based on
homogenization techniques [6] computes the dynamic upscaled quantities using
local problems [4, 3].

5 Telemetry Middleware

Real telemetry is usually expensive to receive (if it is even available on a long term
basis), tends to be messy, comes in no particular order, and can be incomplete
or erroneous due to transmission problems or sensor malfunction. For predictive
contaminant telemetry, there are added problems that due to pesky legal reasons
(corporation X does not want it known that it is poisoning the well water of
a town), the actual data streams are not available to researchers, even ones
providing the simulation software that will do the tracking.

Virtual telemetry has the advantage that it is inexpensive to produce from
real time simulations. The fake telemetry can easily be transmitted using open
source streaming software.

We will generate multiple streams continuously for extended periods (e.g.,
months or years): clean data, somewhat error prone data, and quite lossy or
inaccurate data. By studying all of the streams at once we will be able to devise
DDDAS components useful in predictive contaminant modeling.

Real telemetry used in predictive contaminant monitoring comes in small
packets from sensors in wells or placed in an open body of water. There may
be a few sensors or many. With virtual telemetry, we can vary the amount of
telemetry that we broadcast and its frequency.

There are a number of issues that are being resolved in the course of our
project.

1. Should the telemetry data be broadcast as an audio stream?
2. Should the telemetry data be broadcast as a movie stream?
3. Should a complete 3D visualization be broadcast (and in what form)?
4. Should only sparse data from discrete points in a domain be broadcast?
5. At what rate can the virtual telemetry be broadcast so that network admin-

istrators do not cut off the data stream?

We are building middleware to answer all of the questions above.
There are a number of open source projects for doing reliable data streaming.

Palantir [8] is a former commercial product that has been re-released as open
source. It supports audio and video streaming as well as general data stream-
ing. Gini [9] is an audio and video streamer that is still in beta, but is fairly
active in development. GStreamer [10] is more of a streaming framework devel-
oped by graduate students in Washington. It supports audio, video, and general
data streaming. VideoLAN [18] is a video streamer developed by students at the
École Centrale Paris. QuickTime Streaming Server is an audio and video stream-
ing server that Apple offers. Of the five, GStreamer is the clear first choice to
concentrate on.



Broadcasting the telemetry as audio has the advantage that there are many
programs to choose from to generate the data streams and to “listen” to them
on the receiving end.

Broadcasting the telemetry as a movie stream or a full 3D visualization has
the advantage that it can be trivially visualized on the receiving end. This is
particularly attractive when studying incomplete and/or erroneous data streams.
However, there is a potential of transmitting too much data and overwhelming
the network.

Broadcasting only sparse data from discrete points in any form has pluses
and minuses. Almost any Internet protocol can be used. However, do we really
want to tie ourselves to one Internet protocol?

Avoiding the attention of network administrators is a serious concern. We
must balance adequate data streams with not having any serious impact on a
network. This is highly dependent on where we are running the virtual telemetry
from and to and cannot easily be determined a priori. However, it is easily
determined a posteriori, which will be part of a well behaved, adaptive broadcast
system.

6 Program Construction

Current interactive scientific visualization and computational steering implemen-
tations require low latency and high bandwidth computation in the form of model
generation, solvers, and visualization. Latency is particularly a problem when
analyzing large data sets, constructing and rendering three-dimensional models
and meshes, and allowing a scientist to alter the parameters of the computa-
tion interactively. However, large-scale computational models often exceed the
system resources of a single machine, motivating closer investigation of meeting
these same needs with a distributed computational environment.

To achieve execution speeds needed for interactive three-dimensional prob-
lem solving and visualization, we have developed the SCIRun problem solving
environment and computational steering system [12, 11]. SCIRun allows the in-
teractive construction, debugging, and steering of large scale scientific compu-
tations. SCIRun can be conceptualized as a computational workbench, in which
a scientist can design via a dataflow programming model and modify simula-
tions interactively. SCIRun enables scientists to interactively modify geometric
models, change numerical parameters and boundary conditions, and adaptively
modify the meshes, while simultaneously visualizing intermediate and final sim-
ulation results.

When the user changes a parameter in any of the module user interfaces,
the module is re-executed, and all changes are automatically propagated to all
downstream modules. The user is freed from worrying about details of data de-
pendencies and data file formats. The user can make changes without stopping
the computation, thus steering the computational process. In a typical batch
simulation mode, the scientist manually sets input parameters, computes results,
assesses the results with a combination of separate analytical and visualization



Fig. 1. SCIRun is open source software, and is freely downloadable.

packages, then iterates this procedure. SCIRun closes the loop and allows inter-
active steering of the design, computation, visualization, and analysis phases of
a simulation[17].

It is important to have the ability to develop and manipulate the teleme-
try simulation interactively. An example of this need is with sensors. It can be
imagined that the typical telemetry collection will combine many types of sen-
sors reporting different data types and at different rates. The ability to quickly
and seamlessly swap sensor types and dataflow types is critical to a DDDAS ap-
plication. SCIRun provides the ability to develop rapid prototypes. The modular
design of SCIRun allows the simulation to be built from a set of components,
in such a system components or modules may be assigned to each sensor type
making it easy to combine or change the sets of sensors used in a simulation.
This modularity also enables a change in the scale or type of a problem being
simulated to be done very quickly and directly.

Testing of the system and its robustness with simulated data will require the
ability to manipulate the data stream either by adding data losses or abnormal-
ities. Using SCIRun, the running telemetry stream can be manipulated by hand
essentially as a data steering problem.



As the testbed is expanded it will almost certainly be a requirement that
the application perform in a distributed environment. It will also be likely that
the application be required to work, seamlessly, with other software packages or
libraries, not directly incorporated in the application. There are numerous exam-
ples of the ease of bridging third party software with SCIRun, and of SCIRun
operating in a distributed environment [14, 13] . This will enable the utiliza-
tion of existing free codes for streaming the dynamic data needed to drive this
simulation.

7 Aknowledgements

This work was supported in part by a National Science Foundation collaborative
research grant (EIA-0219627, EIA-0218721, and EIA-0218229).

8 Conclusions

We have described issues in constructing a virtual telemetry system. Our target
is enabling DDDAS components in a predictive contaminant model. We expect
to have useful open source middleware readily available on the Internet soon.
Once the middleware is completed, we can explore many interesting features of
DDDAS.

References

1. Chu, J., and Journel, A. InGeostatistics for the next Century, R. Dimitrakopou-
los, Ed. Kluwer Academic Publishers, 1994, pp. 407–412.

2. Durlofsky, L. J. Numerical calculation of equivalent grid block permeability
tensors for heterogeneous porous media. Water Resour. Res. 27 (1991), 699–708.

3. Efendiev, Y., and Durlofsky, L. Accurate subgrid models for two-phase flow in
heterogeneous reservoirs. paper SPE 79680 presented at the 2003 SPE Symposium
on Reservoir Simulation, Houston, TX.

4. Efendiev, Y., and Durlofsky, L. A generalized convection diffusion model for
subgrid transport in porous media. submitted to SIAM on Multiscale Modeling
and Simulation.

5. Efendiev, Y. R., Durlofsky, L. J., and Lee, S. H. Modeling of subgrid effects
in coarse scale simulations of transport in heterogeneous porous media. Water
Resour. Res. 36 (2000), 2031–2041.

6. Efendiev, Y. R., and Popov, B. On homogenization of nonlinear hy-
perbolic equations. submitted to SIAM J. Appl. Math. (available at
http://www.math.tamu.edu/∼yalchin.efendiev/submit.html).

7. Falconer, K. Fractal Geometry: Mathematical Foundations and Applications.
John Wiley & Sons, 1990.

8. FastPath Research. Palantir. http://www.fastpath.it/products/palantir.
9. Gini. Gini. http://gini.sourceforge.net.
10. GStreamer. Gstreamer. http://www.gstreamer.net.



11. Johnson, C., and Parker, S. The scirun parallel scientific computing problem
solving environment. In Ninth SIAM Conference on Parallel Processing forScien-
tific Computing (1999).

12. Johnson, C., Parker, S., and Weinstein, D. Large-scale computational science
applications using the scirun problem solving environment. In Supercomputer 2000
(2000).

13. Miller, M., Hansen, C., and Johnson, C. Simulation steering with scirun in a
distributed environment. In Applied Parallel Computing, 4th InternationalWork-
shop, PARA’98, E. E. B. Kagstrom, J. Dongarra and J. Wasniewski, Eds., vol. 1541
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998, pp. 366–376.

14. Miller, M., Hansen, C., Parker, S., and Johnson, C. Simulation steering
with scirun in a distributed memory environment. In Seventh IEEE International
Symposium on HighPerformance Distributed Computing (HPDC-7) (jul 1998).

15. Oh, W. Random field simulation and an application of kriging to image thresh-
olding. PhD thesis, State Univeristy of New York at Stony Brook, 1998.

16. Schoeberl, J. NETGEN-An advancing front 2d/3d-mesh generator based
on abstract rules. Computing and Visualization in Science 1 (1997), 41–52.
http://www.sfb013.uni-linz.ac.at/ joachim/netgen/.

17. SCIRun: A Scientific Computing Problem Solving Environment. Scientific Com-
puting and Imaging Institute (SCI), http://software.sci.utah.edu/scirun.html,
2002.

18. VideoLAN. Videolan. http://www.videolan.org.
19. Wu, X. H., Efendiev, Y. R., and Hou, T. Y. Analysis of upscaling absolute

permeability. Discrete and Continuous Dynamical Systems, Series B 2 (2002),
185–204.


