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Abstract

Tracking linear features through tensor field datasets is an open re-
search problem with widespread utility in medical and engineering
disciplines. Existing tracking methods, which consider only the
preferred local diffusion direction as they propagate, fail to accu-
rately follow features as they enter regions of local complexity. This
shortcoming is a result ofpartial voluming; that is, voxels in these
regions often contain contributions from multiple features. These
combined contributions result in ambiguities when deciding local
primary feature orientation based solely on the preferred diffusion
direction. In this paper, we introduce a novel feature extraction
method, which we termtensorlinepropagation. Our method re-
solves the above ambiguity by incorporating information about the
nearby orientation of the feature, as well as the anisotropic clas-
sification of the local tensor. The nearby orientation information
is added in the spirit of an advection term in a standard diffusion-
based propagation technique, and has the effect of stabilizing the
tracking. To demonstrate the efficacy of tensorlines, we apply this
method to the neuroscience problem of tracking white-matter bun-
dles within the brain.

1 Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) is becom-
ing a more common and useful medical research tool as magnetic
resonance scanners become capable of delivering ever higher reso-
lution scans. As with increased exposure of any new type of data,
new applications arise which result in a need for new visualization
methods. As a particular example, neuroscientists are interested in
visualizing diffusion tensor data within the cranial volume in order
to examine the connectivity between different regions of the brain
and ultimately to better understand the brain’s functional organiza-
tion [9].

DT-MRI data describes the way water diffuses through a volume
[1]. Since white matter tends to diffuse water along the fiber di-
rections, diffusion tensor data should be a strong indicator of white
matter orientation, and therefore of cognitive functional organiza-
tion.

A method akin to vector field streamline advection should be a
strong candidate for such neuro-connectivity studies. By seeding a
streamline in a particular region of the brain, a neuroscientist might
be able to see what other regions of the brain are anatomically at-
tached through gray and white matter paths. If we had very high
resolution data, capable of imaging anatomy at the scale of individ-
ual fibers, then such a visualization might be straightforward.

Unfortunately, clinical neural diffusion tensor data are still rel-
atively low resolution and are also rather noisy. When a region of
white matter is measured at the resolution of today’s MR scanners,
they are sampling a volume composed of many fibers, which can
have a range of orientations. As we shall discuss, it is precisely this

partial volumingthat makes tracking fibers through diffusion tensor
fields unstable.

2 Background

2.1 Diffusion Tensors

A diffusion tensor can be represented mathematically as a3 � 3
symmetric, semi-positive definite matrix. By examining the eigen-
vectors and eigenvalues of this matrix, we can gain intuition about
the tensor.

We will refer to the eigenvalues as�1, �2 and�3, and their cor-
responding eigenvectors ase1, e2 ande3, where�1 � �2 � �3.
Scalinge1 by�1, we obtain themajoreigenvector,v1. Similarly, if
we scalee2 ande3 by �2 and�3, we obtain themediumandminor
eigenvectors,v2 andv3, respectively. If we imagine an ellipsoid,
with axes corresponding tov1, v2 andv3, we have a geometric
representation which uniquely defines the diffusion tensor and in-
tuitively represents the probable shape a water droplet would take
as it was diffused by the tensor.

A diffusion tensor that has only one large eigenvalue is said to be
linearly isotropic[16], and has a cigar-shaped geometric represen-
tation. This classification is common within white matter regions of
the brain, as the myelin sheaths cause water to diffuse preferentially
along their axonal lengths. When a tensor has two relatively large
eigenvalues, it preferentially diffuses water in the plane spanned by
e1 ande2. This case is referred to asplanar anisotropyand is geo-
metrically represented by a pancake shape. The final classification,
spherical anisotropy, refers to tensors for which all three eigen-
values are approximately equal. In this case, the tensor diffuses
relatively uniformly in all directions.

It is worth noting that planar anisotropy can result from either
material which diffuses in sheets or from partial voluming effects
as two linear features cross near each other [11]. Similarly, very
complex regions with many different fiber orientations can result in
an isotropic tensor.

In real data, there are not just three unique tensor values (linear,
planar, spherical), but rather there is a continuum of classifications
within these three extremes. To quantify this continuum, Westin
[16] introduced three definitions, corresponding to linear (cl), pla-
nar (cp) and spherical (cs) anisotropy coefficients:

cl =
�1 � �2

�1 + �2 + �3
; (1)

cp =
2(�2 � �3)

�1 + �2 + �3
; (2)

cs =
3�3

�1 + �2 + �3
; (3)

By design, these three coefficients sum to unity. This makes



them amenable as barycentric coordinates [7], as shown in Figure 1.
In this figure, we see a histogram of thecl, cp, andcs coordinates
for all tensors in the field. Most interestingly, these is no clustering
within the histogram. This suggests that there is substantial partial
voluming taking place throughout the measured volume.

cl cp

cs

Figure 1: Barycentric histogram of a diffusion tensor MRI dataset.
The coordinates correspond to the amount of linear, planar and
spherical anisotropy in the tensor. The lack of clustering suggests
considerable partial voluming is taking place within the volume.

2.2 Previous Work

Traditional methods for visualizing tensor data include brush
strokes [8], glyphs [2, 5, 10], ellipsoids [6, 13, 14], stream-polygons
[12] and hyperstreamlines [3, 4]. Using a 2D approach, Laidlaw
[8] uses brush strokes to represent the diffusion tensor data through
various stroke shape, color and texture cues. This method works
well in 2D, but it is not clear how it can be effectively extended
to 3D. A more 3D-oriented approach is the use of glyphs. Glyphs
are geometric icons which are useful for depicting the tensors at
particular locations, or uniformly distributed through the domain.
Ellipsoids are a specific type of glyph, which geometrically rep-
resents the diffusion tensor by rendering the deformation a sphere
would undergo when acted upon by the tensor matrix. As with all
glyphs, though, a 3D field full of ellipsoids rapidly becomes clut-
tered and uninformative. In contrast to these other methods, which
show global information about the volume, hyperstreamlines and
stream-polygons show local information about the field along a par-
ticular path through the volume. In the case of neural connectivity,
it is actually the path itself which is of primary interest. Stream-
polygons string together polygons depicting local field properties.
Similarly, hyperstreamlines depict flow paths by propagating par-
ticles along the major eigenvector direction (the direction of most
likely diffusion) for each tensor, and stretching a cylinder about
that core. Other properties of the field can then be encoded onto
the cylinder; for example, the transverse shape of the cylinder can
be warped to conform to the ellipsoid spanned by the medium and
minor eigenvectors. In this way, hyperstreamlines can completely
represent the six degrees of freedom encoded in the diffusion tensor.

While hyperstreamlines provide a powerful method for tensor vi-
sualization, the propagation path itself is not always ideal. Whereas
streamlines produced the path indicated in light gray in Figure 2,
which can “get lost” in isotropic regions, our method produced the

Figure 2: Visualization of hyperstreamline and tensorline propa-
gation though non-isotropic (left, right and bottom) and isotropic
regions (top middle) in synthetic data. The directions of the major
eigenvectors are indicated with arrows. The hyperstreamline core is
shown with the light gray line, and the tensorline is shown in dark
gray. Note that the tensorline continues along its present course,
despite encountering a region of isotropic diffusion.

path of the dark graytensorlinefrom that same image - a path that
continued along its present course when it encountered a region of
isotropic diffusion.

Figure 3: Hyperstreamline advection through a nearly isotropic re-
gion. The S-shaped path is an artifact of the noise in the region and
conveys misleading information about the direction of flow through
the field.

In Figure 3, we see one example of how propagating a streamline
according to thev1 direction of the tensors can be misleading. For
explanatory simplicity, we have displayed a two-dimensional slice
of data with two-dimensional diffusion tensors indicated by the el-
lipses. In this figure we see a field which varies from being some-
what linearly anisotropic on the left and right, to nearly isotropic
in the middle. We have indicated thev1 directed streamline with a
dotted line and the borders of a hyperstreamline with gray. What is
not clear from either of these visualizations is that diffusion near the
middle of the frame is nearly isotropic. The S-shaped path through
the middle of the field is not indicative of complex structure in the



data, but might be an artifact of measurement noise or partial vo-
luming. However, it is in no way obvious to the viewer that this is
the case.

Extending our visualization to three dimensions, we can have
confusion in isotropic regions as well as in planar anisotropic re-
gions. In the case of planar anisotropy, the confusion is a result of
the field having nearly equivalent first and second eigenvalues and,
therefore, major and medium eigenvectors that are only meaningful
insofar as they span a particular plane, but not in their particular
orientations within that plane. Similarly, for isotropic regions, none
of the eigenvector directions are individually meaningful.

In this paper, we present an alternative propagation method
which does not suffer from the misleading effects described above.
We term this visualization methodtensorlines. Tensorlines are de-
scribed in detail in Section 3. In Section 4, we show the results of
applying tensorlines to neural diffusion tensor data. We conclude in
Section 5 with a summary and a discussion of possible extensions.

3 Methods

Physically, diffusion is a probabilistic phenomenon. A diffusion
tensor specifies the probability density function (pdf) of where a
particle’s Brownian motion will move it over time [1]. To visualize
this pdf, we cover the unit sphere with dots, as is shown for the unit
circle in Figure 4. All of the points on the unit sphere (circle) are
then transformed by the diffusion tensor matrix, resulting in an el-
lipsoid (ellipse). Furthermore, the resulting distribution of dots on
that ellipsoid (ellipse) corresponds to the probable distribution of
particles as they diffuse from the origin. As we can see in Figure 4,
the dots have a higher density in thev1 direction, and a lower den-
sity in v2. This corresponds to the higher likelihood that a particle
will be diffused in thev1 direction, and a lower likelihood that it
will be diffused in some other direction.

v2
v1

Figure 4: Redistribution of uniform sample resulting from
anisotropic diffusion tensor. Particles have a higher probability of
being diffused in thev1 (major eigenvector) direction of the ellip-
soid.

Figure 5: Redistribution of uniform sample resulting from nearly
isotropic diffusion tensor. Probability of particle diffusion is ap-
proximately the same in every direction.

However, if we look at the case in Figure 5, the dots on the diffu-
sion ellipsoid (ellipse) are nearly uniformly distributed. This case
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Figure 6: Remapping of unit vector through four different tensor
matrices. Each row gives the geometric interpretation of applying
a different tensor matrix (left matrix and left ellipsoid) to the same
example vector (middle vector and middle circle) and the resultant
transformed vector (right vector). The gray axis of the ellipses is
the direction the major eigen-axis and is the direction in which a
hyperstreamline would be propagated; in contrast, the dark arrow
on the right is the diffusion modulated direction. Our method uses a
combination of these two terms to produce more stable propagation
paths through isotropic regions.

is representative of any nearly isotropic diffusion tensor. In con-
trast to the previous example, here there is approximately the same
probability for particle diffusion inany direction. In such a case,
choosing the major eigenvector as the diffusion direction is very
much an arbitrary decision. This instability is also depicted in Fig-
ure 6, where we are examining the effects of applying various 2D
tensor matrices to a unit vector. In each row of the image, we apply
a different tensor. The matrix is given on the left, then the cor-
responding ellipse is shown (with the major eigenvector axis indi-
cated in gray), followed by the vector upon which the matrix will
operate, and finally the transformed vector is shown on the right.
We also indicate the effects of the transformation on thex andy
unit vectors, depicted in dashed lines. We note that for the last row,
the diffusion tensor is nearly isotropic (as evidenced by the nearly
circular ellipse). The vector we are transforming by this matrix is
almost orthogonal to the first eigenvector. However, since the ten-
sor is nearly isotropic, the output vector on the right is only slightly
rotated from its initial position shown in the middle.

3.1 Propagation

If we follow an individual particle’s path as it moves through the
volume (being probabilistically diffused as it travels), we get a
streamline traced through the field. Delmarcelle’s method propa-
gates these hyperstreamlines by always choosing to diffuse the par-
ticle in the direction of the major eigenvector of the tensor through
which it is traveling. Delmarcelle has thus reduced the problem of
advecting through a tensor field to the problem of advecting through
thev1 vector field. While the streamline paths generated with this
method are, in fact, the most likely pure diffusion paths, they can at
times be misleading, as we saw in Figure 3.

Delmarcelle’s hyperstreamlines assume a pure diffusion model;



however, in regions of the data with planar and spherical anisotropy,
the first principal component is a rather arbitrary direction. These
ambiguities result in unstable propagation. Our method stabi-
lizes the propagating by incorporating two additional to propagate
through ambiguous regions. Because these terms supplement the
diffusion motion with a velocity term, we refer to them asadvec-
tion vectors, in the spirit of advection-diffusion particle physics.

3.2 Implementation

The “advection” vector used to stabilize propagation is combination
of two vectors, with relative weightings chosen by the user. These
vectors correspond to theincomingdirectionvin (the direction of
the previous propagation step), and theoutgoingdirectionvout (the
incoming vector, transformed by the tensor matrix). Specifically,
we compute:

vout = Dvin; (4)

whereD is the diffusion tensor matrix. We note that as a prepro-
cess, we scale our diffusion matrixD by 2

emax
, whereemax is the

largest eigenvector in our field. This scaling has the effect of nor-
malizing the diffusion term to be to scale with the advection terms.

As mentioned above, our propagation direction is a combination
of v11, vin andvout. The way in which these vectors are combined
to determine the next propagation step vector,vprop, depends on
the shape of the local tensor:

vprop = clv1 + (1� cl)((1�wpunct)vin +wpunctvout); (5)

wherewpunct is a user-controlled parameter (described below)
andcl is the linear anisotropy coefficient of the local tensor.

The equation above was chosen because it satisfies the following
desirable conditions:

Anisotropy Direction In Desired Out
Linear Any e1
Planar Tangential to disk vin or vout
Planar Normal to disk plane vout

Spherical Any vin or vout

The first and last rows of this table are straightforward. In con-
trast, the second and third rows describe what should happen in
regions of planar anisotropy. That is, these two cases cannot be
disambiguated based on anisotropy type, and so we resort to a user-
controlled parameterwpunct. This coefficient can take on values
from 0 to 1, and affects how much the propagation should be en-
couraged to “puncture” through planar tensors oriented normal to
its path, versus turning into the plane. This property depends largely
on the type of data being investigated, which is why it has been
left as a user-definable coefficient. For example, when identify-
ing white matter association tracts, a puncture coefficient of 0.20
worked well in practice, as shown in Figure 2. For more rigid
datasets, the appropriate coefficient choice would likely by some-
what higher.

Discretely propagating along thevprop tensorlines, we generate
different paths than we did by advecting through thev1 velocity
field. This is illustrated in Figure 7, where we revisit the case shown
in Figure 3. Now we have added solid tensorlines, and we note that
where the hyperstreamlines wandered through the isotropic region
in the middle, the tensorlines continued straight through, with only
minor fluctuations.

1Sincev1 and�v1 are both valid eigenvectors, we can avoid “dou-
bling back” on ourselves as we propagate by always checking to see if
(vin � v1) < 0, and if it is, we negatev1.

Figure 7: Comparison of tensorlines (solid) and hyperstreamline
(core is dashed, borders are gray). Note the tensorlines continue
with only minor fluctuations through the isotropic region in the
center of the figure, whereas the hyperstreamline is diverted into
an S-shaped path.

4 Results

Figure 8: The six diffusion tensor matrix coefficients for a single
slice of neural diffusion tensor MRI data.

In the previous sections, we have shown simple images to illus-
trate indicate the theoretic efficacy of tensorline propagation. In this
section we show a tensorline visualization of actual diffusion ten-
sor MRI data. The dataset is a128� 128� 60 volumetric dataset,
with a diffusion tensor matrix at each voxel. An image of the six
components for one slice of the data is shown in Figure 8. The 60
slices extend from the tops of the eyes at the bottom, to the top of
the cortical surface at the top.



Figure 9: Visualization of tensorlines (in yellow) and hyperstream-
lines (cyan) as they spread out from the corpus callosum through the
coronal radiate. Cutting planes of the tensor volume are shown for
reference, along with an isosurface indicating the corpus callosum
and cingulum bundles.

In Figure 9, as well as the color plate images, we see bundles of
the coronal radiata and sagittal stratum emanating from the internal
capsule. Tensorlines are shown in yellow, and hyperstreamlines are
shown in cyan. Cutting planes of the linear anisotropy of the tensor
field are shown in gray-scale for reference, along with a gray isosur-
face of that volume, indicating the corpus callosum and cingulum
bundle. Because they are not as susceptible to planar anisotropy,
the tensorlines do a better job of tracking the white matter fibers
as they rise from the deeper brain structures up toward the cortical
surface.

5 Conclusions and Future Work

In this paper, we have introduced a novel propagation method,
called tensorlines, for visualizing diffusion tensor fields. Tensor-
lines extend the traditional propagation methods in order to stabilize
propagation through regions with non-linear preferential diffusion.

In the future, we could like to generate surfaces around tensor-
lines in a way similar to Delmarcelle’s method for surfaces about
hyperstreamlines [3]. We could encode the deviation fromv1 as a
texture on the surface, providing the user with a visual clue as to
the difference between the various vectors being weighted in Equa-
tion 5.

We are also interested in stabilizing advection by propagating
groups of streamlines together as a cohesive bundle [15]. Our ear-
lier work in this area focused on bundles which advected through
flow fields. In the future, we would like to extend these ideas to also
apply to tensor fields.
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