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Abstract

We derive the analytic transformation for minimizing the summed-squared-distance
between three movable points in one three-space pose to three corresponding �xed
points in another three-space pose. This change of basis is a general rigid-body
transformation (translation and rotation), with the addition of a uniform scale. We
also derive and present the root-mean-squared distance between the �nal transformed
points and the �xed points.
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1 Introduction

The coregistration problem|taking spatial data from one coordinate frame and trans-
forming it to correspond with spatial data from another coordinate frame|is funda-
mental in constructing computational models from multi-modal data. In particular,
when a researcher wishes to combine data which has been acquired using two di�erent
systems, or even the same system but using di�erent parameters or at di�erent times,
at least one data set must be \transformed" to achieve spatial correlation.

In general, data has an intrinsic coordinate frame, and therefore data retrieved from
such a system on di�erent occasions is already in the same space by default. However,
if the object being scanned has moved within that space, a coregistration process is
required to move the poses into alignment.

In the vision literature, this problem is referred to as the \pose recovery" problem
[1]. The notion being that information about an object is obtained in a 2-D (image)
or 3-D (laser range data) scan. If known points can be identi�ed from that data
(i.e., a correspondence can be determined) then the pose recovery problem seeks to
determine the pose of the scanned object from those points.

There are general purpose, iterative, algorithms for solving the last-squares coregis-
tration problem for an arbitrary number of points [2, 3]. Here, we focus on an analytic
solution to the speci�c problem of three corresponding points in two poses, and an
analytic measurement of the root-mean-squared (RMS) distance/error between the
points of the resultant poses.

2 Methods

We will begin with the intuition behind our method, with a high-level discussion
of why the method works. Then we will derive the mathematics of the solution and
prove that our intuition is correct. We conclude by computing the �nal RMS distance
between the vertices of the transformed and �xed triangles.

2.1 Intuitive Derivation

Since we have three points in each pose, from this point forward we will refer to the
points as triangle vertices. Speci�cally the points from the pose to be transformed
will be triangle a : (a1; a2; a3), and the points from the �xed pose will be triangle
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p : (p1; p2; p3). Each triangle contains the three nodes from the pose, with the nodes
ordered such that correspondence is maintained (i.e., the coregistration transforma-
tion will take a1 ! p1; a2 ! p2, and a3 ! p3). The triangle a has centroid Ca and

normal ~Na, and the triangle p has centroid Cp and normal ~Np.

We begin the transformation by translating a so its centroid, Ca, aligns with the
centroid of p, Cp. Next, we �nd the rotation matrix which aligns the normal ~Na to
~Np. After these transformations have been performed, the triangles are located in
the same plane, and have the same centroid. Since pC and aC are now the same
point, we will simply refer to them as C; similarly the normal of both triangles will
be referred to as ~N .

Next, we will rotate the new triangle a about ~N (with �xed point C), in order
to minimize the summed-squared-distance between the vertices. From here on out,
we will refer to this summed-squared-distance between the corresponding vertices,
(that is, the term this algorithm is devised to minimize,) as the distance between the

triangles.

Finally, we determine a scale factor, s, for the triangle a, and scale the distance
between its vertices (a1; a2; a3) and the centroid C in order to once again minimize
the distance between the triangles. We refer to the resultant transformed triangle as
�a.

Compositing all of these transformations, we obtain the �nal transformation matrix
for coregistering the two poses. We are also able to obtain an analytic expression
for the remaining distance between the poses. A rigorous mathematical derivation is
presented below.

2.2 Mathematical Derivation

Mathematically, we have seven degrees of freedom we are solving for in this trans-
formation. Two degrees describe the normal to the transformed triangle �a, three
describe the location of the centroid C�a, one describes the rotation about the normal
~N�a which brings the poses into the best alignment, and a �nal scale factor optimizes
over the remaining space of similar triangles.

The complete transformation is a function of the degrees of freedom expressed above.
Those constraints can be expressed as matrix operations in homogeneous coordinates,
where applying each operation brings the triangles closer to alignment. The product
of all the matrix operations is the complete transform. The optimal choice for the
various operations (translation, change of basis, rotation and scale) are independent.

2



The mathematical justi�cation for breaking up the transformation as done here, is
based on the general formula for the transformation as a function of the seven degrees
of freedom. Given two variables that correspond to degrees of freedom in two di�erent
stages of the transformation, the second mixed partial with respect to these variables
is always zero. However, because matrix multiplications do not always commute,
the order of the operations is important. For example, before choosing an optimal
rotation, it greatly simpli�es the problem if both triangles have been centered about
the origin, and are located in the same plane.

The matrix operations concatenate as follows:

�ai = TCp
BP

t S�BA TC
�a

ai

Reading from right to left, these matrices operate on a to:

1. TC
�a
: Translate the vertices to be centered about the origin;

2. BA: Rotate the vertices into the xy-plane;

3. �: Rotate the vertices within the xy-plane;

4. S: Scale the distance from the vertices to the origin;

5. BP
t: Rotate the vertices out of the xy-plane, into the coordinate frame of of p;

6. TCp
: Translate the vertices to have the same centroid as p.

Each of the above operations is described below.

2.2.1 Translation

First, we translate our coordinate frames to line up the centroids of the triangles. In
Appendix A, we prove that the centroids must always be aligned for two triangles to
have a minimal distance.

TC = Cp � Ca

This translation vector can be stored as a matrix TC,

TC =

2
664

1 0 0 TCx

0 1 0 TCy

0 0 1 TCz

0 0 0 1

3
775
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or as the partial matrices TCp
, TC

�p
, and TC

�a
,

TCp
=

2
664

1 0 0 Cpx

0 1 0 Cpy

0 0 1 Cpz

0 0 0 1

3
775 ; (1)

TC
�p

=

2
664

1 0 0 �Cpx

0 1 0 �Cpy

0 0 1 �Cpz

0 0 0 1

3
775 ;

TC
�a

=

2
664

1 0 0 �Cax

0 1 0 �Cay

0 0 1 �Caz

0 0 0 1

3
775 ; (2)

where TC = TCp
+ TC

�a
.

We apply TC
�a

to the the triangle a, thus locating its centroid at the origin, resulting
in the new triangle _a. Since we want the centroids to be aligned (for optimizing future
transforms), we apply TC

�p
to p and generate a new �xed triangle, _p which has its

centroid at the origin, as well. In actuality, p will never be translated to the origin;
rather, a will eventually be translated from the origin to p. However, for the sake of
derivation and conceptual clarity, we describe p as being temporarily translated.

2.2.2 Change of Basis

Next, we �nd the normal of _a. As shown in Appendix B, the two triangles must have
the same normal to minimize the distance between _a and _p. So, the optimal transform
will take ~N _a to ~N _p. To derive this rotation, we �rst determine the coordinate frames
of the two poses. For each of these we �nd three orthonormal vectors which span the
space. Without loss of generality, we describe _p:

~N _p = ( _p1� _p3)� ( _p1� _p2)

~U _p = ( _p3� _p1)

~V _p = ~N _p � ~U _p

The bases ( ~U _p; ~V _p; ~N _p), and ( ~U _a; ~V _a; ~N _a) both span R3. We call the spaces spanned by
these vectors P and A, and de�ne BP and BA to be the matrices with rows composed
of these basis vectors. BA de�nes the change of basis from A ! R

3, and BP de�nes
the change of basis from P ! R

3. Similarly, to go from R
3 ! P , we need BP

�1;
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however, since BP is a rotation matrix, the inverse is simply the transpose, that is
BP

�1 = BP
t.

BA =

2
664

U _ax U _ay U _az 0
V _ax V _ay V _az 0
N _ax N _ay N _az 0
0 0 0 1

3
775 ; (3)

BP =

2
664

U _px U _py U _pz 0
V _px V _py V _pz 0
N _px N _py N _pz 0
0 0 0 1

3
775 ;

BP

t =

2
664

U _px V _px N _px 0
U _py V _py N _py 0
U _pz V _pz N _pz 0
0 0 0 1

3
775 ; (4)

(5)

Therefore, if we want to transform a point from A ! P , we simply transform it
through the matrix: BPA = BP

tBA.

Transformations BA and BP transform _a and _p into triangles in the xy-plane (still
with centroids at the origin). We refer to these new triangles as â and p̂, respectively.

2.2.3 Rotation

At this point, we have determined �ve of our seven degrees of freedom. The remaining
two degrees represent the optimal rotation of the vertices of â about the z-axis, and
their scaled distances from the origin. Both parameters will be optimized to minimize
the distance between â and p̂.

The distance between the triangles can be written as a function of a rotation � about
the z-axis, and can be computed as the sum of the squared distances between the
corresponding points. These individual squared distances are also functions of �.
First, we de�ne two distances:

crai = k~baik
2;

crpi = k~bpik2;
Now we can de�ne �i as the angular distance from ~̂ai to ~̂pi about the z-axis. The
angular from normalized vector ~U1 to normalized vector ~U2, rotating about their
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cross-product, ~N = ( ~U1� ~U2), is given by:

arcsin(sign( ~U1� ( ~U2� ~N))�

q
(1� ( ~U1 � ~U2))2)

We de�ne f to be the distance between the triangles as a function of �:

f(�) =
3X

i=1

(crai
2 + crpi2 � 2craicrpi cos(� + �i))

Finding the minimum of f(�) by setting its derivative equal to zero and solving for
�, we �nd:

� = ��0 + arctan(
cra1crp1 sin(�0 � �1) + cra2crp2 sin(�0 � �2)cra0crp0 + cra1crp1 cos(�0 � �1) + cra2crp2 cos(�0 � �2)

)

We construct the rotation matrix� to rotate about the z-axis (anchored at the origin)
by �, and compute the new vertices ~ai, and new vectors ~~ai.

� =

2
664

cos(�) �sin(�) 0 0
sin(�) cos(�) 0 0

0 0 1 0
0 0 0 1

3
775 ; (6)

2.2.4 Scale

Finally, we want to �nd the ideal scale factor. Using the new vectors ~~ai and the ~pi
vectors computed above, distance as a function of scale is given by:

d(s) =
3X

i=1

k~pi � s~~aik
2

Once again, we solve for the s which minimizes this distance by setting the derivate
equal to zero. Doing so, we �nd:

s =

P
3

i=1
~~ai � ~̂piP

3

i=1
k~~aik2

The scale factor matrix, S can be expressed as:

S =

2
664

s 0 0 0
0 s 0 0
0 0 s 0
0 0 0 1

3
775 (7)
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2.2.5 Full Transform

Having derived all of our component matrices (1), (2), (3), (4), (6), (7), we can now
express our full transform as a product of these components. We note that the rotate
and scale matrices required our points to be centered about the origin, with normal
along the z-axis. Additionally, our change of bases required that our triangle also be
centered about the origin. We accomplish this by rearranging our transforms (this is
equivalent to how we have been discussing the vertices all along):

TT = TCp
BP

t S�BA TC
�a

If we construct matrices A and P from our original vertices,

A =

2
664

a1x a2x a3x 0
a1y a2y a3y 0
a1z a2z a3z 0
1 1 1 1

3
775 ;

P =

2
664

p1x p2x p3x 0
p1y p2y p3y 0
p1z p2z p3z 0
1 1 1 1

3
775 ;

Then the new vertices �ai form the columns of the resultant matrix �A:

�A = TCp
BP

t S�BA TC
�a
A

and the RMS distance between the vertices of the new triangle and the old triangle
is:

RMS distance =

qP
3

i=1

P
2

j=0
(�Ai;j �Pi;j)2

3
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4 Appendices

4.1 Appendix A

The summed-squared-distance between the vertices (a1; a2; a3) of triangle a and the
vertices (p1; p2; p3) of triangle p, is:

3X
i=1

(pix � aix)
2 + (piy � aiy)

2 + (piz � aiz)
2

Similarly, if we allow the a vertices to be translated by an arbitrary vector t: (tx; ty; tz),
we �nd the distance to now be:

3X
i=1

(pix � (aix + tx)
2) + (piy � (aiy + ty))

2 + (piz � (aiz + tz))
2

Expressing this distance as a function of t and setting the partial derivatives equal to
zero, we �nd optimal values for tx, ty, and tz:

tx =
�(p1x + p2x + p3x) + (a1x + a2x + a3x)

3
;

ty =
�(p1y + p2y + p3y) + (a1y + a2y + a3y)

3
;

tz =
�(p1z + p2z + p3z) + (a1z + a2z + a3z)

3
:

That is, the ideal translation is exactly that which brings the centroids into alignment.

4.2 Appendix B

Here we prove that two triangles with centers at the origin must have the same
normal to minimize the summed-squared-distance between their vertices. Without
loss of generality, we consider the case where the �rst triangle, p, is located in the
xz-plane, and the second triangle, a was originally also located in the xz-place, but
is now allowed to rotate out of the xz-plane, about the z-axis by an amount �. We
show that the optimal value of � is zero; thus the summed-squared-distance between
corresponding points is minimized when both triangles have the same normal.

Exploiting the facts that the triangle is centered about the origin (thus, p3 = �p1�
p2), the rotation is about the z-axis (thus there's no change in z-values), and the y-
values were all originally zero (because the points were all originally in the xz-plane),
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we derive the summed-squared-distance to be:

d(�) = (p1x � a1x � cos(�))
2 + (a1y � sin(�))

2 + (p1z � a1z)
2 +

(p2x � a2x � cos(�))
2 + (a2y � sin(�))

2 + (p2z � a2z)
2 +

((�p1x � p2x)� (�a1x � a2x) � cos(�))
2 + ((�a1x � a2x) � sin(�))

2 +

((�p1z � p2z)� (�a1z � a2z))
2:

Taking the derivative and setting it equal to zero, we �nd four critical values (i.e.,
local minima and maxima). Taking the derivative a second time, and plugging in
those critical values, we �nd that only � = 0 corresponds to a local minimum; that
is, the triangles are closest when they have exactly the same normal.
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