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1 Introduction to SCIRun

1.1 Motivation and History

Located at the crossroads of scientific applications, computer science, and numer-
ical methods is the emerging field of Computational Science. With strongholds
in applications ranging from chemistry to physics, from genetics to astronomy,
computational science is growing into prominence throughout the scientific world,
taking a position next to “theoretical” and “experimental”, as another branch of
nearly every scientific discipline.

Each scientific discipline has its own terminology, its own specific problems
of interest. But from a broader perspective, their similarities often outnumber
their differences. Many problems of interest are based around a physical model
of some system or domain; they often attempt to predict the result of well-defined,
equation-driven processes that take place within that domain; and the solutions to
these problems are often most easily understood when recast into an interactive
visual representation. Further, it is often not sufficient to run a single simulation
of a system, but rather the scientist typically wants to investigate and explore the
problem space, setting up different initial conditions, system parameters, and so on
and then comparing the results.

Because of these consistent commonalities, it seems plausible that a general-
purpose framework could be designed to assist scientists and engineers from a
broad range of disciplines in investigating their respective computational science
problems. Such a framework could be thought of as a “computational science
workbench”; a scientist would have a broad range of tools at hand for modeling,
simulating, visualizing, and iteratively exploring a problem space. The framework
would be easy to use, a visual programming environment where the scientist could
dynamically hook together computational components, just as an experimentalist
would hook together mechanical components in a lab. And, perhaps most impor-
tant for scientists working on large-scale problems, the framework would have to
be extremely efficient in how it manages and processes data.

At the Scientific Computing and Imaging Institute (SCI) at the University of
Utah, we set out to produce such a computational architecture beginning in the
early 1990’s. Our framework, called SCIRun (pronounced “ski-run”), was initially
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developed by a handful of graduate students, and targeted at the simulation of bio-
electric field problems as its initial application [6, 14]. Through the mid-1990’s,
SCIRun grew into a more robust platform, as it was applied to more applications,
including cognitive neuroscience and atmospheric simulation [4, 15, 23]. In 1997
and 1998, the SCI Institute was awarded Center grants from the DOE and NIH
respectively, to continue the research, development, and support of the SCIRun
system.

1.2 Overview: Dataflow Terminology

As an infrastructure, the SCIRun computational problem solving environment is a
powerful collection of high-performance software libraries. These libraries provide
many operating-system type services, such as memory and thread management,
and inter-thread communication and synchronization; as well as development util-
ities, such as geometry, container, scene-graph, and persistent I/O classes.

While the SCIRun infrastructure is complex, and is likely to be somewhat
opaque to non-computer scientists, SCIRun’s exterior layers are, in contrast, easy
to use, extend, and customize. The SCIRun user-level programming environment,
described above as a “computational workbench”, is a visual dataflow environment
that facilitates rapid development. Figure 1 shows an example of the SCIRun Vi-
sual programming environment.

The boxes on the canvas are called modules, and the wires connecting them are
called datapipes. Each module encapsulates a function or algorithm, and the dat-
apipes carry input and output data between them. Taken as a whole, the group of
modules and datapipes comprise a dataflow network or net. At run-time users can
interactively instantiate, destroy, and reconnect new modules. In addition to dat-
apipe I/O, each module also has the option of exposing additional input and output
parameters through a graphical user interface. For example, as shown in Figures
2 and 3, the SolveMatrix module is a linear solver that exposes input parameters
such as the solver method and the maximum error tolerance, and also reports output
parameters such as convergence plots for iterative solvers.

For the SolveMatrix module, we implemented several solvers natively within
SCIRun. But we have also left placeholders for users to link in other solvers.
This coupling of native support and optional hooks for extensibility has been a
design pattern for SCIRun. In the SolveMatrix example (see Figure 3, we im-
plemented Conjugate Gradient, Biconjugate Gradient, and Gauss-Seidel solvers;
anyone downloading SCIRun will have immediate access to those methods. Then,
in order to provide support for additional solvers, we created a bridge to the PETSc
library. If a user chooses to download and install PETSc, they can configure
SCIRun to use it, and the full set of PETSc solvers can then be leveraged within
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SCIRun. We have also applied this bridging mechanism to allow users to access
the ImageMagick and MPEG libraries for saving images and movies, respectively.
Additionally, this same bridging solution has been implemented to allow Matlab
users the ability to run their Matlab scripts from within SCIRun. By leveraging
other libraries and applications, we are able to stay focused on developing high-
performance infrastructure, and easy-to-use interfaces, while still providing sup-
port for a wide range of application functionality. Shown in Figure 4 is an example
of one such bridge where Genesis has been bridged to SCIRun for the visualiza-
tion of a combined genesis/SCIRun simulation of the bioelectric field between two
Aplysia motor neurons.

1.3 The Visualization Pipeline

A typical visualization algorithm, such as Streamline advection, works by com-
puting sample positions, evaluating the value of the Field at those positions, and
creating a geometric representation for those values and positions. This three step
process is common to many visualization methods: isosurfacing, streamlining, vol-
ume rendering, tensor field rendering, surface potential mapping, cutting plane
rendering, etc. Typically, a particular visualization algorithm will implement all
three of these steps itself. Such an approach results in substantial coding ineffi-
ciencies. For example, the same geometric representations may be of interest to
multiple visualization techniques (e.g.,rendering pseudo-colored surfaces is com-
mon to surface potential mapping, cutting plane rendering, and often isosurfacing).
In the spirit of modular programming and reusable components, we have pipelined
(or “networked”) the majority of our visualization methods, with interchangeable
modules available for each of the three stages.

2 SCIRun Visualization Tools

There exist a number of tools that are easily accessible within the SCIRun system.
Following is a rundown of this toolset:

2.1 For the Visualization of Scalar Fields:

� Isosurface: visualize isosurfaces of a volume, or isocontours on a surface.
Can use Marching Cubes or NOISE algorithm. Can specify a single isovalue,
or a list of isovalues, or a range and quantity for evenly spaced isovalues.

� Volume rendering / MIP (via 3D textures)

� Cutting plane (via 3D textures)
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� Color-mapped geometry (ShowField) - The ShowField module visualizes
the geometry that makes up a Mesh inside a Field. Where possible, the field
takes its color from the Data values that permeate the field.

2.2 For the Visualization of Vector Fields

� Streamlines - The StreamLines module visualizes vector fields by generating
curves that interpolate the flow of vectors in a Field.

� Vector glyphs (ShowField) - The ShowField module visualizes the geometry
that makes up a Mesh inside a Field. Where possible, the field takes its color
from the Data values that permeate the field.

� ShowDipoles - The ShowDipoles model allows the user to edit vector posi-
tions/orientations via widgets.

2.3 For the Visualization of Tensor Fields

� Glyphs: ellipsoids, colored-boxes

� Tensorlines

2.4 Quantitative Visualization

� ShowLeads - The ShowLeads module graphs a Matrix that has rows of po-
tentials.

� ErrorMetric - The ErrorMetric module computes and visualizes error be-
tween two vectors.

� ShowField - The ShowField module visualizes the geometry that makes up
a Mesh inside a Field. Where possible, the field takes its color from the Data
values that permeate the field.

� ShowColorMap - The ShowColorMap module creates a geometry overlay
containing the input colormap and numerical values for its range.

3 Remote/Collaborative Visualization

In the last few years, scientists and researchers have given a great deal of attention
to the area of remote visualization of scientific datasets within collaborative envi-
ronments. Remote visualization refers to the process of running an application on
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one machine, often a supercomputer, and viewing the output on another machine
in a different geographical location. Collaborative visualization is the use of tools
(chat windows, annotations, synchronous viewing controls, etc.) that enable multi-
ple geographically separated collaborators to directly exchange and simultaneously
view information related to specific visualizations.

The recent interest in these tools has developed because researchers often use
interactive viewing as the primary method of exploring large datasets. Researchers
often need to extend this interactivity in order to collaborate remotely with col-
leagues in other locations. Additionally, the ability to use remote high-end compu-
tation resources is also driving the need for remote visualization tools. Certainly,
visualization on grid based systems is also a driving demand for remote visualiza-
tion tools.

Remote / Collaborative visualization is by no means a new problem As such,
many algorithms have been developed as solutions. General strategies available for
achieving remote visualization fall roughly into four categories:

1. Traditional XWindows remote display

2. Image/Pixel streaming

3. Geometry/Texture rendering

4. Some hybrid of the above methods

While most remote visualization tools based on the aforementioned methods suc-
cessfully allow multiple parties to view images from different locations, most also
face problems with efficiency and user interactivity at some level.

In general, popular recent approaches that address these shortcomings focus on
improving two different areas of remote visualization:

1. Increasing network bandwidth utilization

2. Adjusting the amount of rendering performed on a local server versus a re-
mote client in order to optimally utilize resources, such as available band-
width between the server and client.

In particular, researchers and developers often use the client-server paradigm as a
logical means to partition rendering responsibilities, efficiently utilizing valuable
resources on both local and remote machines.

5



3.1 Current Work on Remote/Collaborative Visualization in SCIRun

Our work in implementing remote / collaborative visualization functionality in
SCIRun has been largely experimental thus far. To this end, we built upon a proto-
type remote visualization application that applies the client-server paradigm, along
with several rendering methods, as an attempt to offer greater flexibility for remote
viewing. In addition to using multiple rendering methods, we have experimented
with different networking protocols for data transfer to compare efficiency and ac-
curacy. While we have learned a great deal from our research with this prototype
application, we have run into fundamental design problems that have prompted us
to sleight our remote visualization extension for redesign as a component in the
design of the next generation of SCIRun, which will see the SCIRun system move
toward a component architecture.

Presently, standard XWindow remote viewing is used for remote display of
SCIRun.

3.2 Future Work on Remote/Collaborative Visualization in SCIRun

The future of remote / collaboartive visualization in SCIRun is closely tied to the
Common Component Architecture (CCA) that is planned for SCIRun2. Roughly,
the long-term plan for SCIRun (SCIRun2) is to consider everything to be a com-
ponent, including the computing modules and the user interface. Presumably, the
remote client will be a component which uses a CCA protocol to communicate
with other components.

As for our rendering method, our current plan is to utilize a hybrid of XWin-
dows remote display and image streaming to transfer image data from the comput-
ing engine to the remote client.

In the process of designing the remote visualization component, we will adhere
to a list of user driven requirements that must be met. These include:

� Minimum x frames per second

� UI that matches SCIRun local UI both visually and functionally

� Synchronized image manipulation for multiple remote viewers with locked
controls

� Exact representation of models - OR - Level of Detail (LOD) control

� Usability with “thin” client machine

� Usability with limited network bandwidth
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� Chat window

� Annotation layer

� Compliance with SCIRun2 architecture and communication protocols

� Possibly some ability to record and replay sessions

The end goal is to have a remote user interface which has the same appearance and
functionality as the local SCIRun user interface, but with added collaborative tools
and remote viewing capabilities.

4 SCIRun Applications

As mentioned above, one of the original applications of SCIRun was to Bioelec-
tric Field Problems. With the award of our NCRR grant from the NIH to create the
Center for Bioelectric Field Modeling, Simulation, and Visualization; we have con-
tinued to focus on bioelectricity, creating modules, networks, and documentation
to allow users to investigate both forward and inverse bioelectric field problems. In
order to keep the core of SCIRun general-purpose, we have created a separate Pack-
age to house the components that are specific to bioelectricity. Taken together, the
BioPSE Package, and the SCIRun architecture comprise the BioPSE System [21],
as shown in Figure 5. Similarly, the Uintah Package [1, 9, 13] is an extended set
of functionality targeting combustion simulation. In fact, a number of grants have
now leveraged the SCIRun core, adding specific components to address the needs
of different various applications. These applications range from bioelectric fields,
to combustion simulation, to magnetic fusion. Each of these applications is briefly
described below.

4.1 Modeling, Simulation, and Visualization of Bioelectric Fields [16,
19, 20, 22]

Our hearts and brains are electric organs. Electric activation at the cellular level
causes the heart to beat, and it is the basis underlying our cognitive processes.
However, unlike neurotransmitters and metabolic processes, electric patterns can
be instantly detected at sites remote from the position of activation. By placing an
ECG electrode on a patient’s chest, we can “watch” the series of electrical events
that make up a heart beat; by placing EEG electrodes on a patient’s head, we can
“watch” the electric activity as the patient thinks and reacts.

Cardiologists and neurologists are primarily interested in two types of bioelec-
tic field problems: the forward problem, and the inverse problem. In the forward
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problem, the question at hand is: given a pattern of source activation, determine
the electric activity that would result through the rest of the domain (see 6). Such
studies are used when investigating internal implantable defibrillator designs. The
inverse problem is typically more interesting, though unfortunately also less nu-
merically stable: given a set of remote measurements, determine the position and
pattern of source activation that gave rise to those remote measurements (see 7).

The equations governing the flow of electricity through a volume conductor are
very well understood. The goal of the Bioelectric Problem Solving Environment
(BioPSE) is to simulate those governing equations using discrete numeric approx-
imations. By building a computational model of a patient’s body, and mapping
conductivity values over the entire domain, we can accurately compute how activ-
ity generated in one region would be remotely measured in another region. The
tools for modeling, simulating, and visualizing these bioelectric field phenomena
comprise BioPSE.

4.2 Visualization for the Study of Magnetic Fusion

Alternate energy sources are becoming increasingly important as the world’s finite
resources, such as fossil fuels, are depleted. One promising source of unlimited
energy is controlled nuclear fusion. Specifically, magnetic fusion is a type of nu-
clear fusion in which scientists harness energy by using magnetic fields to confine
fusion reactions taking place within hot plasma. Since magnetic fusion research is
computationally intensive, many software tools are needed to support it. Visualiza-
tion tools are particularly critical to helping fusion scientists analyze their data. As
part for our work within the DOE SciDAC sponsored National Fusion Collabora-
tory (http://www.fusiongrid.org/), we have created the Fusion package in SCIRun
in order to help meet this need [3, 18].

Specifically, the Fusion package in SCIRun is designed to satisfy the goal of
providing fusion scientists with visualization software tools that allow exploration
of their data on a Linux workstation. The Fusion package consists of a set of
SCIRun modules which, in concert with other standard SCIRun modules, allow the
reading, visualization, and analysis of Fusion data that is in MDSPlus format. The
system provides fusion researchers with flexible visualization options and feedback
they need in order to properly adjust input parameters for the next iteration of data
processing.

Currently, data generated using the NIMROD simulation code package is being
used as a test bed for developing the SCIRun Fusion package with the extension
of the SCIRun package to other data sources planned in the near future reference.
The NIMROD package is publicly available code (http://www.nimrodteam.org/)
designed to study three-dimensional, nonlinear electromagnetic activity in labora-
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tory fusion experiments while allowing a large degree of flexibility in the geom-
etry and physics models used in simulations. Using the visualization capabilities
offered in the the SCIRun Fusion package makes it possible to visualize how the
magnetic field moves within the pressure field represented in a NIMROD dataset.
In this paradigm, the NIMROD simulations are done on supercomputers and then
SCIRun running on a linux desktop is used to analyze the resulting data in order to
appropriately adjust parameters for the next simulation.

Following is a brief description of an instantiation of the visualization pipeline
created for NIMROD data. Once the NIMROD data is in SCIRun, a hexahedron
mesh is build using the EditFusionField module which takes into account toroidal
geometry and then infuses it with the pressure values at the nodes using the Man-
ageField module. Next the data is passed downstream to several of the visualization
modules available in SCIRun.

The simplest and most general visualization module is the ShowField module
which displays a visual representation of the pressure values. The user can also
pass in a ColorMap to the second port, which will translate the pressure values into
colors in the rendering.

The next visualization module in the pipeline is the Isosurface module. Given a
scalar field the Isosurface module will extract triangular faces that approximate the
ovule surface through the domain. Since the input is pressure, isobaric surfaces are
generated using this module. As with the ShowField module, the pressure values
are again mapped to color via an input ColorMap. Via a user interface, a user
can choose from several different Isosurface extraction algorithms, and can set a
number of extraction and display options.

Using this visualization pipeline researchers are provided with the feedback
needed to adjust their input parameters for the next iteration of data processing.
In the case of the NIMROD data, SCIRun makes it possible to visualize how the
magnetic field moves within the pressure field of the dataset(see Figure 8 and Fig-
ure 9).

The long-term goals for the Fusion package are to develop a generalized visu-
alization system that can support a wide variety of fusion data and to bring more
of the computing portion of the fusion visualization pipeline into SCIRun itself.

4.3 The Simulation of Accidental Fires and Explosions [1, 5, 13, 17]

Funded by the DOE as part of the Accelerated Strategic Computing Initiative
(ASCI) to form the Center for the Simulation of Accidental Fires and Explosions
(C-SAFE). This work is primarily focused on the numerical simulation of acciden-
tal fires and explosions, especially within the context of handling and storage of
highly flammable materials (see Figure 10. The objective of C-SAFE is to pro-

9



vide a system comprising a problem-solving environment in which fundamental
chemistry and engineering physics are fully coupled with non-linear solvers, opti-
mization, computational steering, visualization and experimental data verification.
For this work a derivative of SCIRun, coined Uintah has been developed. The Uin-
tah PSE has been built specifically to handle very large datasets, which are typical
in the CSAFE work. In this case, attempting to render an entire dataset can easily
overwhelm the graphics hardware. To help us explore these datasets, we have in-
corporated into Uintah/SCIRun Multiresolution and a Multipipe volume renderers.

4.3.1 Multiresolution Volume Rendering

Multiresolution techniques enable interactive exploration of large-scale data sets
while providing user-adjustable resolution levels on a single graphics pipe. A user
can get a feel for the entire dataset at a low resolution, while viewing certain re-
gions of the data at higher resolutions. A texture map hierarchy is constructed in
a way that minimizes the amount of texture memory with respect to the power-of-
two restriction imposed by OpenGL implementations. In addition, our hierarchical
level-of-detail representation guarantees consistent interpolation between different
resolution levels. Special attention has been paid to the elimination of rendering
artifacts that are introduced by non-corrected opacities at level transitions. By
adapting the sample slice distance with regard to the desired level-of-detail, the
number of texture lookups is reduced significantly, improving interaction.

4.3.2 Multi-Pipe Volume Rendering

Multi-pipe techniques allow for interactive exploration of large-scale data at full
resolution. Textures and color transfer functions are distributed among several ren-
dering threads that control the rendering for each utilized graphics pipe or graphics
display. On each draw cycle, view and windowing information is stored in a shared
datastructure. While rendering is performed, compositing threads are supplied with
the composite order for each partial image. Upon completion of the rendering, the
rendering threads store the resulting image in a local structure. When all render-
ers have completed, compositing threads copy the partial images to a final image
buffer, using alpha blending techniques. Care is taken to prevent blending artifacts
in the final image by properly overlapping the texture data sent to each renderer
and by pre-multiplying the colors in the transfer function by their corresponding
alpha values.

10



4.4 Radiology and Surgical Planning

Most imaging systems currently used in medical imaging generate scalar values
arranged in a highly structure rectilinear grid. These fields can be visualized by a
variety of methods including: isosurface extraction, direct volume rendering, and
maximum intesity projections (MIP). The key difference between these techniques
is that isosurfacing displays actual surfaces, while the direct volume rendering and
MIP methods display some function of the values seen along a ray throughout the
pixel. Ideally, the display parameters for each technique are interactively controlled
by the user.

Interactivity is fast becoming a fundamental requirement of medical visualiza-
tions. While only a few years ago radiologists and surgeons viewed inherently
three dimensional images as two dimensional films, the use of interactive, three
dimensional visualization tools has blossomed in medical imaging in the last few
years. This is certainly true for the field of surgical navigation. Interestingly, the
radiological exams of today are generating very large datasets (10’s-100’s of Mb)
making interactivity a challenging requirement. While the commodity graphics
card is making great strides, it is only recently that a texture memory of 256 Mb
has been introduced. The medical imaging community is continually increasing
the resolution, power, and size of their imaging tools, consistently outpacing the
graphics card industry. Meanwhile, the medical imaging research community is
now producing datasets in the multi-gigbyte range with new generation small ani-
mal imagers.

Several visualization tools incorporated in SCIRun have been applied specifi-
cally to large medical datasets. Examples of these tools are volume bricking and
ray-tracing.

4.4.1 Volume Bricking [12]

While volume rendering can be performed in hardware on most modern graph-
ics processing units (gpu’s) via three-dimensional texture mapping, the amount of
memory available on a particular gpu (commonly referred to as ”texture memory”)
limits the size of the models that can be volume renderered. With large scale data,
it is not uncommon for a dataset to be several times larger than the available gpu
memory. A common solution is to break the dataset up into smaller chunks, each
of which is small enough to fit into the memory at hand. This process is known as
bricking. The bricks are then loaded into texture memory one at a time. After each
brick is loaded, the corresponding texture is then mapped to a series of polygons
drawn perpendicular to the view. To avoid artifacts bricks are sorted from furthest
to nearest, based on the location of the view point and the location of the brick.

11



One must also take care to make sure that polygons drawn in neighboring bricks
are aligned to avoid artifacts at the brick boundaries. Using this Volume bricking
approach, datasets that are many times larger than the available gpu memory, can
be processed and rendered nearly interactively.

4.4.2 Interactive Ray-Tracing [2, 12]

The basic ray-volume traversal method used in our ray-tracer allows us to imple-
ment volume visualization methods that find exactly one value along a ray. Funda-
mentally, for each pixel of the image a ray is traced through a volume to compute
the color for that pixel. The computational demand of ray-tracing is directly depen-
dent upon the number of pixels (i.e. resolution of the viewing screen) being used
and less dependent on dataset size, this method allows both interactive isosurface
extraction and maximum-intensity projection on very large datasets.

The ray-volume transversal method has been implemented as a parallel ray
tracing system that runs on both an SGI Reality Monster, which is a conventional
shared-memory multiprocessor machine and a linux cluster with distributed mem-
ory. To gain efficiency several optimizations are used including a volume bricking
scheme and a shallow data hierarchy. The graphics capabilities of the Reality Mon-
ster or cluster are used only for display of the final color image. This overall system
is described in a previous paper [11]. Conventional wisdom holds that ray tracing
is too slow to be competitive with hardware zbuffers. However, when rendering
a sufficiently large dataset, ray tracing should be competitive because its low time
complexity ultimately overcomes its large time constant [7]. This crossover will
happen sooner on a multiple CPU computer because of ray tracing’s high degree of
intrinsic parallelism. The same arguments apply to the volume traversal problem.

Examples of Ray Tracing Large Datasets

� The Visible Female:

The visible female dataset, available through the National Library of Medicine
as part of its Visible Human Project, [10] was used to benchmark this ray
tracing method (see Figure 11). Specifically, we used the the computed to-
mography (CT) data which was acquired in 1mm slices with varying in-slice
resolution. This rectilinear data is composed of 1,734 slices of 512x512 im-
ages at 16 bits. The complete dataset is 910 MBytes. For the skin isosurface,
we generated 18,068,534 polygons. For the bone isosurface, we generated
12,922,628 polygons. With this number of polygons, it would be challeng-
ing to achieve interactive rendering rates on conventional high-end graphics
hardware. Our method can render a ray-traced isosurface of this data at mul-
tiple frames per second using a 512x512 image on multiple processors (for
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exact performance measures see [12].

� Small Animal Imaging:

A recent example of ray tracing is the work done with Dr. Richard Normann
and his group at the University of Utah [8]. In this case a relatively small
dataset of 131 Mb was rendered interactively across approximately 20 pro-
cessors on an SGI Origin 3800. Again, no graphics hardware was required
for the rendering, except to display the image. The imaging was done to
examine an implantation of the Utah Electrode Array (see figure 11, insert)
into the cochlear nerve of a feline. In this case the investigators used high
resolution CT imaging of the cats head to verify the location of the elec-
trode array in the cochlear nerve. The imaging was accomplished with a GE
EVS-RS9 small animal computed tomography (CT) scanner. There are dis-
tinct CT values for air, soft tissue, bone, and the electrode array, enabling the
use of a combination of ray-tracing and volume rendering to visualize the
array in the context of the surrounding structures, specifically the bone sur-
face. Visualization results were improved by smoothing the voxels outside
the electrode array in order to better distinguish the boney structures.

As shown in Figure 12, the 27 micron resolution of the CT scan allows def-
inition of the cochlea, the modiolus (on the right), the implanted electrode
array, and the lead wires (in purple) that connect the array to a head mounted
connector. The resolution of the scan even allows definition of the shanks
and tips of the implanted electrode array. Volume rendering also allows the
bone to be rendered as translucent, as on the left half of this image, en-
abling the electrode to be clearly viewed. Thus, the combination of high-
resolution scanning, image processing, and interactive visualization tools
such as ray-tracing, allows non-invasive verification of the implantation site
in an anatomical structure that is completely encased in the thick temporal
bone.

The small animal imaging systems, such as the CT scanner used in this work,
are capable of producing extremely large dataset sizes, in the 4-6 Gb range.
Additionally, the combination of multiple datasets from multiple imaging
modalities, such as micro CT and micro PET (positron emission tomogra-
phy) combinations, will compound the problem of large dataset size. As
scientists begin wanting to interact with these datasets methods such as ray-
tracing and distributed visualization will be at the forefront of this work.
It will certainly be quite sometime before stand-alone, commodity graphics
cards will be able to interactively handle this size of dataset.
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5 Getting Started in SCIRun

SCIRun and a variety of other software packages from the SCI Institute are avail-
able at the SCI software website http://software.sci.utah.edu/ Additionally, docu-
mentation including download and installation instructions, sample datasets, and
sample visualization networks are also available at the website. Following is a
brief description of the SCIRun documentation.

5.1 Documentation

One of the greatest efforts in transforming our existing collection of research codes
into a friendly environment for external users was the generation of the various
forms of requisite documentation. We drafted documentation standards and inves-
tigated tools for integrating that documentation within and extracting documenta-
tion from our software system. The result is a hyperlinked “living document” that
can be browsed from our website and is also included with our software distri-
bution. The collection of documentation has been organized into a library of five
manuals: an Installation Guide, a Tutorial, a User Guide, a Developer Guide, a
Reference Guide, and Frequently Asked Questions (FAQ).

5.1.1 The Installation Guide

The Installation Guide provides instructions for installing SCIRun from RPM’s
(Linux) and from Source Code (Linux and SGI), its third party libraries, the (op-
tional) PETSc library, sample data sets, and SCIRun documentation. The PETSc
library adds equation solvers to SCIRun’s SolveMatrix module (see PETSc Instal-
lation (Optional)).

5.1.2 The SCIRun Tutorial

The SCIRun Tutorial is an interactive introduction to SCIRun for new users. Since
SCIRun is a large system, this tutorial provides a broad overview of SCIRun con-
cepts, and a core set of SCIRun user skills. There are seven chapters in this doc-
ument. By the end of the tutorial, the user will have a grasp of dataflow program-
ming, SCIRun architecture, and the specific modules and datatypes used along the
way. The tutorial begins with Chapter 1, which demonstrates the construction of a
simple, yet functional SCIRun network. This demonstration is extended in Chap-
ters 2-7, with additional functionality and complexity.
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5.1.3 The User Guide

The User Guide describes how to get started using SCIRun. It includes a discus-
sion of the dataflow programming paradigm and problem solving environments.
It explains basic concepts such as how to run and use SCIRun, and how to write
dataflow programs using SCIRun. The User Guide also includes descriptions of all
the SCIRun modules, including datatypes used, functions performed, and explana-
tions of the user interface elements.

5.1.4 The Developer Guide

The Developer Guide contains descriptions of the various SCIRun programming
utilities, including our resource management tools (memory, threads, persistent
objects, exceptions). For each tool, we describe how the tool fits into SCIRun, the
philosophy of why and when a developer would use that tool, and usage examples.

5.1.5 The Reference Guide

The Reference Guide contains the API specifications for all of the tools in SCIRun.
This information is extracted directly from the source code using the doxygen
documentation system. For each class in SCIRun, the documentation contains a
complete description of the class, as well as cross-referenced hyperlinks to related
classes.

5.1.6 Frequently Asked Questions (FAQ)

The last book in the documentation library is the FAQ. The FAQ has been subdi-
vided into “Technical” and “User” sections. The “Technical” section contains an-
swers to technical questions that arise when compiling and linking SCIRun and its
required thirdparty software. The “User” section contains questions and answers
about the behavior of SCIRun, modules, and the various messages the system is-
sues.

5.2 Getting Help

Getting help in SCIRun is relatively easy. We have built a users group email list, if
you have questions at any time, email the scirun-users@sci.utah.edu list and either
a SCIRun software engineer or another user will answer your questions.
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Figure 1: A SCIRun (pronounced ”ski-run”) dataflow network. Each module en-
capsulates a function or algorithm, while the datapipes carry input and output data
between the modules.
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Figure 2: An example of a SCIRun module. The SolveMatrix module is a linear
solver that exposes input parameters such as the solver method and the maximum
error tolerance, and also reports output parameters such as convergence plots for
iterative solvers. The ”UI” button produces a module specific interface allowing
the user to adjust parameters specific to that module.
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Figure 3: The solve matrix user interface (UI). This UI allows the user to inter-
act with the model. In this case, the UI allows the user to chose various solvers
such as the Conjugate Gradient, Biconjugate Gradient, and Gauss-Seidel solvers.
Additionally, the convergence of the solver is also displayed in the UI. In order to
provide support for additional solvers, there is also a bridge to the PETSc library.
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Figure 4: Simulation of two Aplysia motor neurons using the bridging capabilities
between Genesis and SCIRun. First, Genesis solves the time-dependent Hodgkin-
Huxley equations for each compartment in each cell. One result of the Genesis
simulation is neuron membrane current density, which is passed to SCIRun through
an SQL database. SCIRun uses the current density to solve the forward field prob-
lem in the volume surrounding the cell. In this picture, streamlines show current
flow within the volume; voltage is encoded by color (blue negative, red positive).
Image courtesy of Chris Butson, University of Utah, Dept. of Bioengineering.
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Figure 5: The relationship of the core infrastructure of SCIRun to the specialty
packages, BioPSE and Uintah. In order to keep the core of SCIRun general-
purpose, we have created a separate Package to house the components that are
specific to bioelectricity. Taken together, the BioPSE Package, and the SCIRun
architecture comprise the BioPSE System. Similiarly, the Uintah Package is an
extended set of functionality targeting combustion simulation.
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Figure 6: Visualization of a bioelectric field simulation. In this case an electric
dipole is placed near the heart inside the Utah torso model. Visualized by color-
mapped streamlines is the electric field set up by this dipole. Also visualized is the
surface potential (indicated by color-mapped spheres on the surface of the torso)
and a field potential isosurface (green surface inside the torso). This visualization
was produced using the BioPSE forward-fem net with the movable dipole widget.
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Figure 7: Visualization of an inverse EEG simplex search produced by using the
dipole-localization net. The accuracy of the solution at each electrode position
is also shown (disks show measured voltage, spheres show computed voltages),
view window shows simplex dipoles as four arrows (connected with lines), and
test dipole as a sphere. Also shown are the error metrics plotted for this particular
solution.
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Figure 8: Simulation of an experiment inside a Tokomak Fusion Reactor visualized
using the SCIRun Fusion package. This image is of NIMROD simulation data
showing an isosurface of the n=0 part of the pressure field (yellow), which shows
the 1/1 structure, and an isosurface of the n=2 part of the toroidal current field
(green), which shows the developing 3/2 structure. Between the two isosufaces
is a streamline using the sum of the n=0,1, and 2 modes of the magnetic field
(red). The underlying model consists of a toroidal grid with 737,280 nodes (in 10
arbitrary phi slices) with 22 time slices. Image provided by Dr. Allen Sanderson
and the National Fusion Collaboratory via support from the U.S. Department of
Energy SciDAC initiative
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Figure 9: Simulation of an experiment inside a Tokomak Fusion Reactor visualized
the SCIRun Fusion package. Frame one of two from a time sequence showing the
stochastic nature of the realspace magnetic field lines. A comparison of the two
frames shows that the magnetic field lines are starting to diverge earlier as time
progresses. The field lines are overlaid in a volume rendering of the pressure field
which provides visual cues to the location while also rendering the plasma velocity
vector field. Image provided by Dr. Allen Sanderson and the National Fusion
Collaboratory via support from the U.S. Department of Energy SciDAC initiative.
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Figure 10: Simulation of a heptane pool fire. The simulation was done using the
Uintah derivative of SCIRun and visualization using the ray-tracing package de-
scribed later in Section 4.4.2. This image is courtesy of Center for the Simula-
tion of Accidental Fire and Explosions (C-SAFE) working under funding from the
Department of Energy as part of the Accelerated Strategic Computing Initiative
(ASCI) Academic Strategic Alliance Program (ASAP).
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Figure 11: Maximum intensity project (MIP) of the visible female dataset using
ray tracing. The maximum intensity projection algorithm seeks the largest data
value that intersects a particular ray. Ray tracing allows interactive visualization of
the MIP of the 1 Gb visual female dataset.
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Figure 12: Visualization of the Utah Electrode array embedded the cochlear nerve
of a cat. The insert is a picture of the Utah Electrode array. The 27 micron reso-
lution of the CT scan allows definition of the cochlea, the modiolus (on the right),
the implanted electrode array, and the lead wires (in purple) that connect the array
to a head mounted connector. The resolution of the scan even allows definition of
the shanks and tips of the implanted electrode array. Volume rendering also allows
the bone to be rendered as translucent, as on the left half of this image, enabling the
electrode to be clearly viewed. Thus, the combination of high-resolution scanning,
image processing, and interactive visualization tools such as ray-tracing, allows
non-invasive verification of the implantation site in an anatomical structure that is
completely encased in the thick temporal bone. Data provided by Dr. Richard Nor-
mann and Dr. Charles Keller, University of Utah. This work was supported by the
National Heart Lung and Blood Institute P20 HL68566; the National Center for
Research Resources P41 RR012553; and NINDS/NIDCD NO1-DC-1-2108.
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