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Abstract

In recent years, signi�cant progress has been made in
the area of electroencephalography (EEG) source imaging.
Source localization on simple spherical models has become
increasingly eÆcient, with consistently reported accuracy of
within 5 mm. In contrast, source localization on realistic
head models remains slow, with subcentimeter accuracy be-
ing the exception rather than the norm. A primary reason
for this discrepancy is that most source imaging techniques
are based on lead �elds. While the lead �eld for simpli�ed
geometries can be easily computed analytically, an eÆcient
method for computing realistic domain lead �elds has, until
now, remained elusive. In this paper, we propose two eÆ-
cient methods for computing realistic EEG lead-�eld bases:
the �rst is element oriented, and the second is node oriented.
We compare these two bases, discuss how they can be used
to apply recent source imaging methods to realistic models,
and report timings for constructing the bases.

Keywords: Inverse EEG, Source localization, Finite ele-
ment method, Lead �eld, Reciprocity

Introduction

Neural processes, such as perception, coordination, cogni-
tion, are carried out via the propagation of electrical im-
pulses through the brain. These impulses give rise to elec-
tromagnetic �elds that can be measured extracranially by
sensitive recording devices. The measurement of electric po-
tentials over time is referred to as electroencephalography
(EEG), and the measurement of magnetic signals as magne-
toencephalography (MEG). The practice through which we
infer the inter-cranial sources that give rise to these measure-
ments is termed the neural source imaging problem. Neural
source imaging is a fundamental problem in neuroscience.
Learning precisely which regions of the brain are active at
a particular time is a central problem in �elds ranging from
cognitive science to neuropathology to surgical planning.
The distribution of an electromagnetic �eld in the head is

described by the linear Poisson equation

r � (�r�) = r � Js; in 
 (1)

with no-ux Neumann boundary conditions on the scalp

�(r�) � n = 0; on �
; (2)
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where � is the electrical conductivity tensor, � is the elec-
tric potential, and Js are the electric current sources. From
the linearity of (1), it follows that the mapping from electric
sources within the cranium to scalp recordings on the out-
side of the scalp can be represented by a linear operator L.
Given a particular con�guration of sources, s, the resultant
recordings, �r, and the noise in the system, n, we represent
this relation as �r = Ls + n. L is the so-called lead-�eld
matrix1 and contains information about the geometry and
conductivity of the model.
The problem of interest in source imaging is this: given a

set of recordings, �r, knowing L, and making certain as-
sumptions about n, determine s, the set of sources that
gave rise to those recordings. The solution to this prob-
lem consists of two steps: building the lead-�eld matrix L,
and \inverting" it. Finding the inverse of L is an ill-posed
problem and its solution requires regularization. There exist
many di�erent regularization methods, as well as many pa-
pers describing their application to EEG/MEG.3; 14; 17 All of
them assume that L either is known a priori or can be eas-
ily constructed. While it is true that L is easy to construct
for simple geometries like spheres (or in other cases where
an analytic solution to the forward problem exists), building
the L matrix is much more complicated for geometries based
on real patient data.
In this paper, we will concentrate on the construction of

the L matrix. We propose two eÆcient methods for building
L for realistic EEG models with realistic geometries as well
as inhomogeneous and anisotropic conductivities.

Background

The lead-�eld matrix, L, de�nes a projection from current
sources at discrete locations in the cranium to potential mea-
surements at discrete recording sites on the scalp. That
is, entry Lij corresponds to the potential that would be
measured at recording site �i due speci�cally to source sj.
Sources are traditionally de�ned by three orthogonal dipoles,
sjx; sjy; sjz and source positions are generally located on a
regular grid of hexahedral cells covering the domain of in-
terest.
In a number of application papers, researchers have been

able to compute the L basis by exploiting analytic equations
for each entry in L. The equations for the matrix entries, or
kernels, for each method can be found in Mosher's review of
forward and inverse EEG and MEG methods.13 For most of
them, the L matrix is constructed one element at a time by
evaluating the analytic expression for the potential at each
recordings site (the rows), due to a source at each location
in the domain (the columns).
While fast analytic expressions exist for the potentials in

spherical models, these solutions cannot be applied to re-
alistic head models. Rather, a complete forward numerical
solution must be computed in order to determine the elec-
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trode potentials due to each source. These realistic model
forward solutions can be generated using the boundary el-
ement method or �nite element method (FEM).7; 6; 12 Both
methods can faithfully represent the complex boundaries
and inhomogeneous regions of realistic models. The FEM
has the additional advantage that it can capture anisotropic
conductivities of the domain. For these reasons, we have
chosen to use the FEM for our lead-�eld calculations.
The main idea behind the FEM is to reduce a continuous

problem with in�nitely many unknown �eld values to a �nite
number of unknowns by discretizing the solution region into
elements. The value at any point in the �eld can then be ap-
proximated by interpolation functions within the elements.
These interpolation functions are speci�ed in terms of the
�eld values at the corners of the elements, points known as
nodes. We note that for linearly interpolation potentials,
the electric �eld is constant within an element.
Given a geometric model, the FEM proceeds by assem-

bling the matrix equations to build the sti�ness matrix A.
This can be done using, for example, a Rayleigh-Ritz or
Galerkin method.5 Boundary conditions are then imposed
and source currents are applied. These boundary and source
conditions are incorporated within the right hand side of the
system (vector b). Details of the FEM method can be found
in Refs. 5; 6; 12; 21. Application of the FEM reduces Poisson's
equation to the linear system

Aij�j = bi (3)

where � are the unknown potentials at the nodes of the
volume.
When we use a realistic FEM model (3 mm resolution),

and the described forward numerical construction, we may
require upwards of a minute of processor time on modern ar-
chitectures (e.g., an SGI MIPS R10000 processor) to solve a
forward simulation. Because of this computational expense,
it seems feasible to build a lead �eld for only a very sparse
grid of sources. Even a 163 grid (12 mm resolution), for
example, with three orthogonal dipole components per cell,
would require over a day of continuous computation to build
L.

Methods

We now introduce two novel methods for constructing the
lead-�eld matrix L. Using these methods, we are enable
to construct L matrices for a head model with 3 mm cell
resolution (643 grid) in under 10 min.

Element Basis

As discussed earlier, the traditional method of constructing
the L matrix is to place three orthogonal sources in each cell
of a volume domain, and for each dipole source, compute the
voltages at the electrodes. For a volume mesh consisting of
N tetrahedral elements, this requires computing (N � 3)
forward solutions.
In constructing the L matrix, we would like to achieve

the maximal possible resolution of sources for our model:
one dipole per tetrahedral element. We would also like to
take advantage of the fact that when using the FEM, we
compute the potentials not only on the surfaces (as in the
boundary element method), but through the entire volume.
We can achieve both goals using the principle of reciprocity.
The reciprocity principle was introduced into the biophys-

ical domain by Helmholtz4 and was applied to the problem

of electrocardiography by McFee and Johnston.10 It was fur-
ther developed by Plonsey,18 and was subsequently adapted
to the EEG problem by Rush and Driscoll in 1969,19 when
they proved the applicability of reciprocity to anisotropic
conductors. The reciprocity principle states that given a
dipole (an equivalent source), p, and a need to know the re-
sulting potential di�erence between two points A and B, it is
suÆcient to know the electric �eld E at the dipole location
resulting from a current, I, placed between points A and B:

(E � p)

�I
= �A � �B: (4)

So, rather than iteratively placing a source in every ele-
ment and computing a forward solution at the electrodes,
we can \invert" this process: we place a source and sink at
pairs of electrodes, and for each pair compute the resulting
electric �eld in all of the elements. We can then use the reci-
procity principle to reconstruct the potential di�erences at
the electrodes for a source placed in any element (see Fig. 1).
The construction proceeds as follows: �rst, we choose one

electrode as ground (i.e.,we will force its potential to be
zero). For each of the other M electrodes, one at a time,
we place a current source, I, perpendicular to the surface at
that electrode and a unit current sink at the ground elec-
trode. The forward solution is then computed, resulting in
a potential �eld, �, de�ned at each node in the domain. We
take the gradient of this potential �eld, yielding the elec-
tric �eld, E, at each element in the head. A row of the lead
�eld Le is computed by evaluating (E=�I) in every element.
This process is repeated for each of theM source electrodes,
producing the Le matrix (Fig. 2) satisfying

Lese = �r: (5)

Node Basis

The method for deriving the element-oriented lead-�eld con-
structs an Le basis that maps dipole components placed at
the elements to potentials at the scalp-recording electrodes.
One can also think of an alternative formulation based on
the divergence of the source current density vector at each
node, rather than three orthogonal current dipoles within
each element. This lead-�eld formulation, which we refer to
as node oriented, is depicted in Fig. 3. Our node-oriented
basis is derived directly from the �nite element sti�ness ma-
trix, A, and right-hand side vector, sn.
It is straightforward to solve the well-conditioned system

(3):

� = A
�1
sn (6)

to recover the potentials, �, throughout the volume when
the sources are known. For source imaging, however, we are
interested not in the potentials everywhere in the volume,
but only in the potentials at those few nodes corresponding
to scalp electrodes recording sites. We introduce a matrix
R that selects just the electrode potentials from �. R is
a [K �M ] matrix (number of nodes by one less than the
number of recording electrodes). Each row of R contains a
single nonzero entry: the value 1:0 located at the column
corresponding to the node index for that electrode.

2
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Figure 1: Depiction of the reciprocity-based method. A unit current is applied between electrodes \3" and \G". The reciprocity
principle states that the voltage di�erence between \3" and \G" due to a dipole source p placed in element en will be equal
to the dot product of p and the electric �eld in en.
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Figure 2: Depiction of the element-oriented lead-�eld basis. Each orthogonal dipole in each element corresponds to a column
of L, and each electrode corresponds to a row of L. That is, each entry of L corresponds to the potential measured at a
particular electrode due to a particular source.
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From (6), we now select a subset of � by applying R:

�r = R� = RA
�1
sn (7)

TheRA�1 operator is a node-oriented lead-�eld basis, which
we term Ln, and for which it follows that:

Lnsn = �r (8)

To eÆciently compute RA�1, we can exploit the sparse na-
ture of R. Since R contains only M nonzero entries, we
need to construct only the correspondingM columns ofA�1.
This is accomplished by solving the equation:

A(A�1)m = Im (9)

where (A�1)m is unknown for source m. As with the con-
struction of the Le basis, this technique requires generating
M forward solutions.

Lead-�eld comparison: Le vs Ln

The two lead-�elds, element-oriented (5) and node-
oriented (8), di�er in several relevant ways.
The Le formulation is based on having a dipole moment

of a particular strength and orientation in each element. Be-
cause of this, Le is most useful for reconstructing discrete
dipolar sources. This is an appropriate method for localiz-
ing very focal neural activity, such as epileptic seizures or
speci�c motor control tasks.
In contrast, the node-oriented Ln lead �eld is de�ned with

values at the nodes. This means Ln will work best for re-
covering less focal, more distributed-type sources which are
characterized by coordinated activity occuring at multiple
neural locations. Such a solution should be well-suited to
capturing di�use cognitive events, such as language process-
ing or the performance of complex tasks.
The size of the Le basis is [M � (N � 3)] (one less than the

number of recording electrodes by three times the number
of elements). There are often as many as a million elements
in a �nite element mesh, whereas there are typically only
M = 64 or 128 recording electrodes. When using this lead-
�eld basis for source imaging (i.e., solving Lese = �r for
a particular set of electrode recordings), it is clear that the
solution will be grossly underdetermined.
The node-oriented basis, Ln, is somewhat smaller:

[M �K] (one less than the number of recording sites by
the number of nodes). While there are still typically many
more nodes (often as many as a hundred thousand) than
electrodes, the system Lnsn = �r is less under-determined
than the element-based formulation. A typical unstructured
�nite element mesh contains six times as many elements as
nodes, and the Le basis requires three sources per element.
This means the Ln basis will have about 6% as many degrees
of freedom and a 94% smaller null-space. For example, the
mesh used in our simulations contained 320,000 elements
and 60,000 nodes. Ln had dimensions (64 � 960; 000), and
thus a null space of rank 959,936. In comparison, Ln had
dimensions (64� 60; 000), and therefore a null space of rank
59,936. The smaller null space of Ln was a signi�cant ad-
vantage when performing regularization.

Numerical Simulations

We constructed a realistic �nite element head model from a
volume magnetic resonance imaging (MRI) scan. The MRI
data was segmented at the Brigham andWomen's hospital,20

and a mesh was constructed using Krysl's variational Delau-
nay algorithm.9 The full mesh contained 320,000 elements
and 60,000 nodes. From this model, we selected 64 elec-
trode recording sites at appropriate scalp surface nodes. (We
note that if the true electrode locations do not correspond
precisely to nodes in the mesh, the bases can still be con-
structed. The construction of Le does not change at all, and
the construction of Ln is only slightly modi�ed. R can now
have three nonzero entries per row, the electrode's barycen-
tric weightings for the nodes of the scalp triangle containing
it, rather than a single nonzero entry. This modi�cation
does not a�ect the eÆciency of the construction.)
We then built Le using the reciprocity method described.

For each electrode current source, we solved a forward simu-
lation in order to compute the electric �eld at each element
in our model, and we stored that as a row of Le. Each solu-
tion required on average 8 s of wall-clock time using 8 SGI
MIPS R10000 processors, resulting in a total of 9 min to
compute all of Le.
Next, we computed Ln, the node-oriented basis, by iter-

atively solving for RA�1 one row at a time. Each row re-
quired approximately 7 s of wall-clock time, totaling 8 min
to construct Ln.
We then simulated a focal temporal seizure by placing

a dipole source in that region of our �nite element model
and running a forward simulation. We stored the result-
ing electrode potential as �. To validate our bases, we then
recovered the position, orientation, and magnitude of the
temporal source using the source localization algorithm de-
scribed later.

Applications

One of the simplest applications of the Le operator is to
construct a single dipole mis�t �eld. The mis�t �eld is con-
structed as follows: position a dipole in an element; �nd the
optimal magnitude and orientation for the dipole in that
element using linear least squares optimization (all loca-
tions within the same element are equivalent); compute the

two-norm mis�t between the forward solution �̂ due to that
dipole, and the \measured" data, �. Repeating these steps
for all the elements in the model, we construct the mis�t
�eld

Cn = jj�� �̂jj = jj�� �pxL
n;z
e � �pyL

n;y
e � �pzL

n;z
e jj: (10)

Clearly, the minimum of this �eld corresponds to the op-
timal dipole position for a single dipole model. Finding this
minimum can be accomplished, for example, via an exhaus-
tive search. We note that while the earlier description is for
the Le basis, a similar mis�t function can be evaluated for
the Ln basis.
Using the SCIRun problem solving environment,16 we cre-

ated the Le matrix and constructed the mis�t �eld for an
occipital dipole source. A visualization of this �eld is shown
in Fig. 4. The �eld values have been color-mapped onto a
cutting plane positioned axially just below the source. Red
triangles correspond to elements for which the contained op-
timal dipole produced a good �t to the measured data; in
contrast, elements colored blue indicate regions for which
even an optimally oriented dipole results in a poor �t to
the measurements. Note the increase in the mis�t for ele-
ments farther and farther away from the source, as well as
the sharp discontinuities in and around the skull elements
due to the large conductivity di�erence between bone and
the surrounding tissue.
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Figure 3: Depiction of the node-oriented lead-�eld basis. In contrast to Fig. 2, where the matrix columns corresponded to
orthogonal dipoles, the columns now correspond to nodes. The node-oriented basis has approximately 94% fewer columns
than the element-oriented basis and is better suited to recovering distributed source con�gurations.

Figure 4: Visualization of the single dipole mis�t �eld. The mis�t between the \measured" data (due to the depicted dipole
source) and the forward solution due to the optimal source for each element has been color mapped to an axial cutting plane.
Blue values correspond to a large mis�t, whereas red values correspond to a very small mis�t.
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Though computing the mis�t function for a single ele-
ment requires only a matrix-vector multiplication and a 3�3
system solve, for large models (e.g., with over 100,000 ele-
ments), the total time to build the �eld can reach up to an
hour. If our goal is not to compute this �eld everywhere in
the volume, but just to perform a source localization (recover
an optimal dipolar source), we can be more eÆcient with
our computation. Rather than evaluate the mis�t function
in all of the elements of the �eld, we can use an optimiza-
tion technique to search for the minimal mis�t. We note,
though, that simple optimization techniques do not guaran-
tee convergence to the global minimum. Gradient descent
and Newton type methods are inapplicable in our case, since
they use derivatives and the mis�t �eld is only C1 contin-
uous. One of the search techniques which can be used in
such a situation is downhill simplex.15 In a three-parameter
space, the simplex is a tetrahedron with four vertices which
can \roll down" the mis�t �eld and thus requires evaluation
of the mis�t function only at the locations along its path. A
more detailed discussion of this method and its application
to source localization in real head geometries can be found
in Ref 22. The major drawback of the downhill simplex is
that it can get stuck in local minima and therefore requires
multiple restarts.
An alternative optimization technique that can guarantee

convergence to the global minimum of the mis�t function
is simulated annealing.11 Simulated annealing is a stochas-
tic simulation (Monte Carlo) method for global optimiza-
tion that proceeds towards its solution by evaluating ran-
dom samples in the parameter space. A downhill sample
(that is, a sample at a location with a lower mis�t), is al-
ways accepted as a new position. Additionally, an uphill
sample is sometimes accepted as well, with a probability in-
versely proportional to the size of the increase in the mis�t
due to that step. As the algorithm proceeds, the probability
of accepting uphill steps is decreased according to the cool-
ing schedule - it is reduced by certain amount every several
iterations. This can be summarized in the equation for the
step acceptance (annealing equation)

Prob =

�
1; �C < 0

exp(��C=T ); �C > 0
(11)

Thus, the implementation of simulated annealing requires
the evaluation of multiple forward solutions (for our data,
thousands) and until now it was only possible to use this
method for source localization in spherical head models.2; 8

However, with precomputed lead �elds, we can now use sim-
ulated annealing for realistic head geometries. For our sim-
ulations, we randomly generate elements within a �x-sized
neighborhood that generally contains only a small number
of elements. We proceed by iteratively generating, evalu-
ating and (in the case of step acceptance) stepping to the
new best point. The cooling schedule we employ reduces the
temperature by 10% after every ten iterations.
Using the simulated annealing source localization algo-

rithm described earlier, we were able to successfully localize
the source shown in Fig. 5. This localization was repeated
from nine di�erent starting locations. The algorithm suc-
cessfully localized the source every time, requiring on aver-
age 5 min and 560 iterations to converge. In Fig. 5, we see a
train of the most recent accepted steps indicated with gray
arrows, the presently evaluated step depicted with the green
sphere, and the true solution source shown as a red arrow.
At the bottom, we have depicted the mis�t of the current
accepted step over each iteration. We note that the uphill
steps are much more frequent during early iterations, and

Figure 5: Visualization of the simulated annealing algorithm
converging to a dipole source. The cluster of recently ac-
cepted steps is indicated by the gray vectors, while the true
source is indicated in red. Two surface potentials have been
mapped to each electrode. The disks represent the poten-
tials due to the true source and the sphere inside of each disk
represents the potential due to the latest evaluated search
position. At the bottom, we show the currently accepted
mis�t through all iterations.

they taper o� as the temperature cools over time.

In conclusion, we have proposed two methods for comput-
ing lead �elds in �nite element modeling of the head, and
demonstrated the application of the lead �eld to source lo-
calization using simulated annealing. We believe the lead
�eld can be successfully used in distributed source imaging,
and plan to pursue such studies in the near future.
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