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ABSTRACT 
 
There are many applications in MRI where it is desirable to have 
high spatial and high temporal resolution. This can be achieved by 
undersampling of k-space and requires special techniques for 
reconstruction. Even if undersampling artifacts are removed, 
sharpness of the edges can be a problem. We propose a new 
technique that uses the gradient from a reference image to improve 
the quality of the edges in the reconstructed image along with a 
spatio-temporal constraint to reduce aliasing artifacts and noise.  
The reference is created from undersampled dynamic data by 
combining several adjacent frames. The method was tested on 
undersampled radial DCE MRI data with little respiratory motion. 
The proposed method was compared to reconstruction using the 
spatio-temporal constrained reconstruction. Sharper edges and an 
increase in the contrast was observed by using the proposed 
method. 

Index Terms— DCE MRI, reconstruction, regularization, 
PDE. 
 

1. INTRODUCTION 
 

Dynamic Contrast Enhanced (DCE) MRI is used to track changes 
in an organ or area of interest over time. A contrast agent is 
injected and a series of k-space data is acquired over time. Spatio-
temporal resolution is limited since relatively rapid tracking of the 
contrast agent is necessary. Improved resolution is possible from 
undersampled k-space data, although this results in artifacts in 
accordance with Shannon/Nyquist sampling theorem. When some 
prior information about the image is available and appropriately 
incorporated into the reconstruction, accurate reconstruction may 
still be possible even when the sampling theorem is violated.  

Methods such as keyhole imaging [1,2] and reduced–encoding 
MRI imaging with generalized-series reconstruction (RIGR) [3-4] 
assume that in a dynamic sequence of images the high frequency 
data remains static while only the low frequency data changes. 
Hence only low frequency data is acquired rapidly once a 
completely sampled k-space frame has been acquired. However, in 
most cases, the assumption about static high frequency content is 
not accurate. Other methods like highly constrained back 
projection reconstruction (HYPR) [5] use a composite image to 
improve the sharpness of the edges in the reconstructed image. 
Recently a Temporally Constrained Reconstruction (TCR) [6] and 
subsequently a Spatio-Temporal Constrained Reconstruction 
(STCR) [7,8] was proposed to reconstruct sparse myocardial 
perfusion data with some respiratory motion. We propose to extend 
the STCR method [7,8] to achieve sharper edges by incorporating 
an edge enhancement function based on a reference image. The 
new method is termed Edge Enhanced Spatio-Temporal 
Constrained Reconstruction (EESTCR). We demonstrate the 
method on simulated and acquired radial k-space data.   

 
2. METHODS   

 
2.1 Theory 
 
Artifacts that occur due to reconstruction from sparse k-space data 
can be removed by using a priori information about the fully  
sampled data incorporated as constraints into a regularization 
framework as defined in [6,7,8]. Here the cost function is extended 
to handle the spatial regularization by minimizing the cost function 
C given by 

 
                           (1) 

 
where  represents the estimated complex image data,  is the 
fidelity to the acquired sparse data, T the temporal constraint and S 
and E represent the spatial gradient constraint and the proposed 
edge constraint, respectively. The fidelity term is given by 

 where ||.||2  represents the L2 norm, F is the Fourier 
transform operator, W is the binary sparsifying pattern used to 
obtain the sparse data from full data, and  is the acquired sparse 
k-space data. The temporal regularization term is a total variation 

in time penalty [8] given by where  is the temporal 

gradient operator and N is the total number of pixels in each time 
frame and mi  represents the time curve of pixel i. The spatial 
regularization term S is a spatial total variation (TV) penalty [7,8] 

given by  where ||.||1 represents the L1 

norm, M the total number of time frames, ∇x and ∇y represent the 
spatial gradients along x and y direction respectively and β is a 
small positive constant on the order of machine precision [7,8]. To 
improve the sharpness of the edges we propose to add the edge 
constraint given by  where Ir is the reference 

image, ∇xy is the spatial gradient, and ω is a spatially varying 
weight defined as , λ is a constant. α1,α2 

and α3 are weights that control the amount of spatial TV 
regularization, temporal regularization and the gradient matching 
term respectively.  

The term  is used to match the gradients of the 

reconstructed image and the gradients of the reference image that 
correspond to edges. The function ω is used to form a map of the 
strength of the edges in the reference image. The term (1-ω) is 
used to control the influence of the TV minimization at areas 
where the gradient of the reference image is very large. At such 
points, the value of ω is close to 1 and hence (1-ω) is almost zero. 
This prevents the influence of TV minimization at sharp edges 

704978-1-4244-4126-6/10/$25.00 ©2010 IEEE ISBI 2010



where only the edge matching function would take effect, avoiding 
smoothing of edges due to spatial regularization. This leads to 
improvement of the sharpness of the edges by the edge constraint 
and at the same time the streaking and noise are removed by the 
spatial and temporal regularization terms. Reconstruction is 
performed by minimizing the cost function, C, given by 
 

    

                           (2) 
        
Here the reference frame Ir is created from the undersampled 
dynamic data. Several adjacent frames are combined as described 
below to obtain a fully sampled image with enough edge 
information to be utilized by the edge enhancement function. 
 
2.2. Myocardial perfusion data 
 
The method was first tested on radial data simulated from full k-
space Cartesian data. Only the spatial term, fidelity term and edge 
enhancement term (without temporal constraint) were used in order 
to study the effects of the edge enhancement function. This 
simulation helped in understanding the edge enhancement function 
better. The method was also tested on acquired undersampled 
radial data with all four constraints (fidelity, spatial, temporal and 
edge constraint). Both Cartesian and radial data perfusion data 
were obtained from a Siemens Trio 3T scanner with a phased array 
cardiac coil. For both Cartesian and radial data, a saturation 
recovery turbo flash sequence with TR/TE~(2.5/1.4) msec, with a 
12 degree flip angle, and 8 mm slice thickness was used.   
To simulate the undersampled radial acquisition from the Cartesian 
data, 24 equiangular rays were created from the Cartesian samples. 
Edge enhanced spatially constrained reconstruction (EESCR) was 
performed on the simulated radial data by setting α1 to zero and 
choosing α2 and α3 empirically to give good image quality. The 
choice of λ was based on the edge map from the reference image 
itself i.e. by looking at ω as shown in Figure 1. A  λ value that 
appeared to give the sharpest edges was used. Full k-space data for 
the reference image was created by using 96 equi-angular radial 
lines from the Cartesian data using a binary mask. 96 lines were 
chosen because the IFT closely matched that of the full k-space 
data [7]. The binary mask used to simulate undersampled radial 
data was rotated by a random angle for different time frames. 
For the acquired 24 ray radial data case, fully sampled data for the 
reference frame was created from the last 4 time frames. The 
acquisition used a start angle offset of 180/96° that repeated every 
four frames, so that a combination of four frames gave 96 unique 
equiangular rays. The parameters for EESTCR were chosen based 
on the results from a training dataset. The regularization weights 
were chosen as α1=0.05, α2=0.005, and α3=0.05. The step size for 
the gradient descent was fixed at 0.05 and 150 iterations were 
performed to minimize the cost function C. For the edge function 
ω, the value of λ was chosen as λ=0.02. As discussed in [7,8] the 
regularization weights were robust to slight perturbations. We 
found that for a given type of acquisition and undersampling the 
values of α1, α2, α3 and λ did not change significantly.  
 

 
 
 
 
 
 

3. RESULTS 
 
3.1. Edge Enhanced Spatially Constrained Reconstruction 
(EESCR) using simulated radial data  
 
The reference image, the IFT of the simulated under-sampled 
radial data, the edge function ω, and the reconstructed image using 
EESCR are shown in Fig 2. As seen in the IFT, because the higher 
frequencies have been undersampled the most, the edges appear 
smooth. The edge enhancement function seeks to improve the 
quality of these smooth edges by making them sharper using the 
edge function and the edge map. A comparison between the IFT 
and the EESCR image shows that the EESCR image has much 
sharper edges. Since EESCR uses no temporal constraint, each 
reconstructed frame is independent of the others and has low 
computational cost relative to reconstructing all of the frames 
simultaneously. 
 
3.2. Edge enhanced spatio-temporal constrained reconstruction 
(EESTCR) using acquired radial data  
 
When reconstructing undersampled radial data, including a 
temporal constraint was considered necessary as a temporal 
constraint performs much than a spatial constraint for 
undersampled data [7,8]. Reconstructed images using IFT, STCR 
and EESTCR are shown in figure 3. Improvement in the sharpness 
of edges was seen in the reconstructed images by using EESTCR. 
Only edges that were present in the edge map were enhanced using 
the proposed edge function. EESTCR was more robust to motion 
than EESCR.  Even when there was respiratory motion, 
improvement in the sharpness of edges was still seen as shown in 
Figure 3d and Figure 3e. The difference image (Figure 3d) 
between EESTCR and STCR shows that the edges were enhanced 
using EESTCR as compared to STCR. Edges in the vessels in the 
lungs, myocardium and papillary muscles were also more clear. 
The line profiles of IFT, STCR and EESTCR were shown in figure 
3e and figure 3f. The peaks in the line profile of EESTCR are 
higher and the valleys are lower in comparison with STCR. In 
some reconstruction a faint edge was seen in a couple of initial 
frames before there was any contrast in the LV. This was not 
considered a problem as we are only interested in frames after the 
onset of contrast in the LV, and after the onset of contrast in the 
LV no such false edges are seen.   
The mean intensity curves of STCR and EESTCR are shown in 
figure 4 and are similar. In some cases when the reference image 
formed by combining the last 4 frames did not contain much edge 
information, only slight improvement over STCR was seen. This 
shows that a good reference image with sufficient edge 
information is necessary for the edge enhancement function to 
function properly. However, a poor reference image did not 
degrade the image quality beyond that of STCR. To address the 
problem of sub-optimal reference images, we also tried combining 
4 frames from the middle of the sequence where there was better 
contrast in the LV to get the reference frame. Using this reference 
frame, an improvement in the sharpness of the edges was seen 
when compared with using the reference frame towards the end of 
the dynamic series. The results are shown in figure 5. The line 
profiles in figure 5d show that EESTCR with reference frame 
constructed by combining 4 frames from the centre of the dynamic 
sequence could make some more improvement in the sharpness of 
edges. As the contrast was better in images from centre of the 
dynamic sequence, a reference frame formed by combining them 
had better edge information and hence edge map ω and the 
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gradients matching term were able to map and reconstruct the edge 
information better.  
 
 

4. DISCUSSION 
 

We presented a gradient matching term based edge enhancement 
function in conjunction with STCR. Although the method was 
tested with dynamic cardiac perfusion data, it is equally applicable 
to other DCE MRI studies such as breast or brain tumors with 
undersampled data. Since there are less motion problems in brain 
and breast studies, the edge enhancement function would likely 
perform better as there will be little or no edge mismatch between 
the reconstructed and reference images. This would in turn allow 
for much higher undersampling factors. With a fully sampled 
reference frame and no edge mismatch between the undersampled 
frames, reconstructing with EESTCR would produce 
reconstructions with sharper edges while high temporal resolution 
would also be achieved due to higher sparsification factors.  
Dynamic myocardial perfusion images are often used to estimate 
the kinetic parameters using the change in intensity curves to fit a 
pharmacokinetic model. Registration and segmentation are two key 
areas that using EESTCR would be useful. Any improvement in 
the sharpness of edges would improve manual or automatic 
segmentation of the endocardial and epicardial borders of the LV 
and also could aid in the registration process. Providing even 
slightly sharper edges in the reconstructed images would help 
reduce intra-user variability in image registration and 
segmentation. 
The method was tested using a single reference frame. A fully 
sampled reference image was created by combining multiple 
interleaved frames. This is a limitation of this study as the fully 
sampled reference frame was not actually acquired. But this 

limitation is not significant as towards the end of the acquisition 
the contrast varies slowly and images formed by combining 
multiple undersampled frames would be similar to a single fully 
sampled frame. Using a multiple reference image EESTCR method 
would be more tolerant to motion. 

Although not shown here, it was also seen that an edge 
mismatch between the reference image and the reconstructed 
images due to Cartesian respiratory motion lead to a faint false 
edge being created in the reconstructed frame. To overcome this 
problem in EESCR, the reference frame was updated after each 
frame was reconstructed. The last frame ‘n’ was reconstructed first 
and this reconstructed frame was used as reference frame to 
reconstruct frame ‘n-1’ and so on. Hence each reconstructed frame 
was used as reference frame for the previous frame. This made the 
reconstructions more tolerant to motion in this case, though was 
not employed in the acquired radial data shown here. Using a 
multiple reference image EESTCR method might be more tolerant 
to motion. 
 
 

5. CONCLUSIONS 
 

The results from EESTCR show that it is a promising method for 
reconstructing images from undersampled data without the loss of 
sharpness of edges that one would expect due to the undersampling 
of high frequencies in the acquired data. Images reconstructed 
from 24 rays of k-space were shown to be improved using 
EESTCR in comparison to current state of the art [8]. EESTCR can 
be used to improve the sharpness of edges of undersampled data 
even in the presence of some respiratory motion. 
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6.FIGURES
 

  
(a) (b) 

Figure 1.  (a) The reference formed by taking the IFT for fully sampled k-space data simulated from Cartesian acquisition. (b) The edge 
function ω for λ=0.1. The value of ω is close to 1 for sharp edges and close to 0 over smooth regions. 

 

   
(a) (b) (c) 

 
Figure 2. Result of reconstruction from simulated radial acquisition from a single coil using EESCR, 24 radial lines. (a) Reference image 
formed by taking the inverse Fourier transform of fully sampled k-space data. (b) Inverse Fourier transform of under-sampled radial data for a 
single time frame. (c) Reconstructed image using EESCR. The edges in the reconstructed image are sharper due to the use of the edge 
enhancement function. 
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(a)           (b)     (c)     (d)     (e) 
    
Figure 3. Results of reconstruction from actual radial acquisition (24 rays). One time frame is shown. All 
reconstructions were done separately on each coil and combined with the square-root-of-sum-of-squares 
method. (a) Reconstructed without constraints. (b) Reconstructed using STCR. (c) Reconstructed using 
EESTCR. (d) Difference image formed by taking the difference between reconstruction using EESTCR (c) 
and STCR (b). The scale shows the percent change. (e) Line profile of no constraints, STCR and EESTCR 
reconstructed images across the red horizontal line shown faintly in (a). (f) Line profile of no constraints, 
STCR and EESTCR reconstructed images across the blue vertical line shown faintly in (a). The edges for the 
image reconstructed using EESTCR were sharper than with STCR and increase in contrast was also seen. 
 
Figure 4. Comparison of mean signal intensity time curves for a small region in the blood pool for images 
reconstructed using STCR and EESTCR.The curves match well.    

 
 
 
 
 
 
 

 

   
 

(a) (b) (c) (d) 
 Figure 5. Comparison of reconstructions of another acquired radial dataset (24 rays) with STCR and EESTCR, using two different reference 
frames. (a) STCR. (b) EESTCR using a reference frame constructed by combining the last 4 frames in the dynamic series. (c) EESTCR using a 
reference frame constructed by combining 4 frames from the centre of the dynamic series in which there was better contrast. (d) Line profile 
across the horizontal line shown in (a) for STCR and EESTCR with the two different reference images. Reconstruction using EESTCR with a 
reference frame constructed by combining 4 frames from the centre of the dynamic sequence provided slightly sharper edges. 
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