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Abstract

We present recent results in the application of distributed shared memory to image
parallel ray tracing on clusters. Image parallel rendering is traditionally limited to
scenes that are small enough to be replicated in the memory of each node, because
any processor may require access to any piece of the scene. We solve this problem
by making all of a cluster’s memory available through software distributed shared
memory layers. With gigabit ethernet connections, this mechanism is sufficiently
fast for interactive rendering of multi-gigabyte datasets. Object- and page-based
distributed shared memories are compared, and optimizations for efficient memory
use are discussed.
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1 Introduction

Computer graphics and visualization practitioners often desire the ability to
render data that exceeds the limitations of the available memory and pro-
cessing resources. Parallel processing is one solution to this problem because
it has the potential to multiply the available memory and computing power.
Recently, the cluster parallel computing organization has become popular be-
cause of the low cost and high performance it affords. Our work utilizes mem-
ory sharing techniques that make it possible to render, at interactive rates,
datasets larger than those previously possible using affordable computing plat-
forms.

The ray tracing algorithm proceeds by casting a ray into the scene for each
pixel P and determining which of the N scene primitives the ray hits first. The
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pixel takes the color of that primitive. If the primitive is reflective or translu-
cent, secondary rays are spawned from the point of intersection to determine
additional color contributions. The algorithm is versatile, any data type that
can be intersected with a line segment can be drawn, and any degree of fidelity
can be achieved by tracing additional rays.

The primary drawback of ray tracing is its high computational cost. Spatial
sorting allows the algorithm described above to run in O(P log N) time. How-
ever, because both P and N are large, parallel processing is essential to allow
interactive inspection of large datasets.

Parallel rendering is often classified in terms of a geometry-sorting pipeline [1].
The classification scheme is divided according to the point in the pipeline
where scene primitives are assigned to individual processors. In sort-first (im-
age parallel) rendering, each processor is responsible for a different subset of
the image space, while in sort-last (data parallel) rendering, each processor is
responsible for a different subset of the data. In ray tracing, every primary ray
can be computed concurrently, so image parallelism is the natural choice to ac-
celerate rendering. Figure 1 shows a diagnostic image of a teapot in which the
pixels rendered by three nodes in our cluster have been saturated differently
to show workload subdivision.

Fig. 1. Pixel Distribution. An image showing which processors rendered which pixels.
Three processors add different gray levels to their pixels to create this diagnostic
image.

A problem inherent in image parallel rendering is that a processing element
may require access to the entire scene database. Each processor is responsible
for computing the color of its assigned pixels, and these pixels may contain
contributions from any portion of the data. Consequently, image parallel ren-
dering has typically been restricted to small scenes that can be replicated in
the memories of every processing element.

In sort-last parallel rendering, each processor is assigned a different portion
of the data, so the available memory resources are multiplied. The same goal
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can be achieved for image parallel rendering when a mechanism is provided
to share data on demand. We leverage a software layer that manages access
to scene data and fetches missing pieces over the network as required. In our
system, each node runs one or more ray tracing threads and is responsible for
managing a different subset of the scene database. To exploit data coherence,
the shared memory system caches the remote data locally for later use. Careful
attention to memory access patterns, data layout and task distribution can
lead to increased locality of reference, higher hit rates and, as a result, better
performance.

2 Related Work

Our work stems from that of Parker et al. [2], which demonstrated one of the
first interactive ray tracing systems. By exploiting the capabilities of the SGI
Origin series of shared memory supercomputers, they were able to achieve
interactive frame rates using a brute force implementation of the ray trac-
ing algorithm. On these systems, the problem of data sharing is solved by the
ccNUMA interconnection layer. Our work explores the mechanisms that can be
used to replace this hardware layer with a software-based distributed shared
memory (DSM). A key aspect by which the distributed application is able
to maintain interactivity is that, in the rendering context, a writable shared
memory space is not required. For this reason, we omit expensive consistency
maintenance algorithms. Quarks [3] and Midway [4] are representative exam-
ples of full-featured page- and object-based DSMs that handle write access to
memory efficiently.

Our approach to memory sharing is similar to the work of Corrie and Mack-
erras [5]. They implemented volume rendering on the Fujitsu AP1000, a dis-
tributed memory, message passing parallel computer. They demonstrated that
volume rendering datasets that are too large for the memory of any one com-
puting element is feasible with caching. Badouel et al. [6] used a page-based
distributed shared memory, similar to one described here, and compared data
parallel and image parallel ray tracing programs. They concluded that image
parallel rendering with shared memory will scale better than object parallel
rendering because of the increased processing and communication overhead
that results from more finely dividing the objects in space. Our approach im-
plements similar algorithms on modern commodity hardware and compares
object- and page-based memory organizations. In addition, we present tech-
niques for reducing the number of shared data accesses, improving the hit rate
and decreasing the access time.

Several works by Wald et al. [7–9] demonstrate interactive ray tracing of large
models in both single PC and distributed cluster environments. Their first
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system [7] traced four rays at a time using SIMD instructions to accelerate
the rendering process. An additional benefit of this technique is that the data
coherence of primary rays is automatically exploited. Other early work by
Wald et al. [8] addressed the challenges of interactively rendering large, com-
plex models by combining centralized data access and client-side caching of
geometry voxels. Their system takes pains to exploit spatial coherence within
BSP tree nodes and temporal coherence between subsequent frames. More
recently, they have exploited the 64-bit PC address space to combine asyn-
chronous out-of-core data fetching and approximate transitory geometry to
render massive polygonal models on a single workstation [9].

In contrast, our work has primarily focused on developing a flexible interactive
rendering engine for scientific visualization applications. Though performance
benefits may result, we have not restricted our system to any one type of
scene primitive (for example, triangles). Instead, we are exploring more general
memory management techniques that can be exploited for any type of scene
data, including volumetric and polygonal data.

The designers of the Kilauea ray tracing engine [10] chose the data parallel
approach to image rendering. Rather than divide the image into separate ar-
eas for each processor, they distribute large scenes among the processors, each
of which traces a set of identical rays. Results are merged to determine the
primitive that is hit first. They use ray postponement in a queuing system
combined with very efficient sub-thread process management to achieve good
performance. The Kilauea engine is designed for high-quality global illumi-
nation, so the system is not interactive. For our system, in which interactive
frame rates are a primary goal, the cost of constantly transporting large num-
bers of rays across a high latency network was deemed less practicable than
occasionally transporting a few large blocks of memory.

Our system can be classified as a hybrid approach that is closer to image
parallel rendering than to data parallel rendering. Reinhard et al. [11] describe
a different hybrid approach that is closer to object parallel rendering. The
design of their system was motivated by the need to evenly balance the load
while improving memory coherence. In this system, a grid-based acceleration
structure was used to partition the objects in the scene. The demand driven
task of determining the set of cells traversed in the grid and finding initial
intersections was done in parallel using a data cache for fetched remote objects.
Secondary rays spawned from intersection points were sent to remote nodes in
a data parallel fashion. Our rendering system differs in that we do not transfer
ray ownership and that we reorganize individual meshes to gain the memory
coherence benefits implicit in the data parallel approach.
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3 Distributed Shared Memory

In all versions of our distributed shared memory, each of the N rendering nodes
is assigned 1/N of the total data size. The initial assignment of blocks to nodes
is arbitrary because we do not know, a priori, which data will contribute to
which pixels of the image. Similarly, we do not have advance knowledge of
which pixels will be assigned to which nodes during rendering. To keep a
balanced distribution, we make the individual blocks small relative to the
whole scene, for example, 32 KB per block when rendering a multi-gigabyte
dataset. We can then assign many blocks to each node using a simple round
robin placement scheme, and each node is given a fair initial sampling of
the entire scene. In this scheme, block number n is owned by node number
n mod # of nodes. The set of blocks that each node is given at program
initialization is constant throughout the session, and this portion of a node’s
memory is called the resident set. Figure 2 illustrates data ownership in a
rendering of an isosurface of a volumetric model of the implicit equation x2 +
y2 + z2 + noise = C.

Fig. 2. Data Distribution. Voxels originating in each of three nodes’ resident sets
are colored differently in this diagnostic view of an isosurface rendering.

In addition to its own resident set, a node may need to access data in the
other nodes’ resident sets. The separate memory layers are connected via the
cluster’s interconnection network, over which the nodes send and respond to
memory block request messages.

These request and reply messages are handled by a lightweight message pass-
ing layer called Ice [12]. Ice utilizes either TCP sockets or the Message Passing
Interface (MPI) to connect the nodes in the cluster. An important feature of
Ice is asynchronous message retrieval. Computation threads never call the
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receive operation directly. Instead, a dedicated thread handles incoming mes-
sages. When one arrives, the communication thread wakes and processes the
message. The advantage of this approach is that if computation threads have
a sufficient backlog of data to process, they do not spend any time waiting on
communication.

The DSM would be very slow if every access to a non-resident block resulted
in network messages. To avoid this situation, we rely on coherence. Coherence
is the property that once a portion of the scene is used, it and nearby portions
are likely be used again in the near future. We therefore set aside a portion
of the memory in each node to cache non-local blocks. In Section 4, we ex-
plain optimizations that increase the probability of loaded data being reused,
making caching more effective.

There are two primary types of distributed shared memory: object-based
DSM (ODSM) and page-based DSM (PDSM). ODSMs share the memory of
arbitrarily sized software objects. These objects are accessed through meth-
ods that signal the DSM layer to make the requested memory available to the
caller. PDSMs, in contrast, share pages of system memory, where the page size
is a fixed, machine dependent number of bytes. Rather than utilize function
calls to access memory, the program simply accesses the normal virtual ad-
dress space, and the DSM layer independently ensures that the needed pages
are made available.

We have experimented with both memory organizations. We discuss our im-
plementations of each DSM below, and compare the performance of the two
in Section 3.3.

3.1 ODSM

In our ODSM implementation each node creates a DataServer object at
startup. This object is responsible for managing the node’s resident and cached
blocks. The ray tracing threads access the shared memory blocks through the
DataServer ’s acquire and release methods. Each call takes an integer handle
that selects a particular block of memory from the global memory space. When
the renderer accesses a block that belongs to the local node’s resident set, the
ODSM layer simply returns that block’s starting address. When the renderer
accesses a non-local block, the ODSM layer must first search the cache for the
block and, if it is found, return its local address. If the block is not cached,
the ODSM must send a message to the node that owns the block and wait
for that node’s response. When the requested block arrives, the ODSM places
the remote data in the local cache, possibly evicting another block to reclaim
space. When a thread finishes using the block, the release method notifies
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the DataServer that the space used for the block is now available for use by
another block.

The ODSM architecture has two important advantages. First, because accesses
to the blocks are bounded by acquire and release operations, it is relatively easy
to make the ODSM thread-safe. The ODSM protects each block with a count-
ing semaphore that allows multiple render threads to access a block simulta-
neously. The semaphore also prevents that block from being evicted while it
is still in use. Second, because the blocks are accessed indirectly through a
handle, the 4 GB address limitation of 32-bit machines no longer applies. The
maximum addressable memory is now the size of the integer handle times the
size of the block. Taken together, the ODSM makes the aggregate physical
memory space of the cluster accessible to any thread.

Although the ODSM makes a large amount of memory available to the ap-
plication, it may cause difficulties for the application programmer. Figure 3
shows pseudo-code for the process by which the ray tracing application ac-
cesses the ODSM memory space. Because the scene data is accessed through
handles, the ray tracing threads must map graphics primitives (for example,
voxels and triangles) to block handles and offsets within blocks. The mapping
process is difficult for many data representations, and the address arithmetic
consumes valuable processing time. Thus, with the ODSM, some time is lost
accessing the shared data, even in the event of a memory hit.

// Locate data

handle, offset = ODSM_location(datum);

block_start_addr = ODSM_acquire(handle);

// Use data

datum = *(block_start_addr + offset);

test_ray_intersection(datum);

// Relinquish space

ODSM_release(handle);

Fig. 3. Object-Based DSM Usage. With the ODSM, the ray tracing threads must
explicitly access the shared data space.

3.2 PDSM

In a PDSM, the implementation of the shared memory is pushed away from
the application, closer to the OS and hardware levels. There are no explicit
acquire and release operations. Instead, the shared address space is simply a
special region of the machine’s local virtual address space. Shared objects are
created with an overloaded new operator that simply ensures that the shared
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objects are created in the PDSM address range. The ray tracing threads need
only call test ray intersection(datum), as they would for any other piece of
data in the node’s local memory.

Our implementation divides the PDSM’s range of addresses into blocks that
are multiples of the operating system’s native page size. Each block is assigned
to a node in the same round robin fashion as was the resident set of the
ODSM. The rest of the pages in the PDSM memory are initially unmapped
on each node. The virtual addresses are protected by a segmentation fault
signal handler. This routine is called whenever the ray tracing threads access
missing, non-local pages. In this case, the handler issues a request to the owner
node in a manner similar to that of the ODSM. Figure 4 presents an overview
of our PDSM memory access protocol.

Fig. 4. Page-Based DSM Architecture. The virtual memory hardware detects misses,
and the PDSM layer causes remote references to be paged from across the network.

The PDSM layer makes the application programmer’s task easier, and the
application generally operates more quickly. However, the size of the shared
memory space is constrained by the 4 GB limit inherent to 32-bit address
machines. In practice, the actual limit is less than 4 GB because some of the
virtual address space is reserved for the operating system (addresses above
0xC000000), as well as the program’s executable code and free storage space
(addresses near 0x4000000). This arrangement leaves at most 2 GB of address-
able shared memory. Despite this limitation, the technique provides a useful
way to extend the total data size when the installed physical memory on any
node in the cluster is less than 2 GB. With the wider availability of 64-bit
machines, it is likely that this limitation will become less severe and that the
technique will become more useful.
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Another drawback to our PDSM implementation is that, unlike the ODSM, it
is not currently thread-safe. The PDSM lacks the semantics of explicit acquire
and release operations, and exhibits a race condition whenever the user-level
communication thread fills a requested page of memory received from a remote
node. Without kernel modifications, there is no way to reserve a particular
page of memory for a particular thread, so there is some chance that additional
ray tracing threads could access the page while it is being filled. For this reason,
all of the PDSM tests reported here use only a single ray tracing thread per
node.

3.3 ODSM/PDSM Comparison

To compare the performance of the two DSM implementations, we render
isosurfaces of a 512 MB scalar volume created from a computed tomogra-
phy scan of a child’s toy. The test machine is a 32-node cluster consisting of
dual 1.7 GHz Xeon PCs with 1 GB of RAM, connected via switched gigabit
ethernet. All rendering tests report the average frame rate during interactive
sessions using a 512x512 pixel view port. The images are composed of 16x16
pixel tiles. Thirty-one rendering nodes are used, with one rendering and one
communication thread per node, except where noted.

In this test, we examine the cost of using a shared memory space by restricting
the DSM layers to store only 81 MB on each node. Because the viewpoint and
isosurface selection change throughout, the working set varies frequently, and
the DSM layers must do extra work to obtain the needed data.

Figure 5 shows the recorded frame rates from the test and a sampling of
rendered frames. The test is started with a cold cache. In the first half of the
test, the entire volume is in view, while in the second, only a small portion
of the dataset is visible. Both DSM layers struggle to keep the caches full
during the first part of the test. However, the lack of memory indirection
gives the PDSM a lower hit time, so it outperforms the ODSM throughout. In
later frames, most memory accesses hit in the cache, so the PDSM adds little
overhead to data replication. Overall, the average frame rates for this test are
3.74 fps with replication, 3.06 with the PDSM and 1.22 with the ODSM. The
PDSM layer is clearly preferable to the ODSM layer as long as the total data
size can be addressed by the nodes in the cluster.
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Fig. 5. Comparing Memory Organization. Frame rates are above and images from
the test are below. The page-based DSM outperforms the object-based DSM in
all cases. Moreover, its performance is competitive with full data replication, even
though the local memory size is reduced to 16% of the total.

4 Memory Optimizations

In this section we describe the optimizations we have made to improve the
hit rate of our rendering application. Table 1 gives the measured hit and miss
penalties for our object- and page-based DSMs recorded in a random access
test. The disparity between the hit and miss times under both DSMs justifies
our search for optimizations which target increased hit rates. The optimiza-
tions include the use of spatial sorting structures, data bricking, access penalty
amortization, and a load balancer that exploits frame-to-frame coherence.

Hit Time Miss Time

Object-based DSM 10.2 629

Page-based DSM 4.97 632

Table 1
DSM Access Penalties. Average access penalties, in µs, over 1 million random ac-
cesses to a 128 MB address space on five nodes.
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4.1 Optimizations for Volumetric Data

Our application focus has been rendering the isosurfaces contained within reg-
ular volumetric datasets, a common task in scientific visualization. To render
this type of data, we utilize the macrocell and bricking acceleration techniques
described by Parker et al. [13] and DeMarle et al. [14].

To accelerate rendering, our system uses a macrocell hierarchy that enables
space leaping. The hierarchy is an octree-like spatial sorting structure that
contains, at each level, a grid of cells storing the minimum and maximum
values of the subcells at the next lower level. By traversing the macrocell hi-
erarchy, we need not consider much of the data that is contained within the
shared memory space. For non-volumetric data, we use efficient bounding vol-
ume hierarchy and hierarchical grid-based data structures [15,16] for a similar
purpose.

Data bricking [17], or three-dimensional tiling, reorganizes the 3D array of
data in memory to keep proximate volume elements together in address space.
Rather than traverse each row of the data in memory before proceeding to
the next column and eventually slab, we group neighboring cells in small
bricks. The sizes of the bricks are chosen to be aligned on memory hierarchy
boundaries. We repeat the process with the bricks to obtain the same benefits
on cache line, OS page, and network transfer memory block levels.

4.2 ODSM Access Consolidation

With the structures described above, the ray tracing threads tend to access
only a small fraction of the data, and they tend to do so repeatedly. The
structures are effective enough that, in the isosurface rendering application,
we typically have hit rates of greater than 95%. In this situation, the hit times
are a limiting factor. The PDSM memory layer is an option for moderately
sized volume data, but for very large data we are forced to use the ODSM. To
achieve better performance from the ODSM, we reduce the number of accesses
and amortize the cost of each hit over multiple data values.

Our approach is to consolidate accesses to data at the bottom level of the
acceleration structure. Rather than perform an acquire operation to obtain
each scalar value, we acquire a block and obtain all of the scalar values needed
to construct the required voxels within the block. Every ray first traverses the
bottom-level macrocells to construct a list of required blocks. The ray then
acquires each touched block in turn, copying all of the intersected voxels before
releasing the block and moving to the next one.
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Figure 6 gives a 2D example of the simple acquire-on-demand and consolidated
access strategies. In the simple approach, the ray must perform 28 acquires
to obtain data for the 7 voxels that are required. Most of these acquires are
redundant. In the consolidated approach, only 2 acquires are needed. The first
retrieves 6 scalar values, the second retrieves 10.

Block1 Block2

Macrocell Ray

Block1 Block2

Macrocell Ray

Fig. 6. Consolidating Access to Shared Memory. Because distributed shared memory
is slow, it is beneficial to reduce the number of accesses. By examining the ray
segment within the bottom-level macrocell, all of the voxels touched inside a block
can be obtained at one time.

We experimentally examine the effectiveness of the access consolidation strat-
egy in an isosurface rendering test of a 7.5 GB volume. Table 2 shows the
average number of accesses per worker per frame and the average frame rate
for a test using three consolidation patterns. The first and last rows correspond
to the patterns described above. The second row is an intermediate option in
which the renderer acquires and releases the blocks touched by the 8 corners
of a voxel in turn, usually retrieving all eight values in one access. In each
case, the increase in frame rate is inversely proportional to the decrease in the
number of accesses, minus the overhead of the block pre-traversal process.

Pattern Accesses Frame Rate

[f/s]

Access 1 3279000 .1149

Access 8 453400 .7090

Access Many 53290 1.686

Table 2
Consolidated Access Test Results. Amortizing access to the ODSM is essential for
interactivity.

4.3 Mesh Reorganization

We also apply the concept of data bricking to polygonal mesh data. When
spatially proximate primitives are sorted in memory so that they become
proximate in address space as well, pages are more likely to be reused and
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hit rates are likely to increase. Given our image tile access pattern, the ideal
mesh for our purposes is one with large patches of triangles that reside on the
same page in memory. The goal of making the scene data more coherent by
reorganization is similar to that achieved by Pharr et al. [18] for disk cached
ray tracing, and by Hoppe [19] and Isenburg et al. [20] for scan line rendering.

The memory layout of our input data is reorganized using a preprocessing
program. The program uses an octree to sort the vertices and triangles of the
input mesh in space. The program reads each vertex from disk and inserts it,
along with its index in the input file, into one of eight children of the octree’s
top level cell. We repeat the process within each cell recursively sorting until
each subcell contains no more than a small, user-defined number of vertices.
In the end all of the vertices within each cell are guaranteed to be close to one
another. After the vertices are inserted into the tree, we perform a depth first
traversal to append the sorted vertices onto an output file.

We repeat the process for the triangles in the mesh, using the centroid of each
triangle to determine the octant in which the triangle should be placed. Once
the triangles are sorted, we fix the vertex references of each triangle to index
the correct position in the newly sorted vertex list by creating an old index-to-
new index lookup table. The table is constructed by reading the sorted vertex
list and storing a vertex’s new index in the table at the vertex’s saved original
location.

Figure 7 shows graphically what it means to group triangles in the shared
address space according to spatial locality. With a sorted mesh layout, neigh-
boring rays are more likely to find the data they need within an already
referenced page and throughout the lower levels of the memory hierarchy.

We analyze the effectiveness of the sorting routine with another experimental
test. In this case, we place mesh data and a hierarchical grid acceleration struc-
ture into the PDSM memory space. This test uses Stanford’s Lucy model [21],
which has 14027872 vertices and 28055742 triangles. We selected the finest res-
olution acceleration structure that would fit within the PDSM memory space
(3 hierarchical levels, 5 cells per level), because it is the most selective and
yields the best performance. The original and sorted Lucy meshes each con-
sume 481.6 MB, and the hierarchical grid of each mesh consumes 1149.1 MB.
The total data size in each case was 1630.7 MB.

In the test, we compare the frame rate of a recorded interactive session con-
sisting of a series of camera motions around the model. We run the test with
the original and sorted meshes, gradually decreasing the available memory
size by reducing the local cache parameter of our PDSM. This simulates the
anticipated memory configuration when rendering large models on a 64-bit ar-
chitecture in which the physical memory size is likely to be much smaller than
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(a) (b)

(c) (d)

Fig. 7. Improving Coherence via Data Reorganization. On the left, the first triangle
in the mesh is colored white and the last black. On the right, pages of triangles
in the DSM space are colored to identify node ownership. In (a), the input mesh
exhibits regions where nearby triangles are far apart in address space. In (b), the
pages take the form of thin strips. In (c) and (d), the sorted mesh exhibits fewer
address discontinuities, and pages of memory now form patches on the surface.

the virtual memory size. To demonstrate the importance of memory locality
in general, we also repeat the test with a randomized mesh, where the trian-
gles and vertices are placed randomly into memory. Figure 8 shows the results
of the test. Initially, all three meshes run at approximately the same speed.
As the memory becomes more restricted, the randomized mesh performance
quickly degrades due to thrashing while our sorted mesh results in the best
performance.
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Fig. 8. Mesh Reorganization Results. As the memory space available for rendering
falls, the improved coherency in the sorted mesh produces fewer misses (top) and,
as a result, higher frame rates (bottom).

4.4 Distributed Load Balancing

We have also experimented with two types of load balancing in our parallel
renderer: a centralized task queue and distributed load balancing. In the cen-
tralized task queue, the supervisor node maintains a work queue, and workers
implicitly request new tiles from the supervisor when they return completed
assignments. In the distributed load balancer, the workers instead obtain tile
assignments from each other.
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This centralized design worked well in the original hardware shared mem-
ory implementation of the ray tracer. However, the higher network latency
and slower shared memory access times in the cluster have introduced per-
formance penalties for this load balancing scheme. For example, although the
central work queue quickly achieves a well-balanced workload, it results in
poor memory coherence because tile assignments are essentially random and
change every frame. In a cluster with severe memory access miss penalties,
there is an interesting trade-off between a more balanced workload and higher
hit rates.

With our distributed load balancer, each ray tracing thread starts frame t with
the assignments it completed in frame t − 1. This pseudo-static assignment
scheme increases hit rates because the data used to render frame t − 1 will
likely be needed when rendering frame t. The goal of this approach is similar
to the scheduling heuristic described by Wald et al. [8].

The distributed load balancer uses a combination of receiver- and sender-
initiated task migration in an attempt to prevent the load from becoming
unbalanced when the scene or viewpoint changes. Once a worker finishes its
assignments for a given frame, it picks a peer at random and requests more
work. If that peer has work available, it responds. To improve the rate of
convergence toward a balanced load, heavily loaded workers can also release
work without being queried. In our current implementation, for example, the
node that required the most time to complete its assignments will send a task
to a randomly selected peer at the beginning of the next frame.

Figure 9 contains difference images between two successive frames in a test
session run under each load balancer. The difference images show the tiles that
change ownership between the frames on each run. With the work stealing load
balancer, very few tiles were rendered by different nodes in the second frame,
as is typical in our experience.

We now analyze the extent to which decentralized load balancing improves per-
formance. For this test, we rendered two more of Stanford’s scanned meshes,
the dragon and bunny models, which together contain 1.2 million triangles and
0.6 million vertices. The total size of the mesh data is 28.76 MB, and we access
the data through a highly efficient hierarchical grid acceleration structure that
is 187.7 MB in size. As before, we vary the local cache size, this time analyzing
how each load balancing algorithm impacts the caching performance.

Figure 10 shows the results. As memory becomes restricted, the work stealing
scheme maintains interactivity better because it is able to reuse cached data
more often and yields fewer misses. However, when memory is plentiful, either
approach works well. In practice, it is the trade-off between increased load
imbalance and improved hit rates that determines which option will perform
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Fig. 9. Comparing Task Assignment Strategies. Difference images computed from
two subsequent frames. Results from the demand driven load balancer are on the
left, work stealing results are on the right. The task stealing heuristic changes tile
assignments much less frequently.

better. However, as the memory constraints become more restrictive, the work
stealing load balancer tends to perform better.

A decentralized scheme also eliminates a synchronization bottleneck at the su-
pervisor that is amplified by the network transmission delay. Unless frameless
rendering is used, a frame cannot be completed until all image tiles have been
assigned and returned. Asynchronous task assignment can hide the problem,
but as processors are added, message start-up costs will determine the min-
imum rendering time. When this happens, the rendering time is at least the
product of the message latency and twice the number of task assignments in a
frame. For 512x512 images composed from 16x16 tiles the maximum achiev-
able frame rate is 34 frames per second on our cluster.

Work stealing eliminates all task assignment messages from the supervisor and
allows workers to assign tasks independently. In other words a decentralized
task assignment scheme takes advantage of the fact that on a switch-based
network nodes B and C can communicate at the same time as nodes D and E.
When the system is network bound, this approach can increase the achievable
frame rate by a factor of two.

5 Scalability Analysis

In a renderer designed for interactive visualization of large scientific datasets,
it is important to understand the processor and data scaling behavior. That
is, given a constant data size, we want to know if it can be rendered more
quickly by using more processors. We also want to know how the rendering
speed changes with a fixed number of processors as the size of the dataset
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Fig. 10. Effect of Task Reuse with Limited Local Memory. Each node exhibits fewer
misses when computing pixels from previous tasks (top). As a result, work stealing
improves frame rates when the local memory is limited (middle), despite exhibiting
a more imbalanced workload (bottom).

increases.

In an image parallel ray tracer, one can expect that when the program is
compute-bound, because there are many independent pixels in the image,
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processor scaling behavior will be quite good. Because of hierarchical acceler-
ation structures, we can also expect that data scaling behavior will be good,
as these structures turn the ray tracing algorithm into an O(P log N) sorted
search problem.

In practice, when rendering small data sets that can be replicated in each
node’s memory we have found that these scaling characteristics accurately
model our program’s behavior. The application tends to scale nearly lin-
early until computation time falls below network communication time, at
which point we can no longer overlap computation and communication. When
enough processors are applied to overcome the computational bottleneck, im-
age tile communication time eventually becomes the limiting factor as de-
scribed in Section 4.4.

When rendering large amounts of data, it is more often the case that memory
access times are the most significant bottleneck. For example, if a node misses
in the cache and needs to fetch remote data on average 100 times per frame,
and each one of these requests takes 1 ms, then one can not expect to reach
more than 10 frames per second.

The number of data accesses and the ratio of local to remote memory refer-
ences is dependent on the number of workers and on the size of the data. To
examine the behavior of our system in practice, we perform another bench-
mark, in this case rendering the volume shown in Figure 11. This volume is
time step 225 of a Richtmyer-Meshkov instability dataset from Lawrence Liv-
ermore National Laboratory. The complicated surfaces in this dataset make
the renderer processor- and memory-bound well before it becomes network-
bound.

Fig. 11. Richtmyer-Meshkov Instability. The computational fluid dynamics dataset
used for the scalability tests.
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We measure processor scaling performance by varying the number of render-
ing nodes. We measure memory scaling performance by down-sampling the
original 7.5 GB volume repeatedly, and recording the running time over an
interactive session. To make a fair comparison, we place all volumes in the
ODSM space despite the fact that the smaller volumes can be rendered more
quickly in the PDSM space or by replication. The result of the scaling tests
are given in Figure 12, and a selection of memory access measurements are
given in Table 3.
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Fig. 12. Processor and Memory Scaling Behavior.

As the number of nodes increases, the data sets that are small enough to be
cached entirely in the physical memory of each node exhibit close to ideal
scaling. The largest datasets cannot be cached entirely on any one node which
makes scaling more complicated.

With large data, as the number of nodes increases, the dominant component
of runtime change is a decrease in the number of accesses per node. This
happens because increasing the number of workers decreases the amount of
the screen that is rendered on any one node. Meanwhile, for the large datasets
the number of misses drops substantially, as more of each node’s memory is
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120 MB 960 MB 8 GB

8 nodes accesses 265211 245444 221667

misses 2.16 14.7 5933

16 nodes accesses 132605 123250 110903

misses 2.31 15.7 529

31 nodes accesses 68600 63611 57189

misses 2.38 16.1 251

Table 3
Selected Rendering Statistics. Average number of memory accesses and DSM cache
level misses per worker per frame recorded in nine of the test sessions.

available to use as a cache. Overall the trend is still towards linear scaling,
with a temporary benefit due to the caching and memory access factors.

From the memory scaling figure it is clear that the macrocell hierarchy gives
us very good data scaling behavior. Holding the number of nodes constant,
multiplying the data size by powers of 8 decreases the frame rate very little.
The hierarchy keeps the number of accesses roughly constant as the data size
explodes. Unfortunately increasing the data size does increase the miss rate,
which makes the rendering time more influenced by the long miss penalty. If
the local memory is insufficient to hold the working set, as is the case for 8
nodes on the 8 GB data, thrashing results and the miss penalty dominates.

6 Conclusions

We have found that it is possible to render large datasets quickly using read-
ily available cluster technology. Our solution adds a top-level memory layer
in which all cluster nodes share their local memory contents via the network.
Our shared memory layer can use either an object-based or page-based orga-
nization. The object-based layer makes the aggregate physical memory space
of the cluster available to all rendering threads. On 32-bit clusters, the page-
based layer is more limited in terms of addressable data size, but it adds less
overhead to the cost of purely local data access.

With our shared memory, we are able to ray trace scenes that are too large to
be replicated in each node’s memory. Ray tracing is the classic image parallel
rendering algorithm. All pixels can be computed concurrently so it usually
exhibits very good processor scalability. The use of acceleration structure hi-
erarchies allows us to consider only a fraction of the elements of the scene
when rendering an image, which gives the program good memory scalability.
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The miss penalty in a network shared memory system using commodity in-
terconnection hardware is quite high. For this reason caching is an essential
component of our network memory system. We have discussed several memory
access optimizations that we have used, all of which increase the percentage of
cache hits. The optimizations extend the memory size to which we can achieve
interactive rendering.

7 Future Work

Higher performing interconnect architectures are becoming widely available.
Both Myrinet and Infiniband, for example, reduce message latency and in-
crease network bandwidth substantially. We have recently adapted our sys-
tem to make use of MPI to allow us to take advantage of these networks and
increase our scalability. Our preliminary analysis has found that our asyn-
chronous message handling makes a thread-safe MPI layer of tantamount
importance. Lacking such a layer, efficiency-reducing thread barriers are re-
quired. These barriers usually negate any performance improvement that the
high performance interconnect may yield.

For some datasets, the total physical memory space of the cluster is not suffi-
cient. Terabyte-scale, time varying volumetric datasets are an example. We are
currently working to render from the combined disk space of all of the nodes
in our cluster by fetching scene contents on demand from disk. We plan to use
the network memory discussed here as an intermediate level in the memory
hierarchy, inserted before the final disk-mapped layer. Preliminary tests have
shown that such a system is possible, and we are currently studying further
optimizations, such as those described by Corrêa [22], for this new memory
organization.

Additional efficiency may be available if we can better exploit the processing
elements in more recent PC architectures. With increasingly available SMP
and simultaneous multithreading capable nodes, it is important to use hybrid
parallel architectures efficiently. For this reason, we plan to address the lack
of thread safety in our PDSM networked memory layer and to test it on 64-bit
architectures.
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