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Figure 1: Richtmyer-Meshkov Instability time steps:0,45,180,270. With 32 Linux PCs we are able to isosurface the full resolution 7.5 GB
volume on the left at 6.7 frames per second and on the right at 2.1 frames per second.

Abstract

We have constructed a distributed parallel ray tracing system that
interactively produces isosurface renderings from large data sets on
a cluster of commodity PCs. The program was derived from the
SCI Institute’s interactive ray tracer (*-Ray), which utilizes small
to large shared memory platforms, such as the SGI Origin series, to
interact with very large-scale data sets. Making this approach work
efficiently on a cluster requires attention to numerous system-level
issues, especially when rendering data sets larger than the address
space of each cluster node. The rendering engine is an image par-
allel ray tracer with a supervisor/workers organization. Each node
in the cluster runs a multi-threaded application. A minimal abstrac-
tion layer on top of TCP links the nodes, and enables asynchronous
message handling. For large volumes, render threads obtain data
bricks on demand from an object-based software distributed shared
memory. Caching improves performance by reducing the amount
of data transfers for a reasonable working set size. For large data
sets, the cluster-based interactive ray tracer performs comparably
with an SGI Origin system. We examine the parameter space of the
renderer and provide experimental results for interactive rendering
of large (7.5 GB) data sets.
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1 Introduction

Recent research has demonstrated the utility of ray tracing as an in-
teractive visualization technique on large-scale tightly coupled su-
percomputers [Parker et al. 1999a; Parker et al. 1999b]. *-Ray1,
the Scientific Computing and Imaging (SCI) Institute’s interactive
ray tracing system, targets small to large shared memory platforms,
such as the SGI Origin series, to interact with very large-scale data
sets. Unfortunately, these shared memory supercomputers are ex-
tremely expensive and, thus, may not be readily available to many
researchers.

As the price of consumer hardware components continues to
drop, commodity-based clusters begin to offer a cost-effective al-
ternative to large-scale tightly coupled systems. High-performance
clusters that rival traditional supercomputers for solving computa-
tionally intensive offline problems are becoming more widely avail-
able. With their lower bandwidth and higher latency interconnect,
it is less clear that clusters are as well suited for higher through-
put tasks such as interactive rendering. It has been shown that
large triangle-based scenes can be ray traced interactively on clus-
ters [Wald and Slusallek 2001]. In this paper we show that clusters
can also interactively render very large volume data.

We have constructed a distributed interactive ray tracing system
for visualizing large high resolution data sets. The new program
was derived from *-Ray; however, the slower network and lack of
a hardware-based shared memory introduces a number of system-
level efficiency issues that must be considered carefully, especially
when interactively rendering data sets larger than the address space
of an individual cluster node. The distributed renderer is an image
parallel ray tracer in which workers completely ray trace rectangu-
lar pixel regions. To process volumes that are too large to fit into
the memory of each node, the renderer uses a software distributed
shared memory that communicates data on demand to make the en-
tire memory space of the cluster available to each node. In this

1Pronounced Star ray, also known as the real-time ray tracer (rtrt)



paper, we describe the performance of the distributed parallel ray
tracing system on a nearly 8 GB Richtmyer-Meshkov instability
data set. Views of four time steps from this data set are given in
Figure 1.

In Section 2, we briefly discuss important related work in in-
teractive ray tracing and distributed shared memory systems. The
implementation of our distributed parallel ray tracer is thoroughly
described in Section 3. Section 4 offers an evaluation of the lim-
itations to scaling of the parallel program, and Section 5 inves-
tigates the optimal parameter settings for interactively rendering
isosurfaces from a 7.5 GB Richtmyer-Meshkov instability data set.
Section 5 also compares the performance of *-Ray and the cluster-
based ray tracer with the data set. Finally, we offer our concluding
remarks and outline areas of future research in Sections 6 and 7,
respectively.

2 Related Work

*-Ray [Parker et al. 1999a; Parker et al. 1999b] was one of the first
interactive ray tracing engines. The renderer is carefully optimized
for the memory hierarchy of the SGI Origin [Sil 2002] series of
shared memory supercomputers. One of the advantages of the su-
percomputer is that the interconnection architecture has extremely
high bandwidth and low latency. This interconnect, combined with
hardware-based atomic fetch and op support, allows efficient task
assignment and ensures that every processor has very fast, transpar-
ent access to a huge global memory space. In a cluster, shared mem-
ory is not supported in hardware, and the interconnection network
is slower with significantly higher latency, including both hardware
and software delays. In this paper, we describe how we utilize all of
the nodes in the cluster with a cohesive program that is capable of
accessing the aggregate cluster memory as a global memory space.

Ingo Wald and Philipp Slusallek have also demonstrated the
feasibility of interactive ray tracing on PC and cluster-based sys-
tems [Wald and Slusallek 2001; Wald et al. 2001; Wald et al. 2002].
For large scenes, they obtain the lower branches of a Binary Space
Partioning (BSP) hierarchy on demand from a central file server.
One advance in our work is that we eliminate the bottleneck im-
plied by a central data server. In our system all nodes serve some
of the data to the rest of the nodes. One significant feature of the
Saarland renderer that our system lacks is the ability to reorder ray
computation, which allows their rendering engine to hide some of
the transmission time for missed data. Their system is highly op-
timized and as a consequence is restricted to scenes composed en-
tirely of triangles. One of the attractions of ray tracing is its flexibil-
ity. Our system retains the capability to render a variety of objects,
and as a consequence it is not as highly optimized and will likely
under-perform their renderer on triangular meshes. In volume visu-
alization, the point is moot because it is better to isosurface volume
data directly without constructing an intermediate polygonal rep-
resentation. Doing so produces more accurate images and reduces
preprocessing time with dynamically changing isovalue selections.

Our approach to shared memory is similar to the work of Corrie
and Mackerras [Corrie and Mackerras 1993]. They implemented
volume rendering on a Fujitsu AP1000, a distributed memory, mes-
sage passing parallel computer. They demonstrated that caching
makes feasible the volume rendering of data sets that are too large
for the memory of any one computing element. Our approach im-
plements a similar algorithm on modern commodity hardware. Our
algorithm allows hybrid parallel rendering, where each node runs
multiple render threads. To achieve greater interactivity, we present
techniques for reducing the number of shared data accesses, im-
proving the hit rate and decreasing the access time.

In this paper, we use the output of a very large Computational
Fluid Dynamics (CFD) simulation to examine the performance of
our distributed renderer. The data set was generated by A. A. Mirin

et al., from the Lawrence Livermore National Laboratory [Mirin
et al. 1999]. The simulation is a Richtmyer-Meshkov instability,
produced when a shock intersects a contact discontinuity between
two zones of varying density. The results show the evolution of en-
tropy throughout the volume over time. Their work demonstrates
the need to work with very high resolution data. With such extreme
resolution, they were able to examine how the interaction between
long and short wavelength perturbations creates fine scale turbu-
lence. Previously, the data set has been rendered on PC clusters
using direct volume rendering by David Porter and a team from the
University of Minnesota [Porter 2002] with rendering times in the
tens of seconds per frame. Although the rendering method is dif-
ferent, the contribution of our work is the ability to interactively
render, i.e., at multiple frames per second, the data set without re-
sorting to sub-sampling.

3 Implementation

The cluster we employ consists of 32 dual-CPU 1.7 GHz PC’s run-
ning Linux and an Extreme Networks 6816 Black Diamond gigabit
Ethernet switch. Each node connects to the switch through a giga-
bit network card and cat5e copper Ethernet cable. Table 1 lists the
hardware and software components of our cluster.

Component Type

Motherboard Supermicro P4DC6+
(Intel 860 chip set)

CPU Dual Intel Xeon 1.70 GHz
(256 KB cache size)

Memory 2x512 MB Corsair ECC RDRAM
Network card Intel Pro1000/XT

Driver version 4.4.12-k1
GPU NVIDIA GeForce3 (64 MB)

Driver version 1.0.2960
Hard drive 18 GB Seagate Cheetah U160

(15000 RPM)
Kernel Linux 2.4.20 (Nov 28, 2002)
Compiler GCC 3.0.4
Cluster Filesystem PVFS version 1.5

Table 1: Cluster Components.

In our implementation, a supervisor node divides the image into
rectangular tiles, assigns groups of tiles, or tasks, to the worker
nodes, and refreshes the display. Each worker owns a portion of the
total data, and uses the rest of its local memory space to temporarily
cache remote owned data. The workers ray trace their assigned
image tiles, for each pixel computing the analytic intersection of
one ray with the isosurface. When a ray traverses some portion
of data residing on a remote node, the distributed shared memory
system first checks the cache and then obtains the data from the
remote owner if necessary.

Data parallelism is an alternative approach where the volume is
statically divided among the nodes, and rays or partial pixel re-
sults are transferred instead of data. We chose an image parallel
approach because it exploits the natural parallelism inherent in ray
tracing. Every primary ray is independent of every other, so par-
allelizing the algorithm in the image plane adds little overhead to
the program, and generally attains good speedup. Given that the
communications latency is high on the cluster, and that the algo-
rithm spawns a huge number of rays, we chose not to explore the
alternative where individual rays are transferred to nodes that own
the data. We also wanted to avoid load imbalance problems that
can occur in a data parallel renderer with views that focus on a
small portion of the dataset. Focusing on small features is essential
for data exploration of the finer details captured by high resolution
data.



To fully exploit the dual processor nodes in our cluster, each
worker can run one or more independent rendering threads. The
supervisor sends task assignment messages to each worker, where
a TaskManager object maintains a queue of tasks for the rendering
threads. The TaskManager breaks each assigned task into several
smaller subtasks in order to provide work for each of the render-
ing threads. The TaskManager then adds the subtasks to the local
task queue. We solve the producer-consumer problem presented by
the producing TaskManager and the consuming render threads with
two semaphores. Task results are transferred from the workers to
the supervisor with sendmsg() and recvmsg() system calls. With
these calls, multiple tiles can be sent, and all scan lines within a
tile can be received with a single trap to the operating system. The
communication between the supervisor and a rendering worker is
illustrated in Figure 2.
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Figure 2: Task Assignment. Each worker divides large incoming
tasks into smaller subtasks and maintains a backlog of work for one
or more render threads.

Within a node, threads communicate over shared memory. Be-
tween nodes, we use a lightweight network layer built on top
of TCP. The network layer is designed to separate computational
threads from message handling responsibilities. An independent
communication thread asynchronously handles incoming network
traffic. The communicator thread spends most of its time in a se-
lect() system call, watching a set of socket connections to the rest
of the nodes. When a socket becomes active, the communicator
thread wakes and reads a 4 byte header. The header identifies a par-
ticular registered message handling function that can read and pro-
cess the rest of the message. To ensure thread safety, all outgoing
messages are sent through the communicator’s send method, which
uses a mutex to prevent threads from polluting each others’ output
streams. Figure 3 shows a high level view of a generic program
that uses our network library on four nodes. The first node has T
computation threads and M registered message handling functions.

We have found that it is faster for the workers to obtain data
over the network than it is to have them demand page data from
the local filesystem. Therefore, the worker nodes use software
distributed shared memory to process volumes that are too large
to be replicated. Distributed shared memory is implemented in a
C++ object called a DataServer. The DataServer consists of two
allocated memory regions and a method that can handle block re-
quest and block reply messages. In this application, each block is
a bricked cube within the data set. We use a fixed distributed own-
ership scheme where each node in the cluster owns 1/(#o f nodes)
of the blocks. Each node places the blocks that it owns in the resi-
dent set region. The DataServer caches remote owned blocks in the
local cache region.

When a ray touches a brick, it must acquire that brick from the
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Figure 3: Asynchronous Message Handling. A communicator
thread relieves computational threads from message handling duty.
The communicator’s send method ensures thread safety.

DataServer. On an acquire, the DataServer checks if the brick is
present locally, obtains it over the network from the responsible
node if not, and then returns the address of the brick in local mem-
ory to the requesting thread. Once the thread finishes using the
brick, it must release the brick so that the DataServer can reuse that
cache space. The DataServer protects each brick with a counting
semaphore to allow multiple render threads to share a brick, while
guaranteeing that the brick stays loaded between each acquire and
release. A generic three node program, with two application threads
per node, using our distributed shared memory is illustrated in fig-
ure 4.
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Figure 4: Distributed Shared Memory Architecture. Each node
stores its own data in the resident set and places remote owned data
in the local cache.

The ray tracer uses a hierarchical grid acceleration structure and
three level bricking (three-dimensional tiling) for volumes, as dis-
cussed in further detail in [Parker et al. 1999b] and [Parker et al.
1998]. Both structures are created offline with a separate prepro-
cessing program. The offline program takes 40 minutes to brick



and create the acceleration structure for the 7.5 GB volume studied
in this paper. The bricked data file is the same size as the raw data
file, and the acceleration structure file is 8.5 MB.

Each level of the hierarchical grid acceleration structure is a grid
of “macrocells” that list the minimum and maximum data values
from the cells contained in the lower levels of the hierarchy. At
the bottom level, each macrocell represents approximately 83 vox-
els. At the top level a single macrocell contains the minimum and
maximum values for the entire volume. Rays traverse the hierar-
chy first, using an incremental grid walking algorithm at each level.
When a macrocell is found that may contain an intersection, the ray
recursively examines the contained cells in the next lower level in
the hierarchy. By examining the macrocells in this way, the ray is
able to to skip large sections of the volume, significantly reducing
the number of accesses to the data bricks.

When a ray descends to the bottom level of the acceleration
structure, data bricking makes access speed independent of ray ori-
entation, and lets the ray tracer utilize the hardware memory archi-
tecture more efficiently. The first level of bricking bricks the data
onto 64 byte cache lines, the second bricks the data onto 4 KB vir-
tual memory pages. A third level of bricking increases the data
granularity for better bandwidth utilization. These largest bricks
are the unit of sharing with distributed data, i.e. each entry in the
DataServer holds one brick. The effect of varying the granularity is
examined in Section 5.

To use the DataServer, the ray tracing engine has to map data
indices to brick numbers and offsets within bricks. We separate
equations 1 and 2, which together describe the location of a data
value in bricked memory, into expressions of x, y, and z, and tab-
ulate during preprocessing. This reduces the need for expensive
divide and mod operations during run time. Here Ny and Nz are the
data y and z dimensions, n is the third root of the number of data
elements per level one brick, and m and o are the same measures
for level 2 and level 3 bricks, respectively.

brick =

(x÷n÷m÷o)(Nz ÷n÷m÷o)(Ny ÷n÷m÷o)+

(y÷n÷m÷o)(Nz ÷n÷m÷o)

(z÷n÷m÷o)

(1)

offset =

(x÷n÷m mod o)n3m3o2 +

(x÷n mod m)n3m2 +

(x mod n)n2 +

(y÷n÷m mod o)n3m3o+

(y÷n mod m)n3m+

(y mod n)n+

(z÷n÷m mod o)n3m3 +

(z÷n mod m)n3 +

(z mod n)

(2)

Because access to the distributed shared memory is slow com-
pared to normal memory access, we need to reduce the number of
accesses further to achieve interactivity. To do so, we consolidate
accesses to data at the bottom level of the acceleration structure.
That is, rather than perform an acquire to obtain each data value,
we acquire a brick and then obtain all of the needed values in-
side. When a ray enters a bottom level macrocell, it performs a
pretraversal to make a list of required bricks. The ray then acquires
each touched brick in turn, copying out all intersected voxels before

moving on to the next brick. Figure 5 illustrates a 2D example. The
ray first determines that it needs the data within the green macro-
cell. Inside the macrocell, it performs one acquire on brick 3 to get
all of the yellow voxels, and then performs one acquire on brick 4
to get all of the red voxels. The naive approach would acquire 32
times, getting each voxel corner in turn, and take nearly 32 times as
long.

Brick 1 Brick 2

Brick 3 Brick 4

Macrocell
Ray

Figure 5: Consolidating Access to Shared Memory. Because dis-
tributed shared memory is slow, it pays to reduce the number of
accesses. By examining the ray segment in the bottom level macro-
cell, we get all voxels touched inside a brick with one acquire.

Figure 6 shows diagnostic views of one time step from the
Richtmyer-Meshkov data set. The top view shows the whole vol-
ume and the other, a small portion of the volume. Render times
for each view are between one and two frames per second on 32
nodes. 16x16 pixel image tiles are shown with varied brightness,
and 32 KB data bricks are shown with varied hue.

4 Scaling

Network communication prevents perfect scaling on the cluster,
even when the data set is small enough to be completely replicated
on all of the nodes. The is a consequence of our choice of using a
central executive, which was taken to simplify the control logic and
is a legacy inherited from the earlier *-Ray architecture. Although
the ray tracing computation time is scalable by the number of pro-
cessors, the renderer can run no faster than a single supervisor can
assign and obtain pixel tasks. At interactive rates, this is the even-
tual bottleneck, although the scene complexity is often such that
it takes many processors to reach it. It should be noted that *-Ray
does not suffer from this limitation because the SGI interconnection
architecture is higher performing.

The tile transfer time is a function of the network latency, the
number of tiles in the image, and, to a lesser extent, the network
bandwidth. We have measured the effective per task round trip net-
work latency, accounting for asynchronous queuing, to be 19 µs,
and the network bandwidth to be 636 Mbit/s. With 16x16 tiles in a
512x512 image, we have a maximum frame rate of 34.6 frames per
second. With 8x8 tiles, we are limited to 11.5 frames per second.
The effect of latency can be reduced with static assignment, larger
tiles, and larger tasks containing more tiles. Static assignment elim-
inates all assignment messages from the supervisor to the workers,
reducing the pixel transfer time to nearly half. However, these three
tactics make the program more susceptible to load imbalance.

With distributed data, tile transfer time is still the ultimate scal-
ing limitation, but slower data access slows the system down and
makes it much harder to reach the maximum frame rate. Distributed
memory rendering can exhibit super-linear scaling when the work-



Figure 6: Diagnostic Views of the Richtmyer-Meshkov Data Show-
ing Work and Data Subdivision. Image tasks are shown with varied
brightness, data ownership is shown with varied hue.

ing set is large. With an 8 GB data set, it takes 8 cluster nodes
to render the data, unless we take the performance hit of memory
mapping from disk. With more nodes, we can divide the data into
smaller pieces, leaving more space for the local caches. This allows
more of the working set to be cached, increasing the hit rate and the
frame rate. With enough nodes to cache the working set, scaling
returns to linearity. In this situation, the system is compute bound,
and the largest component of the compute time is the hit time to
cached bricks. The hit time is significant because the DataServer
has to locate and verify the contents of every brick touched by the
ray. In contrast, replicated data access only needs to dereference
a pointer. For this reason, we observe distributed data frame rates
that are roughly 40 % of their replicated data counterparts.

Figure 7 shows the measured frame rates for both *-Ray and the

new system on the 428 MB torso section of the visible female data
set. The test measures the average frame rate over 100 static frames
of the view shown in Figure 8. *-Ray runs on a 32 processor Origin
3000. Each processor is a 400 MHz MIPS R12K, and the entire
machine has 16 GB of RAM. All processors are connected with
ccNUMA technology, a hypercube network that yields 600 ns worst
case latency and a link bandwidth of 1.6 GB per second between
compute and memory elements.

Two points need to be made about the graph. First, we use half
as many processors for the SGI test. With one processor per node,
the cluster tests run at half the listed rates. Second, the graph does
not show that *-Ray continues to scale to at least 1024 processors.
*-Ray scales higher because pixel task scatter and gather opera-
tions are essentially free. As explained above, the cluster frame
rate eventually reaches a limit determined by the number of tasks
in the image.
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Figure 7: Scaling on the Visible Female Torso. Note, the cluster
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Figure 8: Tested View of the Visible Female Torso.

5 Results

We have used our system to interactively visualize isosurfaces of
time steps from a Richtmyer-Meshkov instability computation from



the Lawrence Livermore National Laboratory. Each time step is a
1920x2048x2048 scalar volume composed of 8 bit data values (un-
signed chars). We perform several experiments on this data set to
examine the performance of the renderer and to find parameters
that yield the best interactivity. Our system relies on caching, so we
obtain good results by decreasing the number of data accesses, in-
creasing the hit rate, and decreasing the hit time and miss penalties.

All experiments benchmark the frame rate over a recorded inter-
active session in which the viewer inspects the volume by chang-
ing the view point and isovalue selection. Figure 9 shows changes
in viewpoint and isovalue selection throughout the session, and
presents image snapshots of key frames. At frame 44, and from
frame 95 to 107 the isovalue is changed. The sudden change at
frame 44 causes all caches to be filled at once. From frame 161 to
233, the view point is rotated around the volume. From frame 286
to 344 the view zooms in on a small portion of the volume. From
frame 414 to 434 and at frame 460, the isosurface is again changed.
From frame 500 to 555, the view point pans over the volume.
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Figure 9: Interactive Testing Session. We benchmark a recorded
interaction with isovalue and view exploration. The first half of the
test has the entire volume in view to explore the general shape of
the data. The last half zooms in to explore fine detail.

Each experiment uses 31 worker nodes and two render threads
per worker. Unless otherwise noted, all tests render time step 270,
which requires the most data and is the slowest to render. We use
Lambertian surfaces and do not calculate shadows for these ex-
periments. All images are generated at 512x512 resolution, using
16x16 pixel tiles. Larger images are preferable of course, especially
considering the resolution of the data and the point sampling nature
of the algorithm. Images at 1024x1024 resolution have been tested
to run at one quarter of the presented rates.

The first experiment demonstrates how consolidation improves
performance by reducing the number of accesses to the data. This is
the most important technique in achieving interactive rates. Table 2
shows the average number of accesses per worker per frame and
the average frame rate using three access patterns. In the Access 1
row, the renderer acquires and releases one voxel corner at a time.
In the Access 8 row, the renderer acquires and releases the bricks

touched by the 8 corners of a voxel in turn, usually retrieving all
eight values in one access. In the Access Many row, the renderer
lists all bricks touched by the ray segment inside a bottom level
macrocell, and then acquires and releases each brick in turn, usually
obtaining more than eight values with each access. In each case,
the frame rate increase is inversely proportional to the decrease in
the number of accesses, minus the overhead of the brick sorting
algorithm.

Pattern Accesses Frame Rate
[f/s]

Access 1 3279000 .1149
Access 8 453400 .7090

Access Many 53290 1.686

Table 2: Consolidation. Reducing access to distributed shared
memory increases the frame rate substantially.

The second experiment analyzes the effect of associative
caching. Associativity increases the hit rate by providing alternative
placements for each fetched brick. It also increases the hit time, be-
cause all locations must be checked for the presence of a brick and
timestamps must be kept. Table 3 shows the measured hit rate, hit
time, and frame rate for direct mapped and 4, 8, 12, and 16 way as-
sociative caches. We find that for this data set, the working set fits
within the cache and thrashing is not a problem. In this situation, a
direct mapped cache is more effective than an associative one. On
machines with less RAM per node, thrashing is more of a problem,
and we have found that associativity will improve the frame rate.

Assoc Hit Rate T Hit Frame Rate
[%] [µs] [f/s]

Direct mapped 99.48 6.857 1.686
4 99.60 11.55 1.521
8 99.63 13.17 1.443

12 99.63 14.01 1.361
16 99.65 15.48 1.286

Table 3: Associativity. Although associative caching increases the
hit rate, the extra overhead negates the benefit.

The third experiment analyzes the effect of varying the level 3
brick size. Larger bricks increase the hit rate because once a value
is accessed, nearby values are more likely to be found in the same
large brick. Larger bricks also increase the miss penalty by length-
ening the wire time and increasing competition for access to block
serving nodes. Table 4 shows the measured hit rate and miss penal-
ties as the level three brick size is increased. For this data set, a
32 KB level three block size is the best trade-off, but the algorithm
is relatively insensitive to smaller block sizes.

Brick Hit Rate T Miss Frame Rate
[KB] [%] [µs] [f/s]

4 98.72 587.0 1.607
32 99.48 1411 1.686

108 99.64 3972 1.309

Table 4: Data Granularity. Large bricks are reused more often, but
take longer to transfer.

The fourth experiment analyzes how the system reacts as the
complexity of the data is increased. Because the CFD data set is
a simulation of the progression of turbulence, each time step has a
progressively more complex isosurface at any given isovalue. Ren-
dering time step 0 is trivial because the isosurfaces are close to pla-
nar. Time step 270 is far from trivial, with very turbulent surfaces at



all isovalues. The more disordered the data, the greater the number
of accesses, and the larger the working set. Large working sets de-
crease the hit rate. Table 5 shows the number accesses per worker
per frame, the hit rate, and the frame rate for seven time steps.

Time Step Accesses Hit Rate Frame Rate
[%] [f/s]

0 22200 99.94 6.691
45 31270 99.83 4.224
90 38160 99.77 3.352

135 41940 99.68 2.759
180 51760 99.61 2.095
225 56090 99.56 1.784
270 53580 99.48 1.686

Table 5: Data Complexity. Complex isosurfaces stress the cache
more and take longer to render.

The next experiment examines the use of static scheduling. With
dynamic scheduling, the tile assignments change frequently and
each worker must render most of the image over time. With static
scheduling, each worker renders the same set of tiles repeatedly.
Data coherence is better in this situation because each worker con-
stantly accesses the same small portion of the data. The trade-off
is that there is little load balancing with static assignment; only
render threads on the same node are able to cooperate to render dif-
ficult portions of the image. Table 6 shows the measured hit rate
and frame rate with static assignment. For the first time steps, the
data coherence gains do not outweigh the load imbalance penalties.
For the very complex time steps, the trade-off is more worthwhile
because the memory utilization is much greater.

Time Step Hit Rate Frame Rate
[%] [f/s]

0 99.95 4.877
45 99.92 3.683
90 99.92 3.161

135 99.90 2.659
180 99.89 2.244
235 99.88 2.101
270 99.84 2.088

Table 6: Static Assignment. Static task assignment increases load
imbalance, but allows exploitation of frame to frame coherence.

The frame rate of the renderer is inversely related to the amount
of data that needs to be obtained by the render threads. The rela-
tionship can be observed by using the detailed diagnostics built into
our network library to measure the frame rate and the data traffic.
Figure 10 shows the recorded data traffic and frame rate over a ses-
sion using one render thread per node. The bottom panel reproduces
the isovalue and view point behavior. In the frame rate panel, the
first graph shows the frame rate when the traffic is allowed to sta-
bilize. This was recorded in a longer session in which every frame
is repeated twenty times and then the graph was scaled horizontally
to overlay the others. This plot demonstrates the rendering speed
assuming a perfect cache.

During the first half of the test, the entire volume is in view
and the performance is highly dependent upon the caching behav-
ior. Here, every change in view point or isosurface causes the data
traffic to spike and then decay. Meanwhile, the frame rate drops
and then gradually increases. It takes roughly fifty frames to reach
steady state. In the second half of the test, the view is zoomed in.
All workers are easily able to cache visible data, and the frame rate
is limited only by the rendering engine.
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Figure 10: Data Traffic and Frame Rate. The frame rate depends
upon how fully the caches are loaded.

Finally, we compare the performance of the distributed renderer
with *-Ray. On the cluster, we select the parameters that were found
to yield the highest interactivity: macrocell consolidated access to
blocks, direct mapped caching, and 32 KB blocks. Although static
assignment is faster on this data set, we use dynamic tile assignment
on both machines and hold all additional render settings constant.
Figure 11 shows the recorded frame rates on the cluster with one
and two threads per node and on the SGI. In the first half of the test,
with the entire volume in view, the cluster implementation struggles
to keep the caches loaded, and consistently pays the miss penalty.
When the viewpoint is zoomed in on a small portion of the data, the
frame rate is compute bound and the cluster version closely follows
*-Ray. The average frame rates over the session are 1.075, 1.686,
and 4.689 frames per second for the one thread, two thread and
supercomputer tests, respectively. With equal number of processors
then the cluster is roughly one quarter the speed of the SGI, and with
two processors per node, the cluster is roughly one third the speed.
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Figure 11: Cluster versus Supercomputer. The performance is com-
parable even with the large data set, especially when viewing fine
detail.



6 Conclusions

We have found that it is possible to interactively render isosurfaces
of very large volumes with low cost cluster technology. By making
the entire memory space available, we are able to render volumes
of up to 32 GB, and do so interactively as long as the working set is
small enough to be cached locally. Because of serial performance
differences, and because the interconnection network in a switch-
based cluster is lower performing than the dedicated network in an
advanced shared memory supercomputer, the new distributed ren-
derer is less interactive than its predecessor *-Ray. By utilizing
TCP sockets rather than a higher level message passing library, and
by allowing asynchronous message handling in a multi-threaded ap-
plication, we have been able to reduce the communication penalty.
By taking care to minimize access to distributed shared memory,
to increase the hit rate, and to minimize distributed cache access
times, we are able to interactively render volumes that are too large
to be replicated. With these optimizations, the new renderer is com-
parable to (although slightly slower than) the original with equal
numbers of processors, and represents a significant price win.

7 Future Work

Although not demonstrated here, we obtain similar frame rates for
maximum intensity projections as with isosurfaces. We are in the
process of studying further optimization of time varying data sets,
which are currently handled by creating separate DataServers for
each time slice. The next research direction will be to add direct
volume rendering to our ray tracer. Volume rendering will increase
both the amount of processing on and the number of accesses to
the data. Eventually, we plan to extend our system to distribute
large polygonal data sets as well, by moving the surface data and
the acceleration structure into the distributed shared memory space.
These issues will need to be considered carefully in order to main-
tain a high degree of interactivity.

As we increase the realism of our images by tracing more rays,
we will need to consider the computational expense of these addi-
tional operations. We hope to exploit the simultaneous multithread-
ing and instruction-level parallelism provided by the Intel Xeon
processors of our cluster to accelerate the computational phase of
ray tracing. Furthermore, the data access penalties incurred by trac-
ing additional primary and secondary rays must also be addressed,
possibly with latency hiding techniques and higher performing net-
work technologies.

Serial performance of the system could also be improved through
tuning for the Pentium architecture and possibly through using dif-
ferent compilers. The overhead associated with maintaining the
cache could be eliminated by moving to a page-based distributed
shared memory architecture in which the virtual memory hardware
takes over some of the responsibility [Li 1988]. However, this ap-
proach would be limited to 4 gigabyte datasets until 64 bit proces-
sors are more readily available in commodity clusters.
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