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Abstract Regression analysis is a powerful tool for the study of changes in a depen-

dent variable as a function of an independent regressor variable, and in particular it

is applicable to the study of anatomical growth and shape change. When the under-

lying process can be modeled by parameters in a Euclidean space, classical regression

techniques [15,38] are applicable and have been studied extensively. However, recent

work suggests that attempts to describe anatomical shapes using flat Euclidean spaces

undermines our ability to represent natural biological variability [10,12].

In this paper we develop a method for regression analysis of general, manifold-

valued data. Specifically, we extend Nadaraya-Watson kernel regression by recasting

the regression problem in terms of Fréchet expectation. Although this method is quite

general, our driving problem is the study anatomical shape change as a function of age

from random design image data.

We demonstrate our method by analyzing shape change in the brain from a random

design dataset of MR images of 97 healthy adults ranging in age from 20 to 79 years. To

study the small scale changes in anatomy, we use the infinite dimensional manifold of

diffeomorphic transformations, with an associated metric. We regress a representative

anatomical shape, as a function of age, from this population.
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1 Introduction

An important area of medical image analysis is the development of methods for auto-

mated and computer-assisted assessment of anatomical change over time. For example,

the analysis of structural brain change over time is important for understanding healthy

aging. These methods also provide markers for understanding disease progression.

A number of longitudinal growth models have been developed to provide this type

of analysis to time-series imagery of a single subject (e.g., [2,8,28,36]). While these

methods provide important results, their use is limited by their reliance on longitudinal

data, which can be impractical to obtain for many medical studies. Also, while these

methods allow for the study of an individual’s anatomy over time, they do not apply

when the average growth for a population is of interest.

Random design data sets, which contain anatomical data from many different in-

dividuals, provide a rich environment for addressing these problems. However, in order

to detect time-related trends in such data, two distinct aspects of anatomical variation

must be separated: individual variation and time effect. For measurements that nat-

urally form Euclidean vector spaces, this separation can be achieved by regressing a

representative value over time from the data.

For example, in Figure 1 we apply kernel regression to measurements reported in a

study by Mortamet et al. [32] on the effect of aging on gray matter and ventricle volume

in the brain. The regression curves demonstrate the average volume, as a function of

patient age, of these structures. These trends—on average there is a loss of gray matter

and expansion of the ventricles—have been widely reported in the medical literature

on aging [13,27,32]. While volume-based regression analysis is important, it does not

provide any information about the detailed shape changes that occur in the brain, on

average, as a function of age. This has motivated us to study regression of shapes.

Recent work has suggested that representing the geometry of shapes in flat Eu-

clidean vector spaces limits our ability to represent natural variability in popula-

tions [10,12,28]. For example, Figure 2 demonstrates the amazing non-linear variability

in brain shape among a population of healthy adults. The analysis of transformation

groups that describe shape change are essential to understanding this shape variabil-

ity. These groups vary in dimensionality from simple rigid rotations to the infinite-

dimensional group of diffeomorphisms [30]. These groups are not generally vector spaces

and are instead naturally represented as manifolds.

A number of authors have contributed to the field of statistical analysis on manifolds

(see Pennec [34] for a more detailed history). Early work on manifold statistics includes

directional statistics [6,19] and statistics of point set shape spaces [22,23]. The large

sample properties of sample means on manifolds are developed in [4,5]. Jupp and Kent

[20] describe a method of regression of spherical data that ‘unwraps’ the data onto

a tangent plane, where standard curve fitting methods can be applied. In [10,17,34],

statistical concepts such as averaging and principal components analysis were extended

to manifolds representing anatomical shape variability. Many of the ideas are based on

the method of averaging in metric spaces proposed by Fréchet [11].

In this paper we use the notion of Fréchet expectation to generalize regression to

manifold-valued data. We use this method to study spatio-temporal anatomical shape

change in a random design database consisting of three-dimensional MR images of

healthy adults. Our method generalizes Nadaraya-Watson kernel regression in order to

compute representative images of this population over time. To determine the shape
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Fig. 1 Illustration of univariate kernel regression: the effect of aging on gray matter
(a) and ventricle volume (b) in the brain. Circles represent volume measurements relative to
total brain volume. Kernel regression is used to estimate the relationship between patient age
and structure volume (filled lines).

Fig. 2 Brain image database. To demonstrate the extent of natural brain shape variability
within a population of healthy subjects, a mid-axial slice is presented for a sample of images
used in this study. The images are arranged in order of increasing patient age from 30 (top left)
to 60 (bottom right). Because of the complexity of the shapes and the high level of natural
shape variability, it is extremely difficult to visually discern any patterns within these data.

change in the population over time, we apply a diffeomorphic growth model [28] to this

time-indexed population representative image.

2 Methods

2.1 Review of univariate kernel regression

Univariate kernel regression [15,38] is a non-parametric method used to estimate the

relationship, on average, between an independent random variable T and a dependent

random variable Y . The estimation is based on a set of observations {ti, yi}Ni=1 drawn

from the joint distribution of T and Y . This relationship between T and Y can be

modeled as yi = m(ti) + εi, where εi describes the random error of the model for the

ith observation and m is the unknown function that is to be estimated.
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In this setting, m(t) is defined by the conditional expectation

m(t) ≡ E(Y |T = t) =

Z
y
f(t, y)

fT (t)
dy (1)

where fT (t) is the marginal density of T and f(t, y) is the joint density function of T

and Y . For random design data, both f(t, y) and fT (t) are unknown and so m has no

closed-form solution. A number of estimators for m have been proposed in the kernel

regression literature.

One such estimator—the Nadaraya-Watson kernel regression estimator [33,39]—

can be derived from (1) by replacing the unknown densities with their kernel density

estimates

f̂hT (t) ≡ 1

N

NX
i=1

Kh(t− ti) and f̂h,g(t, y) ≡ 1

N

NX
i=1

Kh(t− ti)Kg(y − yi). (2)

In these equations, K is a function that satisfies
R

R K(t) dt = 1. Kh(t) ≡ 1
hK( th ) and

Kg(t) ≡ 1
gK( tg ) are kernel functions with bandwidths h and g respectively.

Plugging these density estimates into equation 1 gives

m̂h,g(t) =

Z
y

1
N

PN
i=1Kh(t− ti)Kg(y − yi)
1
N

PN
i=1Kh(t− ti)

dy. (3)

Finally, assuming that K is symmetric about the origin, integration of the numerator

leads to

m̂h(t) =

PN
i=1Kh(t− ti)yiPN
i=1Kh(t− ti)

. (4)

Intuitively, the Nadaraya-Watson estimator returns the weighted average of the

observations yi, with the weighting determined by the kernel. Note that f̂h,g(t, y) is

factored out of the estimator—the weights only depend on the values ti.

In Figure 1 we illustrate univariate kernel regression by applying it to demon-

strate the effect of aging on ventricle volume and gray matter volume in the brain.

This illustration is based on data collected by Mortamet et al. [32]. Each point repre-

sents a volume measurement, relative to total brain volume, for a particular patient.

These measurements were derived from 3D MR images of 50 healthy adults ranging in

age from 20 to 72 using an expectation-maximization based automatic segmentation

method [24]. We used kernel regression to estimate the relationship, on average, be-

tween volume and patient age (filled lines). A Nadaraya-Watson kernel estimator with

a Gaussian kernel of width σ = 6 years was used.

2.2 Kernel regression on Riemannian manifolds

In this section we consider the regression problem in the more general setting of

manifold-valued observations. Let {ti, pi}Ni=1 be a collection of observations where the

ti are drawn from a univariate random variable T , but where pi are points on a Rie-

mannian manifoldM. The classical kernel regression methods presented in Section 2.1

are not applicable in this setting because they rely on the vector space structure of the

observations. In particular, the addition operator in (4) is not well defined.
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The goal is to determine the relationship, on average, between the independent

variable T and the distribution of the points {pi} on the manifold. This relationship

can be modeled by

pi = Expm(ti)(εi) (5)

where m : R → M defines a curve on M. The error term εi ∈ Tm(ti)M is a tangent

vector that is interpreted as the displacement along the manifold of each observation

pi from the curve m(t). The exponential mapping, Exp, returns the point on M at

time one along the geodesic flow beginning at m(ti) with initial velocity εi.

Following the univariate case, we define the regression function m(t) in terms of

expectation. However, in this case we generalize the idea of expectation of real random

variables to manifold-valued random variables via Fréchet expectation [11,21]. Let

f(p), p ∈ M be a probability density on the manifold. The Fréchet expectation is

defined as

Ef [p] ≡ argmin
q∈M

Z
M
d(q, p)2f(p)dp (6)

where d(q,m) is the metric on the manifold M. This definition is motivated by a

minimum variance characterization of the mean, where variance is defined in terms of

the metric. Note that Fréchet expectation might not be unique [21]. Using the above

definition, an empirical estimate of the Fréchet mean, given a collection of observations

{pi, i = 1 · · ·N} on a manifold M, is defined by

µ = argmin
q∈M

1

N

NX
i

d(q, pi)
2. (7)

Motivated by the definition of the Nadaraya-Watson estimator as a weighted av-

eraging, we define a manifold kernel regression estimator using the weighted Fréchet

empirical mean estimator as

m̂h(t) = argmin
q∈M

 PN
i=1Kh(t− ti)d(q, pi)

2PN
i=1Kh(t− ti)

!
. (8)

This estimator is illustrated in Figure 3. Notice that when the manifold under study

is a Euclidean vector space, equipped with the standard Euclidean norm, the above

minimization results in the Nadaraya-Watson estimator.

2.3 Bandwidth selection

It is well known within the kernel regression literature that kernel width plays a cru-

cial role in determining regression results [38]. In particular, it is important to select a

bandwidth that captures relevant population-wide changes without either oversmooth-

ing and missing relevant changes or undersmoothing and biasing the results based on

individual noisy data points. The ‘Goldie Locks’ method of tuning the bandwidth until

the results are most pleasing is a common subjective method for bandwidth selection.

However, non-subjective methods may be required, for example, when kernel regression

is part of a larger statistical study. A number of automatic kernel bandwidth selection

techniques have been proposed for this purpose [38,16,25].
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Fig. 3 Manifold kernel regression schematic. (a) For any value of the predictor variable
t, the manifold-valued observations pi are summarized by the weighted Fréchet mean point
m̂h(t). (b) As in the univariate case, the weights are determined by the predictor values ti
and the kernel Kh.

One classic method for automatic bandwidth selection is based on least squares

cross-validation. This method is easily extended to the manifold regression setting in

the following way. For observations {ti, pi}Ni=1, with ti ∈ R and pi ∈ M, the least

squares cross-validation estimate for the optimal bandwidth h is defined as

ĥLSCV ≡ argmin
h∈R+

1

N

NX
i=1

d(m̂i−
h (ti), pi)

2 (9)

where

m̂i−
h (t) ≡ argmin

q∈M

 PN
j=1,j 6=iKh(t− tj)d(q, pj)

2PN
j=1,j 6=iKh(t− tj)

!
(10)

is the manifold kernel regression estimator with the i-th observation left out.

It is important to note that equation 9 may achieve multiple local minima; this is

true even in Euclidean space [14].

2.4 Regression of rotational pose (SO(3))

Before we present results of the study of brain growth, we exemplify the methodology

in detail on the finite-dimensional Lie group of 3D rotations, SO(3).

Following the approach in [7], we solve the weighted averaging problem in (8) by a

gradient descent algorithm. The tangent space of SO(3) at the identity is the Lie algebra

of 3 × 3 skew-symmetric matrices, denoted so(3). We equip SO(3) with the standard

bi-invariant metric, given by the Frobenius inner product on so(3). The tangent space

at an arbitrary rotation R ∈ SO(3) is given by either left or right multiplication of

so(3) by R.

The Lie group exponential map and its inverse, the log map, are used to compute

geodesics and distances. The exponential map for a tangent vector X ∈ so(3) is given
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by

exp(X) =

8<:I, θ = 0,

I +
sin θ

θ
X +

1− cos θ

θ2
X2, θ ∈ (0, π),

(11)

where θ =
q

1
2 tr(XTX). A geodesic γ(t) starting at a point R ∈ SO(3) with initial

velocity RX is given by γ(t) = R exp(tX). The Lie group log map for a rotation matrix

R ∈ SO(3) is given by

log(R) =

8<:I, θ = 0,
θ

2 sin θ
(R−RT ), |θ| ∈ (0, π),

(12)

where tr(R) = 2 cos θ+ 1. The distance between two rotations R1, R2 ∈ SO(3) is given

by d(R1, R2) = ‖ log(R−1
1 R2)‖.

Now consider the weighted averaging problem with rotation data Ri ∈ SO(3) and

corresponding weights wi = Kh(t−ti)/
PN
j=1Kh(t−tj). The regression problem in (8)

minimizes the weighted sum-of-squared distance function of the form f(R, {Ri, wi}) =P
i wid(R,Ri)

2. The gradient for this function at a point R ∈ SO(3) is given by∇Rf =

−
P
i wiR log(R−1Ri). Therefore, given the estimate R̂k for the weighted average, the

gradient descent update to solve (8) is given by R̂k+1 = R̂ exp(−R−1∇
R̂k
f).

2.5 Kernel regression for populations of brain images

In this section we apply our shape regression methodology to study the effect of aging

on brain shape from random design image data. We have observations of the form

{ti, Ii}Ni=1 where ti is the age of patient i and Ii is a three-dimensional image that we

identify with the anatomical configuration of patient i. We seek the unknown function

m that associates a representative anatomical configuration, and its associated image

Î, with each age.

Let Ω ⊂ R3 be the underlying coordinate system of the observed images Ii. Each

image I ∈ I can be formally defined as an L2 function from Ω to the reals. However,

it is important to point out that we cannot rely on the natural L2 structure of the

images themselves for our analysis. While images can be added voxel-wise, the result

is a loss of any identification with the anatomical configuration.

Instead, we represent anatomical differences in terms of transformations of the

underlying image coordinates. This approach is common within the shape analysis

literature [12,29]. Because we are interested in capturing the large, natural geometric

variability evident in the brain (cf. Figure 2), we represent shape change as the action

of the group of diffeomorphisms, denoted by H. In the rest of this section, we formalize

this notion and define a distance between shapes that is valid in this setting and will

allow us to apply our regression methodology.

Let H be the group of diffeomorphisms that are isotopic to the identity. Each

element φ : Ω → Ω in H deforms an image according to the following rule

Iφ(x) = I(φ−1(x)). (13)

We apply the theory of large deformation diffeomorphisms [1,9,18,30] to generate

deformations φ that are solutions to the Lagrangian ODEs d
dsφs(x) = vs(φs(x)) for a
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simulated time parameter s ∈ [0, 1]. The transformations are generated by integrating

the time-varying velocity fields vs forward in time.

We introduce a metric on H using a Sobelev norm via a partial differential oper-

ator A applied to v where ‖vs‖2V ≡
R
Ω < Avs, vs > dx. Let e ∈ H be the identity

transformation. We define the squared metric dH(e, φ)2 as

dH(e, φ)2 = min
v:φ̇s=vs(φs)

Z 1

0
‖vs‖2V ds (14)

subject to

φ(x) = x+

Z 1

0
vs(φs(x)) ds for all x ∈ Ω. (15)

The distance between any two diffeomorphisms is defined by

dH(φ1, φ2)2 = dH(e, φ−1
1 ◦ φ2)2. (16)

This distance satisfies all of the properties of a metric: it is non-negative, symmetric,

and satisfies the triangle inequality[31].

Using this metric on H, we can define the distance between two images as

dI (I1, I2)2 ≡ min
v:φ̇s=vs(φs)

"Z 1

0
‖vs‖2V ds+

1

σ2
‖I1(φ−1)− I2‖2L2

#
(17)

where the second term accounts for the noise model of the image [17]. While this

construction is motivated by the metric on H, it does not strictly define a Riemannian

metric on the space of anatomical images (because of the second term). In the future

we plan to define distance in terms of the elegant construction described in [37].

Having defined a metric on the space of images that accommodates anatomical vari-

ability, we can apply that metric to regress a representative anatomical configuration,

with associated image, from our observations {ti, Ii}

Îh(t) = argmin
I∈I

 PN
i=1Kh(t− ti)dI(I, Ii)

2PN
i=1Kh(t− ti)

!
. (18)

Equation 18 expresses the following intuitive idea: For any age t, the population

can be represented by the anatomical configuration that is centrally located, according

to dI , among the observations that occur near in time to t. As in the univariate case,

the weights are determined by the kernel K.

2.6 Diffeomorphic growth model

Having regressed a population representative anatomical image, as a function of age,

we can now study the local shape changes evident—for the population—as a function

of age. We use the manifold kernel regression estimator to extend a single-subject

longitudinal growth model in order to study population-average geometric change. In

particular, we estimate the age-indexed diffeomorphism that quantifies the fine scale

anatomical shape change of the population representative Î.
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Fig. 4 Population growth model schematic. (a) The diffeomorphism gt quantifies the

geometric change of Î throughout the growth period. (b) The velocity field that is identified

with the tangent vector vt = ġt is overlaid on the underlying anatomical image Î(t). The
arrows indicate instantaneous shape change at age t. (c) This colormap identifies regions of
local expansion and contraction of the underlying anatomy at time t. Red indicates expansion;
blue indicates contraction. See text for details.

2.6.1 Single-subject growth model

The dynamic growth model described in [28] associates a single subject with a collection

of image observations Jt ∈ I, which are acquired over a period of time t ∈ [0, 1]. The

goal is to determine the diffeomorphic flow gt that deforms an exemplar image Jα
through time in such a way that it matches these image observations. In practice J0

is used as the exemplar image. This methodology has been applied, for example, to

measure growth or atrophy of structures within the brain.

The formalization of the growth problem is similar to the definition of the image

metric dI (cf. equation 17) in that it is defined as a minimization problem that seeks

to find a solution gt that requires the least amount of deformation according to the

metric dH on the space of diffeomorphisms:

argmin
v:ġt=vt(gt)

"Z 1

0
‖vt ‖2V dt+

1

σ2

Z 1

0
‖Jα(g−1

t )− Jt‖2L2 dt

#
. (19)

A primary difference between this equation and equation 17 is that in the case of the

growth model the second term is integrated over time. This enforces the requirement

that the deforming exemplar image Jα(g−1
t ) match the observed imagery Jt throughout

the growth period.

It has been shown using the calculus of variations [31] that the solution to equation

19 satisfies

Avt = − 1

2σ2
∇
“
Jα ◦ g−1

t

”Z 1

t

“
Ju(gu ◦ g−1

t )− Jα(g−1
t )

”
|D
“
gu ◦ g−1

t

”
| du (20)

where∇(Jα◦g−1
t ) is the gradient of the deformed exemplar image andD(gu◦g−1

t ) is the

Jacobian of the diffeomorphic transformation that maps the anatomical configuration

at time t to the configuration at time u. The discrete version of this equation is used

to construct an iterative solution for vt. gt is initially set to the identity map for all t.

At each iteration vt, t ∈ [0, 1] is updated according to the the observed images Jt and

the current estimate of gt, t ∈ [0, 1].
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2.6.2 Population growth model

In order to extend this growth model to apply to a population of subjects, we replace the

subject-specific collection of observed imagery Jt with the expected observed imagery,

as a function of time, for the population (cf. Figure 4). This is achieved by combining

the manifold kernel regression estimator (equation 18) with the growth model (equation

19):

argmin
v:ġt=vt(gt)

Z 1

0
‖vt ‖2V dt+

1

σ2

Z 1

0
‖Iα(g−1

t )− argmin
I∈I

 PN
i=1Kh(t− ti)dI(I, Ii)

2PN
i=1Kh(t− ti)

!
‖2L2 dt. (21)

In this way the population representative images serve as a collection of population

average time-sequence imagery.

In order to solve equation 21 we first solve the interior minimization problem for a

discrete collection of time points. This is legitimate since this problem does not depend

on the growth deformation gt. Once these population representative images are com-

puted, the time-indexed deformation gt is computed using the iterative method based

on equation 20. We use Iα ≡ Î(0) as our population exemplar image. In order to speed

convergence, we apply the growth model within a three-level multi-resolution frame-

work where initial solutions at coarser scale levels are used to initialize the optimization

procedure at finer scale levels.

Once gt is computed, it can be analyzed to determine local, age-indexed geometric

change for the population. For example, instantaneous local growth and atrophy can

be measured via the log-determinant of the Jacobian of the velocity field defined by

log

˛̨̨̨
˛̨̨̨ ∂ġ

1
t

∂x1 (x)
∂ġ1t
∂x2 (x)

∂ġ1t
∂x3 (x)

∂ġ2t
∂x1 (x)

∂ġ2t
∂x2 (x)

∂ġ2t
∂x3 (x)

∂ġ3t
∂x1 (x)

∂ġ3t
∂x2 (x)

∂ġ3t
∂x3 (x)

˛̨̨̨
˛̨̨̨ . (22)

Values of the log-Jacobian greater than zero indicate local expansion; values less than

zero indicate local contraction.

3 Results

3.1 Synthetic data experiment

Before describing the anatomical study, we present a proof of concept experiment based

on synthetic data. In this experiment, we apply our manifold regression method to a

database of synthetic 2D images that were generated from a known, underlying geo-

metric process. Or goal is to recover, from the imagery alone, the underlying geometric

change.

The database consists of two cohorts that each contain 100 256× 256 2D bulls-eye

images. The cohorts, B1 and B2, differ by the amount of random geometric variation

present. Each image is associated with a particular value of the synthetic predictor

variable t ∈ [0, 1]; the values of t for the database were drawn from a uniform random
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Fig. 5 Synthetic bulls-eye data set construction. The bulls-eye database contains 200
total 2D images; each images is associated with a value of t drawn from a uniform distribution
on [0, 1]. (a) Images are generated from three independent, noisy radius values: r1, r2, and r3.
(b) Cohort B1: each observed radius value (markers) is a function of t and is determined
by adding random noise to the ground truth functions f1, f2, and f3, which are depicted by
the solid curves. (c) The second cohort, B2, was generated using a higher level of random
geometric variation.

distribution on [0, 1]. For the i-th image there are three disks which independently

change in radii according to

r1(ti) = f1(ti) + εi + εi,1

r2(ti) = f2(ti) + εi + εi,2

r3(ti) = f3(ti) + εi + εi,3

(23)

subject to

r1(t) < r2(t) < r3(t) for all t ∈ [0, 1]. (24)

The functions f1, f2, and f3 are known; they define the noise-free, ground-truth

geometric change as a function of t. Noise is added to these radius functions via

the zero mean Gaussian random variables εi, εi,1, εi,2 and εi,3. For cohort B1, εi ∼
N(µ = 0, σ2 = 4 pixels) and εi,1, εi,2, εi,3 ∼ N(µ = 0, σ2 = 1 pixels). For cohort B2,

εi ∼ N(µ = 0, σ2 = 16 pixels) and εi,1, εi,2, εi,3 ∼ N(µ = 0, σ2 = 4 pixels). Once the

image geometries are fixed i.i.d Gaussian noise is added to the image intensities. Figure

5 contains a schematic of the image generation process. Figure 6 displays a sample of

the images from this database.

For each cohort, we applied our algorithm in order to regress a population rep-

resentative bulls-eye image for 8 equally spaced values of t. A kernel bandwidth of

σ = 0.045 was used. For this experiment, the solutions to equation 17 were computed

using MATLAB codes based on the LDDMM algorithm described in [2,3].

Figure 7 contains the results of this experiment. The regressed images are shown in

the background. The ground truth radii values, f1, f2, and f3, are depicted as colored

overlays. The close agreement with the regressed images and the overlays indicates that

the underlying geometric process was recovered from the image database—that is, the

underlying time effect was separated from the random geometric variation. Comparing

the results for the two cohorts, the regression of the geometries is rather robust to level

of the geometrical noise. Only a slight degradation in accuracy of the estimate is seen

with a four-fold increase in the radii noise variance.
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Fig. 6 Random design database of 2D bulls-eye images. These images are taken from
cohort B2. Associated time measurements increase from left to right and from top to bottom.
Inner, middle, and outer disk radii are generated by adding noise to the underlying curves
depicted in Figure 5 (b) and (c).

3.2 Regressing average change of the healthy brain from 3D MR images

To demonstrate our method for estimating cross-sectional growth, we applied the al-

gorithm to a database of 3D MR images. The database contains MRA, T1-FLASH,

T1-MPRAGE, and T2-weighted images from 97 healthy adults ranging in age from 20

to 79 [26]. For this study we only utilized the T1-FLASH images; these images were

acquired at a spatial resolution of 1mm×1mm×1mm using a 3 Tesla head-only scan-

ner. The tissue exterior to the brain was removed using a mask generated by a brain

segmentation tool described in [35]. This tool was also used for bias correction. In the

final preprocessing step, all of the images were spatially aligned to an atlas using affine

registration.

We applied our algorithm separately for males and females. We selected only pa-

tients for which T1-Flash data was available. The final size of the male cohort is 38

subjects ranging in age from 22 to 72; the final size of the female cohort is 46 subjects

ranging in age from 20 to 66. Midaxial slices for a sample of these subjects are shown

in figure 2.

We applied the manifold kernel regression estimator (18) to compute representa-

tive anatomical images for each cohort. Images were computed for ages 30 to 60 at

increments of 1 year using a Gaussian kernel with σ = 6 years. This bandwidth was

subjectively determined. Figures 8 and 9 contain slices from these representative im-

ages.

We applied the diffeomorphic growth estimation algorithm described in Section 2.6

to determine the anatomical shape change over time for each cohort. Figure 10 illus-

trates the instantaneous change in the deformation at 8 different ages. More precisely,

the figure shows the log-determinant of the Jacobian of the time-derivative of the de-

formation. In these images, red pixels indicate expansion of the underlying tissue, at

the given age, while blue pixels indicate contraction. According to these determinant
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Fig. 7 Regression results for synthetic bulls-eye database. These images show the
regression results for the bulls-eye database at 8 equally-spaced time points for cohorts B1 and
B2. Colored overlays denote the ground truth radii as determined by the underlying curves in
Figure 6 (b) and (c).

maps, expansion of the ventricles is evident for each age group. However, the expansion

is accelerated for ages 50 to 60. Note that this finding agrees well with volume-based

regression analysis from Figure 1.

3.2.1 Computational Strategy

For this study we approximate solutions to (18) using an iterative greedy algorithm that

is similar to the method described in [17]. Results were computed using a multithreaded

C++ implementation on an 8 processor (16 core) 3GHz system with approximately 64

gigabytes of RAM. Processing time averaged 116 minutes per 256×256×256 regressed

image volume.
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Fig. 8 Regressed brain images. Representative anatomical images for each cohort at ages
30 (left) and 60 (right). These images were generated from the random design 3D MR database
using the shape regression method described in Section 2.

When computing each representative image Î(x), we use a multi-resolution ap-

proach that generates images at progressively higher resolutions, where each level is

initialized by the results at the next coarsest scale. This strategy has the dual ben-

efits of (a) addressing the large scale shape changes first and (b) speeding algorithm

convergence.

The dominating computation at each iteration is a Fast Fourier Transform. The

order of the algorithm is MNn logn where M is the number of iterations, N is the

number of images, and n is the number of voxels along the largest dimension of the

images. Therefore, the complexity grows linearly with the number of observations,

making this algorithm suitable for application to large data sets.

4 Conclusion

We have proposed a method for population shape regression that enables novel analysis

of population shape and growth from random design data when the underlying shape

model is non-Euclidean. While the method is quite general, in this paper we apply this

method to study the effect of aging on the brain. We regress a population representative

shape, indexed by age, from a database of MR brain images. Finally, we apply a
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Fig. 9 The average, aging brain. These images show the average brain shape as a function
of age for the female (top) and male (bottom) cohorts. These are not images from any par-
ticular patient—they are computed using the regression method proposed in this paper (18).
Noticeable expansion of the lateral ventricles is clearly captured in both the image data and
the determinant maps (Figure 10). All 2D slices are extracted from the 3D volumes that were
used for computation.

longitudinal growth model to these representative images to study the detailed local

shape change that occurs, on average, as a function of age.
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