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ABSTRACT

This paper presents a method for large deformation exem-
plar template estimation. This method generates a repre-
sentative anatomical template from an arbitrary number of
topologically similar images using large deformation mini-
mum mean squared error image registration. The template
that we generate is the image that requires the least amount
of deformation energy to be transformed into every input
image. We show that this method is also useful for im-
age registration. In particular, it provides a means for in-
verse consistent image registration. This method is compu-
tationally practical; computation time grows linearly with
the number of input images. Template estimation results
are presented for a set of five 3D MR human brain images.

1. INTRODUCTION

Computational anatomy is the study of anatomical varia-
tion. For a set of images representing some population, a
natural problem in computational anatomy is the construc-
tion of an exemplar template—an image that serves as a rep-
resentative for the population. Such a template must repre-
sent the anatomical variation present in the images [1, 2, 3,
4].

The construction of anatomical templates is inherently
related to the construction of transformations that map one
anatomy to another. Various transformation groups have
been studied for image mapping. These groups vary in di-
mensionality from simple global translations (%) and rigid
rotations (SO(3)) to the infinite dimensional group of dif-
feomorphisms () [4].

The optimal anatomical representation is one that re-
quires the ‘minimum amount of transformation” from the
template to each of the anatomical images. For low dimen-
sional transformation groups, the Procrustes method pro-
duces such a template [5]. In the small deformation high
dimensional setting one can build a template by averaging
registration maps [1]. This averaging approach is not valid
in the large deformation diffeomorphic setting since the sum
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Fig. 1. Template Construction Framework

of diffeomorphic transformations is not guaranteed to be
a diffeomorphism. In this paper we develop a methodol-
ogy for building exemplar templates from a population of
anatomical images in the large deformation diffeomorphic
setting.

2. EXEMPLAR TEMPLATES

We consider the problem of estimating a template im-
age I that is the best representative for a population of N
anatomical images {I;}Y ;. I need not be a member of
{I;}. To this end, we consider the problem of construct-
ing a mapping between I and each image in the set {I;}.
That is, we would like to find the mappings h; : Q@ —
where Q@ C %% and Q; C R3 are the coordinate systems of
the images I and I; respectively. €2 is independent of any
of the input image coordinate systems. This framework is
depicted in Figure 1.

Given a metric on a group of transformations, we seek
the representative template image I that requires the min-
imum amount of energy to deform into every population
image I;. More precisely, given a transformation group S
with associated metric D : 8% — R, along with an image
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dissimilarity metric E(I;, Iz), we wish to find the image I
such that

N

{he, I} —argmmZE(I ohy, I)+D(e ;) (1)
hes,I

where e is the identity transformation.

In this paper we focus on the infinite dimensional group
of diffeomorphisms 7. We apply the theory of large de-
formation diffeomorphisms [6, 7] to generate deformations
h € 'H that are solutions to the Lagrangian ODEs %
v(h(z,t),t). The transformations h are generated by inte-
grating velocity fields v forward in time. Inverse transfor-
mations A, ! are generated by integrating the negative ve-
locity fields v backwards in time. The relationship between
v and o is given by v(h(x,t),t) = —0(p(y, 1 — ), 1 — ).
This relationship is shown in Figure 2. The location ¥ is
described in terms of the forward integration of the velocity
field v starting from the location x. Similarly, = can be de-
scribed in terms of integrating the negative velocity field ¢
backwards in time starting at .

We induce a metric on the space of diffeomorphisms by
using a Sobolov norm via a partial differential operator L
on the velocity fields ». Let h be a diffeomorphism iso-
topic to the identity transformation e. We define the distance
D(e, h) as

1
D(e,h):min/ /||Lv(x,t)||2d1;dt
k] 0 Q
subject to
1
h(m):/ v(h(z,1).t) dt.
0

The distance between any two diffeomorphisms is de-
fined by

D(hy,ha) = D(e, kit o hy).

This distance satisfies all of the properties of a metric
[8]. Namely it is non-negative, symmetric, and satisfies the
triangle inequality. D is trivially non-negative. Symme-
try follows from the fact that A1 is generated by integrat-
ing backwards in time the negative of the velocity field that
generates /.. Hence the minimizer of Equation 2 is the same
for both & and 2!, implying that D(e.h) = D(e,h™1).
Miller et al. [7] give a detailed discussion of [ and show
that it satisfies the triangle inequality.

3. LARGE DEFORMATION TEMPLATE
CONSTRUCTION

Having defined a metric on the space of diffeomorphisms,
the minimum energy template estimation problem (Equa-

h(z.t) =

y = h(z,1)
4(y, 0)
v(z,0)
z = ¢(y, 1)

Fig. 2. Velocity Field Integration

tion 1) is formulated as

N

{;Llf} = argminZE(Ii ohy, N+
hol 55

1
/ /||Lvi(x,t)||2 dadt
0 Q

1
subject to: h,;(x) :/ v (hi(x, L), ) dL. (2)
0

Throughout this paper we use the squared error dissimi-
larity metric but other metrics such as the Kullback-Leibler
divergence can also be used [9]. Under the squared error
dissimilarity measure the template estimation problem be-
comes

~ - N 2
(he. I} = arg}m; /Q (I (hs (2)) — I(2))

1,
+/ / | Lvs (, )| dedt. (3)
a JQ

This minimization problem can be simplified by notic-
ing that for fixed transformations h;, the I that minimizes
Equation 3 is given by

I(z) = NZI(h (x)) )

In words, I is the voxelwise arithmetic mean of the de-
formed images I; (h; (z)). Note that the method for com-
puting I from {;} is determined by the image dissimilarity
metric used. Other image dissimilarity metrics would imply
different methods for computing I

Combining Equations 3 and 4 results in

—argrjunZ/ I (h; (%)) ZI (hj (x))

+/ /||Lvi(x,t)||2 dedt.  (5)
o JQ

Note that the solution to this minimization problem is
independent of the ordering of the /N images.
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This template construction framework produces trans-
formations fzi such that fzi : 2 — ;. Since each fzi is
a diffeomorphism, its inverse i L0, — O exists and
can be calculated by integrating the negative velocity fields
backwards in time (Figure 2). Image to image correspon-
dences can be computed from these transformations using
the composition rule

Lo — ;. (6)

4. INVERSE CONSISTENT IMAGE
REGISTRATION

When the template construction framework presented in the
previous section is applied to two images the result is an
inverse consistent image registration algorithm.

A registration framework is inverse consistent if image
ordering does not affect the registration result. Many image
registration algorithms are not inverse consistent because
their image dissimilarity metrics are computed in the co-
ordinate system of one of the images being registered. The
choice of such a reference image can bias the result of the
registration. Inverse consistent registration is desired when
there is no a priori reason to choose one image over an-
other as a reference image. Previous work (e.g. [10]) has in-
troduced methods for computing approximate inverse con-
sistent registrations by applying inverse consistency con-
straints on intermediate incremental transformations. The
framework presented here leads to an inherently inverse con-
sistent image registration—no correction penalty for consis-
tency is required.

For two images I; and I, Equation 5 reduces to

{h1 hg} = argmm / (I (hq (x)) — Iz (ha (’[J)))

+/ /||Lv1(:1;,t)||2 dedt
0 Q
1
+/ /||Lv2(.7:,t)||2 dadt.
0 Q

The transformations h; and ho map €2 to £2; and 2
respectively. Using the composition rule (Equation 6), we
define the transformations hy : £ — Qo = hp o hfl
and hgq : 2y — Qo = hy 0 h;l. In other words, Ry 2 is
a transformation from Iy to I and hy; is a transformation
from I3 to I;. This method is inverse consistent since hy 2 ©
hz1 = ha,1 o hy 2 = e, the identity transformation.

5. IMPLEMENTATION

Following Christensen’s algorithm for propagating templates
described in [11, 6], we approximate the solution to the min-
imization problem in Equation 5 using an iterative greedy

method. At each iteration k, the updated transformation
REF1 for each image I;, is computed using the update rule
Rt = hF (v + evf(2)). R and vfF are the current esti-
mated transformation and velocity for the ¢th image, and ¢
is the step size. In other words, each final transformation h;
is built up from the composition of k transformations.

The velocity v for each iteration k is computed as fol-
lows. First, compute the updated template estimate

Ik(’t ka(’t

where IF = I;(hF(z)) is the i
Next, define force functions

image deformed by AF.

i) = = | 1) - I*(o)| VIf (@),
This is the variation of the image dissimilarity term in Equa-
tion 5 with respect to h;. The velocity field v¥ is computed
at each iteration by applying the inverse of the differential
operator L to the force function, i.e. v¥(z) = L=FF(x),
where L = aV?+ 3V -V + is the Navier-Stokes operator.
This computation is carried out in the Fourier domain [12].
For each iteration the dominating computation is the
Fast Fourier Transform. Thus, the order of the algorithm
is M Nnlogn where M is the number of iterations, IV is
the number of images to be registered, and n is the number
of voxels in each image. The complexity increases only lin-
early as images are added, making the algorithm extremely
scalable. Satisfactory correspondence is typically achieved
after 200 iterations. In practice, we use a multi scale ap-
proach that initializes the fine (voxel) scale registration with
the upsampled correspondence computed at a coarser scale
level. The finer scale levels only need to account for residue
from coarser scale levels and thus require far fewer itera-
tions to converge.

6. RESULTS

To evaluate the performance of this method we applied our
algorithm to a set of five 176x156x192 intensity adjusted
3D MR brain images taken from five different subjects. Asa
preprocessing step, these images were aligned using a sim-
ilarity transform. An axial slice from each of these initial
images is shown in the first column of Figure 3. There is no-
ticeable large deformation variation between these anatomies.
The second column of Figure 3 shows the deformed (3D)
images after 500 iterations of our algorithm. The deformed
images look very similar, as they have been deformed into
the common coordinate space of the template.

Figure 4 shows the initial and final estimate of the tem-
plate. The initial template estimate is blurry since it is an av-
erage of the the varying individual neuroanatomies. Ghost-
ing is evident around the lateral ventricles and the near the
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Fig. 3. Template Construction. Column 1 shows the initial
images. Column 2 shows the deformed images after 500
iterations. Column 3 shows the absolute error between the
initial images and the initial template estimate. Column 4
shows the absolute error between the deformed images and
the final template estimate.

boundary of the brain. Column 3 of Figure 3 shows the
absolute error between each input image and the initial tem-
plate estimate. After applying our algorithm the deformed
neuroanatomies are nearly identical, resulting in a sharp fi-
nal template estimate. Column 4 of Figure 3 shows the
absolute error between each deformed image and the fi-
nal template estimate. The final template estimate is nearly
identical to each of the deformed neuroanatomies.
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