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Abstract

The automated tracking and storage of provenance information promises to be a major advantage
of scientific workflow systems. We discuss issues related to data and workflow provenance, and present
techniques for focusing user attention on meaningful provenance through “user views,” for managing
the provenance of nested scientific data, and for using information about the evolution of a workflow
specification to understand the difference in the provenance of similar data products.

1 Introduction

Scientific workflow management systems (e.g., myGrid/Taverna [18], Kepler [6], VisTrails [13], and Chimera
[12]) have become increasingly popular as a way of specifying and executing data-intensive analyses. In such
systems, a workflow can be graphically designed by chaining together tasks (e.g., for aligning biological se-
quences or building phylogenetic trees), where each task may take input data from previous tasks, parameter
settings, and data coming from external data sources. In general, a workflow specification can be thought of as a
graph, where nodes representmodulesof an analysis and edges capture theflow of databetween these modules.

For example, consider the workflow specification in Fig. 1(a), which describes a common analysis in molec-
ular biology: Inference of phylogenetic (i.e., evolutionary) relationships between biological sequences. This
workflow first accepts a set of sequences selected by the user from a database (such as GenBank), and supplies
the data to module M1. M1 performs a multiple alignment of thesequences, and M2 refines this alignment. The
product of M2 is then used to search for the most parsimoniousphylogenetic tree relating the aligned sequences.
M3, M4, and M5 comprise a loop sampling the search space: M3 provides a random number seed to M4, which
uses the seed together with the refined alignment from M2 to create a set of phylogenetic trees. M5 determines
if the search space has been adequately sampled. Finally, M6computes the consensus of the trees output from
the loop. The dotted boxes M7, M8 and M9 represent the fact that composite modulesmay be used to create
the workflow. That is, M7 is itself a workflow representing thealignment process, which consists of modules
M1 and M2; M8 is a workflow representing the initial phylogenetic tree construction process, which consists
of modules M3, M4, and M5; and M9 is a composite module representing the entire process of creating the
consensus tree, which consists of modules M3, M4, M5 and M6.

The result of executing a scientific workflow is called arun. As a workflow executes, data flows between
moduleinvocations(or steps). For example, a run of the phylogenetics workflow is shown inFig. 1(b). Nodes
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Figure 1: Phylogentics workflow specification, run, and datadependency graph.

in this run graph represent steps that are labeled by a uniquestep identifier and a corresponding module name
(e.g., S1:M1). Edges in this graph denote the flow of data between steps, and are labeled accordingly (e.g., data
objectsSeq1,...,Seq10 flow from input I to the first step S1). Note that loops in the workflow specification are
always unrolled in the run graph,e.g., two steps S4 and S7 of M4 are shown in the run of Fig. 1(b).

A given workflow may be executed multiple times in the contextof a single project, generating a large
amount of final and intermediate data products of interest tothe user [9]. When such analyses are carried out
by hand or automated using general-purpose scripting languages, the means by which results are produced are
typically not recorded automatically, and often not even recorded manually. Managing such provenance infor-
mation is a major challenge for scientists, and the lack of tools for capturing such information makes the results
of data-intensive analyses difficult to interpret, to report accurately, and to reproduce reliably. Scientific work-
flow systems, however, are ideally positioned to record critical provenance information that can authoritatively
document the lineage of analytical results. Thus, the ability to capture, query, and manage provenance informa-
tion promises to be a major advantage of using scientific workflow systems. Provenance support in scientific
workflows is consequently of paramount and increasing importance, and the growing interest in this topic is
evidenced by recent workshops [4, 17] and surveys [5, 19] in this area.

Data provenance in workflows is captured as a set of dependencies between data objects. Fig. 1(c) graph-
ically illustrates a subset of the dependencies between data objects for the workflow run shown in Fig. 1(b).
In such data-dependency graphs, nodes denote data objects (e.g., Tree4) and dependency edges are annotated
with the step that produced the data. For example, the dependency edge fromAlignment2 to Alignment1
is annotated with S2:M2 to indicate thatAlignment2 was produced fromAlignment1 as a result of this
step.

Many scientific-workflow systems (e.g., myGrid/Taverna) capture provenance information implicitly in an
event log. For example, these logs record events related to the start and end of particular steps in the run and
corresponding data read and write events. Using the (logical) order of events, dependencies between data ob-
jects processed or created during the run can be inferred1. Thus, determining data dependencies in scientific

1The complexity of the inference procedure and type of log events required depends on the specific model of computation used to
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Figure 2: Provenance ofTree6 in Joe’s (a) and Mary’s (b) user views.

workflow systems generally is performed using dynamic analysis, i.e., modules are treated as “black boxes” and
dependency information is captured as a workflow executes. In contrast, determining provenance information
from database views (or queries) can be performed using static analysis techniques [10]. In this case, database
queries can be viewed as “white box” modules consisting of algebraic operators (e.g., σ, π, ⊲⊳). An intermediate
type of provenance can also be considered in which black-boxmodules are given additional annotations spec-
ifying input and output constraints, thus making them “greyboxes” [6]. These additional specifications could
then be used to reconstruct provenance dependencies using static analysis techniques, without requiring runtime
provenance recording.

The use of provenance in workflow systems also differs from that in database systems. Provenance is not
only used for interpreting data and providing reproducibleresults, but also for troubleshooting and optimizing
efficiency. Furthermore, the application of a scientific workflow specification to a particular data set may involve
tweaking parameter settings for the modules, and running the workflow many times during this tuning process.
Thus, for efficiency, it is important to be able to revisit a “checkpoint” in a run, and re-execute the run from that
point with new parameter settings, re-using intermediate data results unaffected by the new settings. The same
information captured to infer data dependencies for a run can also be used to reset the state of a workflow system
to a checkpoint in the past or to optimize the execution of a modified version of a workflow in the future.

While the case for provenance management in scientific workflow systems can easily be made, real-world
development and application of such support is challenging. Below we describe how we are addressing three
provenance-related challenges: First, we discuss how composite modules can be constructed to provide prove-
nance “views” relevant to a user [3]. Second, we discuss how provenance for complex data (i.e., nested data
collections) can be captured efficiently [7]. Third, we discuss how the evolution of workflow specifications can
be captured and reasoned about together with data provenance [13].

2 Simplifying provenance information

Because a workflow run may comprise many steps and intermediate data objects, the amount of information
provided in response to a provenance query can be overwhelming. Even for the simple example of Fig. 1, the
provenance for the final data objectTree6 is extensive.2 A user may therefore wish to indicate which modules
in the workflow specification arerelevant, and have provenance information presented with respect tothat user
view. To do this, composite modules are used as an abstraction mechanism [3].

For example, user Joe might indicate that the M2:Refine alignment, M4: Find MP trees, and M6:Compute
consensusmodules are relevant to him. In this case, composite modulesM7 and M8 would automatically be
constructed as shown in Fig. 1(a) (indicated by dotted lines), and Joe’s user view would be{M7, M8, M6}.
When answering provenance queries with respect to a user view, only data passed between modules in the user

execute a workflow,e.g., see [8].
2The graph shown in Fig. 1(c) is only partial, and omits the seeds used in M4 as well as additional notations of S7:M4 on the edges

from Tree1,...,Tree3 to Alignment2.
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view would be visible; data internal to a composite module inthe view would be hidden. The provenance for
Tree6 presented according to Joe’s user view is shown in Fig. 2(a).Note thatAlignment1 is no longer
visible.

More formally, auser viewis a partition of the workflow modules [3]. It induces a “higher level” workflow in
which nodes represent composite modules in the partition (e.g., M7 and M8) and edges are induced by dataflow
between modules in different composite modules (e.g., an edge between M7 and M8 is induced by the edge
from M2 to M3 in the original workflow). Provenance information is then seen by a user with respect to the flow
of data between modules in his view. In the Zoom*UserViews system [2], views are constructed automatically
given input on what modules the user finds relevant such that (1) a composite module contains at most one
relevant (atomic) module, thus assuming the “meaning” of that module; (2) no data dependencies (either direct
or indirect) are introduced or removed between relevant modules; and (3) the view is minimal. In this way,
the meaning of the original workflow specification is preserved, and only relevant provenance information is
provided to the user.

Note that user views may differ: Another user, Mary, may onlybe interested in the modules M2:Refine
alignmentand M6: Compute consensus. Mary’s user view would therefore be constructed as{M7, M9}, and
her view for the provenance ofTree6 (shown in Fig. 2(b)) would not exposeTree1 ... Tree5.

3 Representing provenance for nested data collections

Modules within scientific workflows frequently operate overcollections of data to produce new collections of
results. When carried out one after the other, these operations can yield increasingly nested data collections,
where different modules potentially operate over different nesting levels. Thecollection-oriented modeling and
design(COMAD) framework [16] in Kepler models this by permitting data to be grouped explicitly into nested
collections similar to the tree structure of XML documents.These trees of data are input, manipulated, and
output by collection-aware modules. However, unlike a general XML transformer, a COMAD module generally
preserves the structure and content of input data, accessing particular collections and data items of relevance to
it, and adding newly computed data and new collections to thedata structure it received. COMAD workflow
designers declare theread scopeandwrite scopefor each module while composing the workflow specification.
A read scope specifies the type of data and collections relevant to a module using an XPath-like expression to
match one or more nodes on each invocation; paths may be partially specified using wildcards and predicates. As
an example, the read scope for M1 could be given asProj/Trial/Seqs, which would invoke M1 over each
collection of sequences in turn. A write scope specifies where a module should add new data and collections
to the stream. Data and collections that fall outside a module’s read scope are automatically forwarded by the
system to succeeding modules, enabling an “assembly-line”style of data processing.

Similar to other dataflow process networks [15], modules in aCOMAD workflow work concurrentlyover
items in the data stream. That is, rather than supplying the entire tree to each module in turn, COMAD streams
the data through modules as a sequence of tokens. Fig. 3 illustrates the state of a COMAD run of the example
workflow shown in Fig. 1 at a particular point in time, and contrasts the logical organization of the data flowing
through the workflow in Fig. 3(a) with its tokenized realization at the same point in time in Fig. 3(b). This figure
further illustrates the pipelining capabilities of COMAD by including two independent sets of sequences in a
single run. This pipeline concurrency is achieved in part byrepresenting nested data collections at runtime as
“flat” token streams containing paired opening and closing delimeters to denote collection membership.

Fig. 3 also illustrates how data provenance is captured and represented at runtime. As COMAD modules
insert new data and collections into the data stream, they also insert metadata tokens containing explicit data-
dependency information. For example, the fact thatAlignment2was computed fromAlignment1 is stored
in the insertion-event metadata token immediately preceding the A2 data token in Fig. 3(b), and displayed
as the dashed arrow from A2 to A1 in Fig. 3(a). The products of aCOMAD workflow may be saved as an
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Figure 3: An intermediate state of a COMAD run

XML-formatted trace file, in which provenance records are embedded directly within the file as XML elements
annotating data and collection elements. Detailed data dependencies can be inferred from the trace file,i.e.,
from the embedded provenance annotations together with thenested data collections output by the workflow run.
Note that COMAD can minimize the number and size of provenance annotations as described in [7, 9]. For
example, when a module inserts a node that is a collection, the provenance information for that node implicitly
cascades to all descendant nodes. Similarly, if a node is derived from a collection node, an insertion annotation
is created that refers just to the collection identifier rather than the various subnodes.

The current COMAD implementation includes a prototype subsystem for querying traces. The system pro-
vides basic operations for accessing trace nodes, constructing dependency relations, and querying corresponding
dependency graphs over the XML trace files. Methods also are provided to reconstruct parameter settings and
metadata annotations attributed to data and collection nodes [7].

4 Workflow evolution

Scientific workflows dealing with data exploration and visualization are frequently exploratory in nature, and
entail the investigation of parameter spaces and alternative techniques. A large number of related workflows
are therefore created in a sequence of iterative refinementsof the initial specification, as a user formulates and
tests hypotheses. VisTrails [13] captures detailed information about this refinement process: As a user modifies a
workflow, it transparently captures the change actions, e.g., the addition or deletion of a module, the modification
of a parameter, the addition of a connection between modules,3 akin to a database transaction log. The history
of change actions between workflow refinements is referred toas a visual trail, or avistrail.

The change-based representation of workflow evolution is concise and uses substantially less space than the
alternative of storing multiple versions of a workflow. The model is also extensible. The underlying algebra of
actions can be customized to support change actions at different granularities (e.g. composite modules versus
atomic modules). In addition, it enables construction of anintuitive interface in which the evolution of a work-
flow is presented as a tree, allowing scientists to return to aprevious version in an intuitive way, to undo bad
changes, and be reminded of the actions that led to a particular result.

Vistrails and data provenance interact in a subtle but important way: The vistrail can be used to explain
the difference in process between the data provenance of similar data products. Returning to our example,

3Modules are connected by input/outputports, which carry the data type and meaning. Static type-checking can be therefore per-
formed to help in debugging.
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Figure 4: Visual difference interface for a radiation treatment planning example.

suppose that two runs of the workflow in Fig. 1 took as input thesame set of sequences, but returned two
different final trees. Furthermore, suppose that the specification was modifed between the two runs, e.g. that a
different alignment algorithm was used in M1, or that three iterations of the loop were performed in M8 due to
different seeds being used. Rather than merely examining the data provenance of each tree, the scientist may
wish to compare their provenance and better understandwhy the final data differed. However, computing the
differences between two workflows by considering their underlying graph structure is impractical; the related
decision problem ofsubgraph isomorphism (or matching)is known to be NP-complete [14]. By capturing
evolution explicitly in a vistrail, discovering the difference in process is simplified: The two workflow nodes are
connected by a path in the vistrail, allowing the differencebetween two workflows to be efficiently calculated
by comparing the sequences of change actions associated with them [11].

Figure 4 (right) shows the visual difference interface provided by VisTrails. A visual difference is enacted
by dragging one node in the history tree onto another, which opens a new window with a difference workflow.
Modules unique to the first node are shown in orange, modules unique to the second node in blue, modules
that are the same in dark gray, and modules that have different parameter values in light gray. Using this in-
terface, users can correlate differences between two data products with differences between their corresponding
specifications.

5 Conclusion

Workflow systems are beginning to implement a “depends-on” model of provenance, either by storing the in-
formation explicitly in a database (e.g., VisTrails) or within the data itself (e.g., COMAD). Several techniques
have also been proposed to reduce the amount of provenance information either presented to the user (e.g., user
views), or stored by the database (e.g., by treating data as collections). Furthermore, since workflow specifica-
tions evolve over time, there is a need to understand not onlythe provenance of a single data item but how the
provenance of related data items differ.

Although some workflow systems provide a query interface forinteracting with the provenance information,
it is still an open problem as to what a provenance query language should provide. For example, we might
wish to scope provenance information within a certain specified portion of a workflow, or return all provenance
information that satisfies a certain execution pattern. Thequery language should also allow users to issue high
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level queries using concepts that are familiar to them, and present the results in an intuitive manner. Related
work in this area has been done in the context of business processing systems, in which runs are monitored by
querying logs (e.g., [1]).
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