
Integrating Performance Analysis in the Uintah
Software Development Cycle

J. Davison de St. Germain1, Alan Morris1, Steven G. Parker1,
Allen D. Malony2, and Sameer Shende2

1 School of Computing,
University of Utah�

dav,amorris,sparker � @cs.utah.edu
2 Department of Computer and Information Science,

University of Oregon�
malony,sameer � @cs.uoregon.edu

Abstract. Technology for empirical performance evaluation of parallel programs
is driven by the increasing complexity of high performance computing environ-
ments and programming methodologies. This paper describes the integration of
the TAU and XPARE tools in the Uintah computational framework. Performance
mapping techniques in TAU relate low-level performance data to higher levels of
abstraction. XPARE is used for specifying regression testing benchmarks that are
evaluated with each periodically scheduled testing trial. This provides a historical
panorama of the evolution of application performance. The paper concludes with
a scalability study that shows the benefits of integrating performance technology
in the development of large-scale parallel applications.

1 Introduction

Modern scientific simulations have become incredibly complex. It is not uncommon
for high-performance software systems to have large development teams involving per-
sonnel across a broad range of expertise who work simultaneously on different parts of
the system. In these programming environments, software developers increasingly turn
to industrial tools for managing the complex software process. Tools for revision con-
trol, automated testing, and bug tracking are now commonplace. Unfortunately, tools
to help achieve the highest performance possible over a broad range of inputs and
hardware configurations are not commonly available. As a result, many software de-
velopment efforts leave performance evaluation and improvement until the end of a
long, many-stage development process. Even if performance is studied early in devel-
opment, tracking the performance of the system as new features are added is often too
time-consuming. While the complexity of the software development process may jus-
tify these engineering decisions. increased sophistication in high-performance parallel
software and platforms rarely reduces performance complexity as development and use
of the software proceeds.

Certainly, one very serious problem that arises is when developers of parallel scien-
tific software make design decisions without knowledge or understanding of the perfor-

mance ramifications. Any code decision, however localized, may have significant im-
pact on performance overall. These performance influences can be difficult to observe
and subtle to understand. If a performance engineering methodology is not incorporated
in the software design and development process, it will be extremely difficult to achieve
the high-performance goals of the project over its lifetime. Moreover, if the method-
ology is not adequately supported by flexible and robust performance tools, it will be
difficult to address all performance problems that arise.

In this paper, we report on our efforts to integrate performance analysis capabilities
into one such complex scientific software system: the Uintah Computational Frame-
work. These capabilities support a performance engineering methodology that aug-
ments Uintah’s current software design process. We describe the Uintah system in suffi-
cient detail to highlight the challenges we have faced in performance measurement and
analysis, and in tracking, maintaining, and improving Uintah performance. The TAU
and XPARE tools we developed for Uintah performance engineering are then discussed
in detail. We demonstrate their benefits to Uintah performance analysis and improve-
ment with several examples. Finally, we outline our plans for future work.

2 Background and Motivation

In 1997, the Center for the Simulation of Accidental Fires and Explosions (C-SAFE) [2]
was created at the University of Utah to focus specifically on providing state-of-the-
art, science-based tools for the numerical simulation of accidental fires and explosions,
especially within the context of handling and storage of highly flammable materials.
C-SAFE was created by the Department of Energy’s Accelerated Strategic Computing
Initiative’s (ASCI) Academic Strategic Alliance Program (ASAP) [1].

C-SAFE’s objective is to build a problem-solving environment in which fundamen-
tal chemistry and engineering physics are coupled fully with non-linear solvers, opti-
mization, computational steering, visualization and experimental data verification. Such
a system would allow better evaluation of the risks and safety issues associated with
fires and explosions. However, the software needed to model such real-world scientific
and engineering problems is very complex, and is further compounded when multiple
simulation codes must work together. Likewise, achieving high performance on large-
scale computer systems is a necessary, but non-trivial goal.

C-SAFE’s Uintah Problem Solving Environment [4] is a massively parallel, compo-
nent-based, problem solving environment (PSE) designed to simulate large-scale scien-
tific problems, while allowing the scientist to interactively visualize, steer, and verify
simulation results. Uintah is derived from the SCIRun3 PSE [9–12], adding support
for a more powerful component model on distributed-memory parallel computers. The
Uintah PSE is being developed specifically to study interactions between hydrocarbon
fires, structures, and high-energy materials (explosives and propellants), such as those
shown in Figure 1.

In designing the Uintah software system, we focused on three guiding properties.
First, the complexities of code creation for parallel machines should (as much as pos-

3 Pronounced “ski-run.” SCIRun derives its name from the Scientific Computing and Imaging
(SCI) Institute at the University of Utah.

Fig. 1. Visualization of two different simulations from C-SAFE. On the left is a simulation of
a heptane fire. On the right is a simulation of stress propagation through a block of granular
material. Each of these simulations were performed using the Uintah Computational Framework
and were executed on 1000 processors.

sible) be hidden from the scientist. Second, complex simulation components developed
by third parties should be tools available for scientists to employ. And third, the scientist
should be able to visually monitor and steer his or her simulation while it is running.
A software environment that efficiently integrates these properties into a usable system
allows scientists to effectively create and use complex simulations in an interactive, ex-
ploratory way. The Uintah PSE is such a system. It allows scientists and engineers to
focus on algorithm development and data analysis rather than details of the underlying
software architecture, without sacrificing the ability to realize the full potential of large
parallel computers.

While Uintah is provides a general framework in which a wide variety of large scale,
massively parallel simulations can be conducted, the specific problem that has driven
its creation is the modeling of the interactions between hydrocarbon fires, structures
and high-energy materials (explosives and propellants), as shown in Figure 2. In order
to produce realistic simulations of these problems, we must utilize large-scale parallel
computers at maximum efficiency. For the largest simulations, we use DOE ASCI com-
puting resources consisting of thousands of processors. A typical simulation consists of
billions of degrees of freedom or more.

During simulation software development at C-SAFE, the need for performance
analysis became very apparent. In particular, performance measurement and analysis
tools were required for three main tasks:

1. Optimization of code kernels for maximum serial performance (micro tuning).
2. Analysis of parallel execution bottlenecks (scalability tuning).
3. Understanding the performance impacts of code modifications over the course of

development (performance tracking).

By integrating tools to address these tasks in the Uintah PSE development process, we
have created a scalable simulation environment for C-SAFE problems where perfor-
mance of the overall environment is high and will not diminish unexpectedly due to
evolution of the Uintah code.

Figure 2: A Typical C-SAFE Problem

3 Uintah Architecture

The Uintah PSE provides a component-based environment for developing parallel sci-
entific applications. Uintah is based on the component architecture being developed
by the Common Component Architecture (CCA) Forum. The CCA Forum [3] was es-
tablished to specify a software component architecture that could address the needs
of high-performance computing. The CCA architecture aims to provide higher perfor-
mance, explicit support for multi-dimensional arrays, and support for parallelism. Uin-
tah is a research vehicle for implementing these ideas and for exercising their efficacy
on complex scientific applications, such as the C-SAFE simulations.

Solving a typical C-SAFE problem involves running multiple large-scale physically
coupled simulations. For example, to investigate the effects of fire on metal structures,
a fluid-dynamics-based combustion model might be coupled with a particle-based solid
mechanics simulation. The simulation models may involve representations of size 10 9

finite volume cells and 108 solid material points. To handle the large number of opera-
tions necessary to process such immense datasets, we have designed the Uintah Com-

putational Framework (UCF). The UCF is the foundation upon which all C-SAFE
simulation components are developed.

The UCF is a set of components and classes that build on the Uintah compo-
nent model, adding capabilities such as semi-automatic parallelism, automatic check-
point/restart, load-balancing mechanisms, resource management, and scheduling. The
UCF exposes flexibility in dynamic application structure by adopting an execution
model based on software or “macro” dataflow. Computations are expressed as directed
acyclic graphs of tasks, each of which consumes some input and produces some output
(input of some future task). These inputs and outputs are specified for each patch in a
structured grid. Tasks are organized in a UCF data structure called the task graph.

In natural agreement with the functional nature of its pure macro-dataflow execution
model, the UCF presents developers with an abstraction of a global single-assignment
memory, with automatic data lifetime management and storage reclamation. Storage
is abstractly presented to the scientific programmer as a dictionary mapping names to
values. The value associated with a name can be written only once, and once written
is communicated by UCF to all tasks awaiting that value. Values are typically array-
structured. Communication is scheduled by a local scheduling algorithm that approxi-
mates the true globally optimal communication schedule. Because of the flexibility of
single-assignment semantics, the UCF is free to execute tasks close to data or move
data to minimize future communication.

The UCF storage abstraction is sufficiently high-level that it can be mapped ef-
ficiently onto both message-passing and share-memory communication mechanisms.
Threads sharing a memory can access their input data directly; single-assignment dataflow
semantics eliminate the need for complex locking of values. The UCF is free to opti-
mize allocation of physical memory to minimize remote memory accesses. Threads
running in disjoint address spaces communicate by message-passing protocol, and the
UCF is free to optimize such communication by message aggregation. Tasks need not
be aware of the transports used to deliver their inputs and, thus, the UCF has complete
flexibility in control and data placement to optimize communication both between ad-
dress spaces and within the shared ccNUMA memory hierarchy of the Origin 2000
(or other SMP-based distributed memory supercomputers). Solving this optimization
problem for C-SAFE simulations is difficult and is a subject of ongoing investigation.

An example UCF taskgraph is shown in Figure 3. Ovals represent tasks, each of
which is a simple array algorithm and easily treated by traditional compiler array opti-
mizations. Edges represent named values stored by the UCF. Solid edges have values
defined at each material point (Particle Data) and dashed edges have values defined at
each grid vertex (Grid Data). Variables denoted with a prime (’) have been updated dur-
ing the time step. The figure shows a slice of the actual Uintah Material Point Method
(MPM) task graph concerned with advancing Newtonian material point motion on a
single patch for a single timestep.

4 Performance Technology Integration

The Uintah PSE and the UCF present interesting challenges to performance analysis
technology and its integration. The diversity of the Uintah software, including the UCF

m

σ
ω

m

m

PositionX
M Mass

Grid Data

Velocity

’

’

Constituents
σ Stress
V

Particle Data

v’
m’

x’

m

m

ω

σ

ω

Acceleration
Integrate

σ
’ v

Motion
Equations Of

Solve

a

Fv

Grid
Particles To
Interpolate Compute

x

Stress Tensor
Compute

Internal Force

v

To Particles And
Interpolate

x

Update
v’

a

v

Figure 3: An Example UCF Task Graph

middleware and simulation code modules, and Uintah’s portability objectives requires
performance instrumentation and measurement tools that are both cross-language and
cross-platform. The performance system must also work at large scales, and be able to
analyze performance data captured for the different execution modes (shared-memory,
message passing, mixed-mode) that Uintah supports. Perhaps the most important con-
cern is being able to relate multi-level performance data to the high-level task abstrac-
tions used within Uintah for simulation programming and during execution by the UCF
for task graph scheduling and storage management. Without this capability, it would be
extremely difficult to piece apart performance effects across UCF levels and to identify
the simulation components responsible for different performance behaviors.

4.1 TAU Performance System

Performance technology integration in the Uintah PSE is based on the TAU perfor-
mance system [7]. TAU provides robust technology for performance instrumentation,
measurement, and analysis for complex parallel systems. It targets a general computa-
tion model consisting of shared-memory computing nodes where contexts reside, each
providing a virtual address space shared by multiple threads of execution. The model is
general enough to apply to many high-performance scalable parallel systems and pro-
gramming paradigms. Because TAU enables performance information to be captured at
the node/context/thread levels, this information can be mapped to the particular parallel
software and system execution platform under consideration.

Figure 4: TAU Performance System Architecture

As shown in Figure 4, TAU supports a flexible instrumentation model that applies
at different stages of program compilation and execution. The instrumentation targets
multiple code points, provides for mapping of low-level execution events to higher-level
performance abstractions, and works with multi-threaded and message passing parallel
computation models. Instrumentation code makes calls to the TAU measurement API.
The TAU measurement library implements performance profiling and tracing support
for performance events occurring at function, method, basic block, and statement lev-
els during execution. Performance experiments can be composed from different mea-
surement modules (e.g., hardware performance monitors) and measurements can be
collected with respect to user-defined performance groups. The TAU data analysis and
presentation utilities offer text-based and graphical tools to visualize the performance
data as well as bridges to third-party software, such as Vampir [8] for sophisticated trace
analysis and visualization.

4.2 TAU Performance Mapping in Uintah

To evaluate the performance of Uintah applications, we selectively instrument at the
source level and the message passing library level. Source-level instrumentation oc-
curs at subroutine and method boundaries, as well as at important code sections us-
ing TAU user-defined timers (with start/stop semantics) to highlight the time spent in

Figure 5: TAU Performance Profiles Without Mapping (top) and With Mapping (bottom)

groups of statements. Message passing instrumentation (using a MPI interposition li-
brary based on PMPI [6]) shows both execution time spent in message communication
and messaging behavior with respect to application level routines. Figure 5 shows two
profiles of the execution time of different tasks within the UCF’s parallel scheduler for
an MPI-only run. The displays were created by TAU’s parallel profile visualizer, Racy,
which can show full profile details across all threads of execution. Here, the right views
show the detailed performance profile on “n,c,t (node,context,thread) 0,0,0” (i.e., MPI
process with rank 0). The left views show performance for all of the MPI processes in
bargraph form.

To generate the top two views, we placed instrumentation in the MPIScheduler class
and the MPI library. Clearly, Task execution [MPIScheduler:execute()] (green bar) takes
up a significant chunk of the overall execution time, 79.91% of the total (exclusive) on
MPI process 0. The time spent in MPI Waitall() and MPISchedule::gatherParticles is
also of significance, but the other routines are of less consequence. Unfortunately, these
top two views give only a rough breakdown of UCF performance. While it is important
to see a high percentage of time being spent executing tasks, what the scientist wants to
know additionally is the distribution of the overall task execution time among the differ-
ent types of tasks performed. While more detailed instrumentation (using user-defined
events and tracing) can show each instance of task execution, standard instrumentation
mechanisms have no means to identify task semantics (i.e., from what simulation com-
ponent the tasks were produced). To understand TAU’s solution to this problem, we
need to describe how UCF operates in more detail.

During the computation, many individual particles are being partitioned across pro-
cessing elements (processes or threads) and worked on by the simulation components
represented in the task graph. As work is performed on the particles, a task instance
is created and scheduled. Each task instance corresponds to some simulation operation
(task), such as interpolating particles to the grid in the Material Point Method, and its
execution is controlled by its task graph dependencies. We can give each task instance a
name (e.g., SerialMPM::interpolateParticlesToGrid) that identifies its domain-specific
character in the computation (i.e., its specific simulation task relationship). The the
number of task types is finite and is typically less than twenty in Uintah applications.
In contrast, there are a large number of task instances created and executed during the
computation. The association of a task type with a task instance occurs at a time differ-
ent from when the task instance is finally scheduled and executed.

Thus, to provide the desired performance view, we must map the performance of
each individual task instance to the task type to which it belongs and then accumulate
the performance data at the task level. Using TAU’s Semantic Entity, Association, and
Attributes (SEAA) model of performance mapping [13], we form an association during
initialization between a timer for each task (the task semantic entity) and the task name
(its semantic attribute). Then, while processing each task instance in the scheduler, a
method to query the task name (stored within the task instance object) is invoked and
the address of the task name (a static character string) is returned. Using this address,
we do an external map lookup (implemented as a hash-table) and retrieve the address of
the timer object (i.e., a runtime semantic association). Once the timer is known, it can
be started and stopped around the code segment that executes the task instance.

The bottom two views in Figure 5 show the results of this task mapping performance
analysis in Uintah. Clearly, there is a significant benefit of the SEAA approach in pre-
senting performance data with respect to high-level semantics of the Uintah application.
The performance of all five simulation model components (i.e., tasks) are now clearly
distinguished in the profile. With the generation of event traces, the benefits are even
more dramatic as this task mapping allows distinct phases of computation to be high-
lighted based on task semantics. This can be seen in the trace visualization in Figure 7.
Although we are looking at individual task instances being executed, the color-coded
mapping allows us to view their performance data at a higher level.

4.3 Performance Experiment Reporting and Alerting

With the integration of performance measurement support in the Uintah software sys-
tem comes the ability to analyze performance throughout Uintah’s development life-
time. Typically, performance analysis is done ad hoc, at the convenience of the devel-
oper, and only when time permits. When such performance practice is applied across
a large, multi-person effort such as C-SAFE, the resulting “performance portfolio”
becomes scattered and tends to report performance information only after significant
stages of development have been accomplished and software committed. The downside
of such a performance methodology is a disengagement of performance knowledge
from key software design decisions. The goal of our work is to more tightly couple
the reporting of performance experimentation results with timely software testing and

alerting to performance problems. We have created the XPARE (eXPeriment Alerting
and REporting) system for this purpose.

The Uintah software system was engineered with a regression testing harness to reg-
ularly evaluate correctness. At these times, minimal performance benchmarking would
be conducted to determine if total execution time was seriously degraded. If so, the
tester would notify software developers, but left it up to them to manually run specific
instrumented tests to investigate where the performance problems lay. The XPARE sys-
tem augments the regression tester to conduct a range of performance experiments with
fully-instrumented code modules. Multiple experiments can be conducted with different
instrumentation layouts to exercise different code regions and behaviors. The TAU per-
formance tools are used for measurement and analysis, allowing execution time and
hardware statistics to be used to construct a complete performance portrait.

Once the performance experiments have been conducted, XPARE will automati-
cally interrogate the performance data to determine not only if the overall code has run
for longer than expected, but also which tasks and profiled procedures are potential sus-
pects. XPARE accomplishes this by applying alerting “rulesets” (performance differ-
ence thresholds) to a historical, multiple experiment performance database. Experiment
sets can be selected by the user from the database for evaluation. For each experiment
set, specific performance data can be chosen for analysis. Performance regression test-
ing is then done by comparing the current performance with that in the experiment set,
using the alerting rulesets constructed by the user to determine performance violations
worthy of report.

The XPARE system architecture is shown in Figure 6, with images of the web-based
interfaces for experiment selection, performance data selection, and ruleset definition.
As also shown, results of regression analysis are automatically reported to the software
developers, who can explore the performance data more fully through the performance
reporter, whether or not significant performance shifts have been detected. Because the
performance database contains prior performance history, a panoramic view of perfor-
mance change can be scrutinized based not only on code alteration, but also platform,
choice of compiler, different optimizations, and other performance factors.

By scheduling regular performance regression tests, performance knowledge can be
closely linked with the Uintah software development cycle. Currently, we use XPARE
to run weekly performance tests of small to medium-scale experiments, and monthly
evaluations of full-scale experiments. The general construction of XPARE will allow it
to easily extend to changes in the Uintah code base and to incorporate new simulation
components as they become available.

5 Performance Studies

Contemporary efforts in gathering performance data have focused on function by func-
tion analysis. C-SAFE has taken the somewhat novel approach of gathering perfor-
mance statics on an algorithmic basis. This approach provides four major benefits.

1. Due to the use of the task abstraction in the UCF, it is straightforward to manually
insert the profiling code at one location in the code to capture data on the perfor-
mance of all tasks.

Performance
Reporter

Alerting
Setup

Comparison
Tool

Regression
Analyzer

Web
Server

Experiment
Launch

Mail
Server

Performance
Database

Figure 6: XPARE System Architecture and Tools

2. The performance characteristics of each of the algorithmic tasks is clearly displayed
in relation to the other simulation tasks.

3. Scientific programmers are allowed to focus on making performance improvements
at an algorithmic level.

4. Uintah Computational Framework developers can easily find performance bottle-
necks that are not directly associated with application codes (e.g.; MPI communi-
cations, task scheduling overhead, and data I/O).

The first step in optimizing Uintah software was to manually instrument the code
base with hooks to the TAU system. The event-traces generated were converted to the
Vampir trace data format and visualized using Vampir. Figure 7 depicts one of the first
visualizations of an early version of the Uintah code running an MPM simulation on
32 processors. The figure shows six time steps with the black lines between the time
steps depicting the large MPI communications necessary to transmit boundary data.
Listed on the right hand side of the window are each of the specific tasks, delineated by
major software component (e.g.; SerialMPM, MPMICE, DataArchiver, Contact, etc.)
followed by specific task name (e.g.; computeStressTensor, relocateParticles, etc.) Each
task can be color coded to easily view its location in the time line. On the left hand

Figure 7: MPM Simulation Performance (TAU /Vampir)

side are rows displaying time lines for each process, running in parallel on individual
processors in this simulation run.

When first viewed, this diagram provided a number of “Aha!” insights about the
general behavior of the simulation. These insights included understanding:

1. the load imbalances we were experiencing with a rudimentary load balancer;
2. that the computeStressTensor task constituted a large portion of the execution time;

and
3. that there was a significant amount of MPI overhead distributed throughout the

computation.

Figure 8 is a zoomed-in view of a single time step in the MPM Simulation. This
view provided insight into the parallelization of each of the tasks in a single time step.
It also provided us with a visual feedback for how the processors where lining up and
how much work each was doing.

Similarly, Figure 9 depicts five time steps of the “Arches” fire simulation within
the UCF. This figure portrays explicitly how much time is being spent in the “pressure
solving” portion of the simulation. (The pressure solve calculation utilizes a PETSc
linear solver.) Figure 10 is a close up view of the PressureSolver task within the time
step and reveals that a major portion of the solver’s time is spent in MPI calls. This

Figure 8: MPM Simulation (Single Time Step)

visualization has led to focusing performance enhancement resources on determining
the best way to use PETSc solvers (including exploring different pre-conditioners).

Once candidate tasks are identified as potential performance bottlenecks, the tasks
are inspected from both an algorithmic view and from an implementation view. At this
point, it is sometimes necessary to perform additional functional instrumentation of the
code. We used this method of performance analysis from late 2000 through the first half
of 2001 to investigate performance problems in the Uintah software. This lead to the
parallel scaling improvements seen in Figure 11. Successive lines on the graph show
the performance improvements after finding and fixing performance bottlenecks.

After directing our efforts at improving the Unitah scalability up to 2000 proces-
sors, our focus changed to other aspects of code development. It was at this point that
we recognized the need for the XPARE system. Once implemented, it has allowed us
to monitor the performance of individual simulation pieces in addition to the overall
performance. XPARE has been developed with the goal of keeping the Uintah system
efficient as we expand the system and add new features.

6 Lessons Learned and Future Work

The integration of performance measurement in the UCF scheduling component has
been extremely useful in exposing bottlenecks and inefficiencies. While the perfor-
mance analysis thus far has mainly been done post-mortem, Uintah applications will
be increasingly adaptive in the future and will require UCF to implement dynamically
adjusting scheduling policies. We plan to develop online performance query and feed-
back capabilities in TAU that will support adaptive Uintah execution. Also, to enhance
online performance analysis, we are developing a runtime infrastructure to visualize
dynamic, large-scale performance data using the SCIRun visualization environment.

We will also continue to build on the success of performance mapping in Uintah
to attribute execution costs from the simulation component parts. We have recently
encountered the need for more flexible performance mapping specification that allows

Figure 9: Arches Task Performance

Figure 10: Arches Task Zoomed In

multiple mappings attributions (e.g., for mapping execution costs from component parts
to higher-level tasks and patches) to be active simultaneously. The current rudimentary
means to support these mappings will be implemented in more robust forms in the near
future. Not only is the UCF a target for performance integration, but the individual sim-
ulation components can benefit from performance analysis. We will begin to work more
closely with the developers of C-SAFE simulation component software to integrate per-
formance measurement, analysis, and regression testing in their codes.

With the completion of a mixed-mode UCF implementation will come the need for
performance analysis of integrated multi-threaded and message-based execution. While
preliminary tests have demonstrated TAU’s ability to observe thread and communica-
tion events in mixed-mode Uintah execution, it will be important to develop techniques
for cross-mode sharing of instrumentation information so that integrative performance
mapping and analysis is possible.

1 10 100 1000 10000
of processors

0

1

10

100

1000

T
im

e
(s

ec
on

ds
)

Scalability
Material Point Method

Linear
March 2000
April 2000
May 2000
October 2000
April 2001

Figure 11: Parallel Performance Evolution

We will greatly enhance the existing prototype XPARE system to play an increas-
ingly important role in Uintah software performance engineering in the future. In partic-
ular, we will concentrate on XPARE’s performance database which is currently imple-
mented in an ad hoc manner. The TAU project is building a performance database frame-
work (PerfDBF) that will be employed by XPARE for more flexible cross-experiment
data query and analyses. PerfDBF will allow for the set of analysis operations to be
easily extended by UCF and simulation component developers. XPARE’s alerting and
reporting tools can then incorporate these expanded analysis options to construct more
sophisticate threshold functions and performance data processing for generating perfor-
mance reports.

7 Acknowledgments

This work was supported by the DOE ASCI ASAP Program. The work at Oregon was
supported by a contract from the DOE 2000 program (Agreement No. DEFC 0398
ER 259 986) and a sub-contract from the University of Utah’s DOE C-SAFE ASCI
center (Agreement No. B341493). C-SAFE visualization images were provided by Kurt
Zimmerman and Wing Yee. Datasets were created by Scott Bardenhagen, Jim Guilkey,
and Rajesh Rawat. The DOE ASCI ASAP program also provided computing time for
the simulations shown.

References

1. Academic Strategic Alliances Program. http://www.llnl.gov/asci-alliances.
2. Center for the Simulation of Accidental Fires and Explosions. http://www.csafe.utah.edu.
3. Common Component Architecture Forum. http://www.cca-forum.org.
4. Davison de St. Germain, J., McCorquodale, J., Parker, S.G., Johnson, C.R.: Uintah: A Mas-

sively Parallel Problem Solving Environment. HPDC’00: Ninth IEEE International Sympo-
sium on High Performance and Distributed Computing (2000)

5. Lindlan, K.A., Cuny, J., Malony, A.D., Shende, S., Mohr, B., Rivenburgh, R., Rasmussen, C.:
Tool Framework for Static and Dynamic Analysis of Object-Oriented Software with Tem-
plates. Proceedings SC’2000, (2000)

6. Message Passing Interface Forum: MPI: A Message Passing Interface Standard. International
Journal of Supercomputer Applications (Special Issue on MPI) 8(3/4) (1994)

7. Malony, A., Shende, S.: Performance Technology for Complex Parallel and Distributed Sys-
tems. In: Kotsis, G., Kacsuk, P. (eds.): Distributed and Parallel Systems From Instruction
Parallelism to Cluster Computing. Proc. 3rd Workshop on Distributed and Parallel Systems,
DAPSYS 2000, Kluwer (2000) 37–46

8. Pallas GmbH: VAMPIR: Visualization and Analysis of MPI Resources.
http://www.pallas.de/pages/vampir.htm.

9. Parker, S.G., Beazley, D.M., Johnson, C.R.: Computational steering software systems and
strategies. IEEE Computational Science and Engineering, 4(4) (1997) 50–59

10. Parker. S.G., The SCIRun Problem Solving Environment and Computational Steering Soft-
ware System. PhD thesis, University of Utah (1999)

11. Parker, S.G., Johnson, C.R.: SCIRun: A scientific programming environment for computa-
tional steering. Proc. Supercomputing ‘95. IEEE Press (1995)

12. Parker, S.G., Weinstein, D.M., Johnson C.R.: The SCIRun computational steering software
system. In: Arge, E., Bruaset, A.M., Langtangen, H.P., (eds.): Modern Software Tools in
Scientific Computing, Birkhauser Press (1997) 1–44

13. Shende, S.: The Role of Instrumentation and Mapping in Performance Measurement. Ph.D.
Dissertation, University of Oregon (2001)

14. Shende, S., Malony, A., Ansell-Bell, R.: Instrumentation and Measurement Strategies for
Flexible and Portable Empirical Performance Evaluation. Proc. International Conference on
Parallel and Distributed Processing Techniques and Applications, PDPTA ’2001, CSREA,
(2001) 1150–1156

15. Shende, S., Malony, A., Cuny, J., Lindlan, K., Beckman, P., Karmesin, S.: Portable Profiling
and Tracing for Parallel Scientific Applications using C++. Proc. SIGMETRICS Symposium
on Parallel and Distributed Tools, SPDT’98, ACM, (1998) 134–145

