Uintah: A Massively Parallel Problem Solving Environment

J. Davison de St. Germain, John McCorquodale, Steven G. Parker, Christopher R. Johnson
Scientific Computing and Imaging Institute
University of Utah, Salt Lake City, UT 84112
{dav,mcq,sparker,crj} Qcs.utah.edu
http://www.cs.utah.edu/sci and hitp://www.csafe.utah.edu

Abstract

This paper describes Uintah, a component-based visual prob-
lem solving environment (PSE) that is designed to specifi-
cally address the unique problems of massively parallel com-
putation on terascale computing platforms. Uintah supports
the entire life cycle of scientific applications by allowing sci-
entific programmers to quickly and easily develop new tech-
niques, debug new implementations, and apply known al-
gorithms to solve novel problems. Uintah is built on three
principles: 1) As much as possible, the complezities of par-
allel execution should be handled for the scientist, 2) soft-
ware should be reusable at the component level, and 3) sci-
entists should be able to dynamically steer and visualize
their simulation results as the simulation executes. To pro-
vide this functionality, Uintah builds upon the best features
of the SCIRun PSE and the DoE Common Component Ar-
chitecture (CCA).

Introduction

Due to concerns about safety and environmental
impact, as well as the difficulty inherent in measur-
ing certain real world physical phenomena, many sci-
entists have turned to computer simulations to model
the real world. As these simulations become larger and
more complex, and as more accurate results in shorter
amounts of time are required, scientists continue to re-
quire more powerful computers. However, harnessing
the power of today’s latest supercomputers is a non-
trivial task and depends largely on the computational
software system in which the physical processes are
modeled and simulated.

In designing the Uintah software system, we focused
on three guiding properties. First, the complexities of
code creation for parallel machines should (as much as
possible) be hidden from the scientist. Second, com-
plex simulation components developed by third parties
should be available tools scientist can choose to em-
ploy. And third, the scientist should be able to visu-
ally monitor and steer her simulation while it is run-
ning. A software environment that efficiently integrates
these properties into a usable system will allow scien-
tists to effectively create and use complex simulations

in an interactive, exploratory way. The Uintah Prob-
lem Solving Environment (PSE) is such a system. It
allows scientists and engineers to focus on algorithm
development and data analysis rather than details of
the underlying software architecture without sacrific-
ing the ability to effectively realize the full potential of
large parallel computers.

Figure 1: A Typical C-SAFE Problem

While Uintah is designed to provide a general frame-
work in which a wide variety of large scale, massively
parallel simulations can be conducted, the specific prob-
lem that has driven its creation is the modeling of the
interactions between hydrocarbon fires, structures and
high-energy materials (explosives and propellants), as
shown in Figure 1. Exploring this problem is the mis-
sion of the Center for the Simulation of Accidental Fires
and Explosions (C-SAFE) [1], located on the campus
of the University of Utah. C-SAFE was created by the

Department of Energy’s Accelerated Strategic Com-
puting Initiative’s (ASCI) Academic Strategic Alliance
Program (ASAP) [5].

The problems studied within C-SAFE require the
ability to efficiently run physically coupled computa-
tions on over a billion particles contained in a grid of
over a billion cells, with time and length scales span-
ning over ten orders of magnitude, decomposed into
over a 100,000 computational/spatial regions running
on an 8000 processor distributed-memory supercom-
puter. This paper describes the architecture currently
under development in the continuing pursuit of this
goal.

Before discussing the Uintah PSE in more detail, we
provide some background on two important building
blocks upon which Uintah is based: SCIRun' and the
DOE Common Component Architecture (CCA).

The SCIRun Problem Solving Environ-
ment

Problem-solving in scientific computing typically in-
volves symbolic computation, numeric computation and
visualization of data. Historically, these tasks have
been carried out by separate tools which share common
data file formats. In 1987, the Visualization in Scien-
tific Computing (ViSC) workshop made some forward-
looking observations [7]: “Scientists ... want to drive
the scientific discovery process; they want to interact
with their data. Interactive visual computing is a pro-
cess whereby scientists communicate with data by ma-
nipulating its visual representation during processing.
The more sophisticated process of navigation allows sci-
entists to steer, or dynamically modify computations
while they are occurring. These processes are invalu-
able tools for scientific discovery.”

An interactive scientific Problem Solving Environ-
ment (PSE) [15] provides a complete set of tools for
a scientist to solve a class of problems. In our opin-
ion, a PSE integrates a domain-specific library with a
high-level visual user interface via a common software
infrastructure supporting dynamic data and program
modification. As an application runs in a PSE, a scien-
tist can dynamically visualize the data to assist in the
debugging process, as well as modify input conditions,
algorithms or other parameters of the simulation’s run-
ning state.

We believe these abilities contribute to a rich and
fundamentally superior environment for all phases of
computational science, from initial algorithm develop-
ment to performance tuning and debugging to appli-

!Pronounced “ski-run.” SCIRun derives its name from the
Scientific Computing and Imaging (SCI) Institute at the Univer-
sity of Utah.

cation steering. Tight integration of visualization with
steerable computation [13, 14] allows the cause-effect
relationships within a problem domain to become more
evident, allowing a scientist to develop more intuition
about not only the effects of problem parameters but
also about fundamental algorithmic approach.

The SCIRun scientific problem solving environment
has evolved to address this need for interactive, visual
computational steering in problems of bioelectric field
modeling [16] and computational medicine [10] (among
other applications). Its primary goal is to provide the
scientist with a comprehensive environment with in-
terfaces to control and interact with a simulation at
both application and system levels, and to use scien-
tific visualization in all aspects of the computational
endeavor.

SCIRun makes use of a programming model based
on functional dataflow. Atoms of computation in SCI-
Run are called modules and are assembled in a visual
programming environment into dataflow networks by
connecting together modules’ inputs and outputs, as
shown in figure 2.

Figure 2: A SCIRun application represented visually
as a dataflow network

Edges in this network represent streams of typed
objects flowing asynchronously among modules. SCI-
Run makes heavy use of threads within a single ad-
dress space to both support this asynchrony and pro-
vide substantial parallel speedups on a shared-memory
multiprocessor computer.

The interactive visual programming mechanisms de-
veloped for SCIRun have proven to be a convenient
and natural approach to both application construction
and runtime steering. However, the pure thread-based
dataflow module composition mechanism of SCIRun
lacks the ability to operate in a distributed-memory

environment. Furthermore, many scientific algorithms
are difficult to cast into a pure dataflow programming
model.

The Common Component Architecture

The Common Component Architecture Forum [2,
4] is working to define a language-independent soft-
ware interoperability standard targeted specifically to
the needs of massively parallel scientific computing.
Driving forces in its definition are the need for fast
connections among components that perform numeri-
cally intensive work and for parallel collective interac-
tions among components that use multiple processes or
threads. A compliant implementation enables the ex-
perimental combination of components from disparate
sources into large simulation codes without sacrificing
the performance advantages of parallel communication
and synchronization patterns across component bound-
aries.

Central to this achievement is the CCA port model.
A CCA port is a communication abstraction carefully
designed to simultaneously capture distributed-memory
parallel communication patterns (the collective port)
while allowing implementations to optimize shared ad-
dress-space inter-component communications as a sin-
gle indirect function call (the directly-connected port).
A simple example of a CCA application is shown in
Figure 3.

~MPI MPI MPI

> > >
T

B) 4+ > >

Collective W C(:D “* C:) - C:D - Q:> ecoe

directly connected

ports ENEET Process Parallel application

E Collective distributed

<}j ports NN

Components

(A Mesh

Krylov solver

(© Preconditioner
(@ Interpolation

(E) Visualization

Shared memory

5 R
. . -
: H : eoe

Visualization

Figure 3: Parallel CCA Component Interactions

The CCA is an ongoing effort to define standard
parallel data transport mechanisms and canonical wire
formats thus enabling rapid prototyping by pure com-
ponent composition without hand-written middleware
data translation code. The scientific interface defini-
tion language (SIDL) [6] and its prototype implementa-
tion automate the generation of data transport wrap-

pers in a language-neutral way, thus insuring compo-
nents written in many languages will seamlessly inter-
operate. Unlike other interface definition languages
such as the CORBA IDL [3], SIDL is sufficiently ex-
pressive to effeciently represent the abstractions and
data types common to scientific computing such as dy-
namically sized multidimensional arrays and complex
numbers.

Further, the CCA will ultimately specify a com-
ponent repository that collects and manages available
components. Component interactions with the reposi-
tory, and tasks of component cataloging and interface
registration, are automated by the SIDL tools. The
component repository is a mechanism to accumulate
components from disparate sources by a common cat-
aloging and distribution mechanism, to support com-
ponent proliferation and reuse.

The CCA is an enabling technology for computa-
tional steering in that it has been specifically designed
to allow the dynamic restructuring of massively parallel
applications. This enables researchers to introduce new
components or change component compositions during
the course of an ongoing simulation. However, the pre-
sentation of a steering-capable environment to the user
is outside its primary domain of concern. Uintah di-
rectly addresses the need for visual steering of CCA
applications.

The Uintah Architecture

Uintah is a new software system for computational
science that combines the proven exploratory visual
computing and computational steering capabilities of
the SCIRun PSE with the high-performance and nat-
urally parallel component composition mechanisms of
the CCA design to allow a visual, steerable problem
solving environment for tera-scale scientific computing.
While Uintah focuses on coupled chemistry and physics
simulations, it is capable of serving as a base framework
for a large number of scientific applications.

Component Model

Uintah generalizes component programming by al-
lowing different kinds of components to be connected
through different kinds of ports. A Uintah applica-
tion can be implemented by composing existing visu-
alization components which use the SCIRun dataflow
communication model with computational components
which adhere to the CCA. Component connections are
presented to the user uniformly by the Uintah PSE in-
terface. Data translations and control emulations are
performed through specific adapter components when
two or more components of different types are com-
posed. Uintah can be thought of as implementing a

component integration framework whose component ar-
chitecture is an extensible superset of both the Com-
mon Component Architecture and the SCIRun module
architecture.

The Uintah approach to software components ad-
dresses several key challenges of large-scale scientific
computing. The mechanism can provide steerability
to component families or entire component architec-
tures which could not previously attain this degree
of interactivity. This ability is, of course, predicated
upon technical details of each component architecture
related to such problems as dynamic recomposition.
At the very least, Uintah provides a uniform appli-
cation building and data interoperability environment
for multiple component architectures. We hope, in the
future, to extend Uintah to support other component
models, such as CORBA and COM, among others, as
needs arise.

This ability also encourages component reuse, since
programmers are not forced to rewrite large libraries
written in the “wrong” component architecture. Fur-
ther, CCA offers the promise of large bodies of existing
code being “wrapped” as CCA components and thus
able to be composed within the Uintah environment in
an efficient and parallel way. It is hoped that the future
availability of Uintah will provide a tangible incentive
to others to evolve potentially useful codes into CCA
components.

Resource Mapping and Simulation Startup

The current trend in supercomputing is to use a
large number of full function processors, grouped into
shared memory nodes of 2 to 128 processors. These
nodes communicate with each other using high speed
data interconnects such as HiPPI. To take full advan-
tage of this type of architecture, processes running on
a single node take advantage of hardware-assisted im-
plicit communication via shared memory to reduce com-
munication overhead and implementation complexity,
while also utilizing distributed-memory-style commu-
nications across the nodes of the largest parallel ma-
chines.

A Uintah application runs under the management
of a distributed steering-aware runtime environment.
For a complex application, this runtime environment
might ultimately span thousands of processes and thou-
sands of processors located in a large collection of com-
pute nodes connected by networks of widely varying
capabilities. Managing such a computation, especially
when a scientist’s steering decisions might cause large
perturbations to the topology of the runtime environ-
ment during computation, is a difficult challenge.

To address this challenge, Uintah begins by defining

a master control process (MCP) which is the concep-
tual “handle” on the computation as a whole. When
the MCP exits, the computation shuts down and all
computational resources are surrendered. Component
compositions and steering decisions are carried out un-
der the control of the MCP. The first step in computing
with Uintah is to start an MCP for the computation.
As the scientist builds her application and specifies
computing resources to use, the MCP will cause slave
controller processes (SCPs) to be started on particu-
lar compute nodes. We are currently investigating the
Globus [8] Toolkit as a mechanism to help deal with
the complexity of remote startup at remote sites in a
consistent and general way. The current Uintah pro-
totype uses ad hoc startup mechanisms tailored to the
idiosyncrasies of well-known computing resources.

Staging and Component Composition

Once SCPs are started and have a reliable com-
munication channel with the MCP, component bina-
ries are sent over this channel and dynamically linked
into the SCP. Thread-parallel components may result
in the SCP starting groups of worker threads (WTs)
which share an address space and fast communication
with each other, with the SCP and possibly with other
components running in the same address space.

Additionally, a single component may be logically
broken up into multiple address spaces running in mul-
tiple processes. This is the case for MPI applications
which have been wrapped as CCA components, and for
components that desire to use a mixed threads/MPI
programming model.

Finally, the SCP is responsible for all staging nec-
essary for component operation and may copy files, set
up environments for other processes, and so forth. An
example of this process structure is given in figure 4.

Control Workstation Key:
<— Nexus Low i
Simulatio Bandwidth Channel |

Control
Gul

"/ Individual ™"
U Module /_ Ty
TS_GUI R
N Slave

<= High Bandwidth |
Channel lgNexus i
and/or MPI) i

fffff As Necessary

One Per Virtual Cluster

+ MPI Communication
4

Worker Process
e N Memory Communication

One Per Virtual Address Space

Figure 4: Uintah Parallelization Strategy

Component Communication

As the final stage of the component composition
process, the SCPs and the MCP cooperate to establish
the potentially quite complex communication pathways
necessary for the threads of each component to talk
both to each other, and to the threads of other poten-
tially multithreaded components. This task is made
more difficult by the presence of many kinds of compo-
nents (SCIRun, CCA, etc.) which do not necessarily
share common expectations about communication.

Intercomponent communication: In a Uintah
simulation, threads belonging to two separate com-
ponents running in separate address spaces communi-
cate transparently through SIDL-based method calls.
These calls are transformed into messages layered on
the Nexus [9] parallel communication system. Nexus
provides an efficient, reliable asynchronous messaging
service that is well-suited to parallel component com-
munication and transparently handles the details of
primitive data translation in heterogeneous computing
environments. As a vital optimization, if two compo-
nents’ threads are located in the same address space,
Uintah implements communication between them at
the cost of a single (indirect) function call. Commu-
nication between two parallel components is still an
open research topic, but Uintah provides a flexible en-
vironment for prototyping these communication mech-
anisms.

Intracomponent communication: Components
themselves may be internally parallel. If this paral-
lelism is implemented within a single address space,
the components’ slices may communicate using shared
memory and indirect function calls as in the case of in-
tercomponent communication. Alternatively, compo-
nents may be implemented as collections of MPI pro-
cesses, in which case the slices of the component might
communicate with each other using MPI, provided a
thread-safe MPI implementation is available. Uintah
makes no restrictions on intracomponent communica-
tion, and the component programmer is free to opti-
mize to suit her particular needs.

An example illustrating some of this complexity is
found in figure 5. Here, a group of components (in this
case SCIRun modules) implementing a fire simulation
are running as two groups of 128 MPI processes on two
nodes of a large machine at Los Alamos National Lab.
Because these MPI processes are stand-alone entities,
no SCP is shown on the second node, but in practice
there may be one present to support other components
on that node. These processes communicate with each
other using MPI, and with the 32 processes of a parallel
visualization component using Nexus [9]. The results of
the visualization are delivered to the scientist’s screen

Control Workstation
(taurus.cs.utah.edu)

(taurus.cs.utah.edu)

Uintah PSE
Master Controller) Nexus

Process

viz
DISPLAY| |Uintah PSE

L N

Nexus

IPM / Fire Modules PM / Fire Modules

Nexus or OpenGL
1 Process [4 M 1 Process
Uintah PSE MPI Communication Uintah PSE
Slave Controller g Slave Controller
Parallel (N
Nexus SE Worker Pro
VIZ Module

32 Processes
Shared Memory Comm

P
E Worker Pro

128 Processes
Shared Memory Comm

128 Processes
Shared Memory Comm

128 Node SM Cluster 128 Node SM Cluster

32 Node SM Cluster

LANL Super Computer
(nirvana.lanl.gov)

Utah Super Computer
(rapture.cs.utah.edu)

Figure 5: Uintah Architecture Example

with the help of the visualization node’s SCP.
User Interaction

Uintah detaches the visual application steering in-
terface from the simulation itself (which exists as the
MCP), allowing steering infrastructure to be easily writ-
ten in languages appropriate to particular tasks, and
potentially allowing limited application steering via a
web browser.

Steering interfaces can be connected to and discon-
nected from a running simulation at will, and multiple
scientists can be simultaneously steering disjoint as-
pects of the simulation (hopefully in a non-competitive

way).
An Example Uintah Application

Because Uintah supports multiple types of com-
ponents and allows numerous communication mecha-
nisms and internal component behaviors, it is not pos-
sible to describe a single, canonical Uintah simulation.
Rather, we describe here one of many possible Uintah
component implementation styles and a simulation ses-
sion from initial specification, startup and execution
through eventual visualization and steering. This ex-
ample is chosen in order to more concretely illustrate
the operation of the Uintah component system.

Problem Specification

Consider a typical C-SAFE problem: a capped metal
cylinder filled with high-energy material is suspended
above a pool of hydrocarbon fuel burning with an open
flame, as shown in Figure 1. Energy from the flame

is transported though the metal cylinder to the high-
energy material, causing it to undergo complex chem-
ical changes. Solid deformations, deterioration and
cracking occur in both the cylinder and the high-energy
material as pressure within the cylinder builds, even-
tually leading to rupture and detonation.

Keronsene Pool Metal Pipe
15m diameter @ z=0| ", CFD State 1m long @ z=1m|,.... Solid State
Ignition Source b+ Time 0 stainless steel Time 0
containing HUX

Still Air BC

CFD State Solid State
(Top, Sides) Time t Timet
N/ y X

Implicit CFD MPM Molecular Dyn.
(Cc ion) (Solid Dy ics) (HE Material)
Reflective BC CFD State Solid State
(Bottom) Time t+1 Time t+1
<4—p Algorithmic Coupling » D

Figure 6: An Example Uintah Computation

As shown in Figure 6, we implement this simulation
by combining a collection of existing components and
providing some initial data on which they compute. In
this case, we combine a computational fluid dynamics
(CFD) [11, 12] component that simulates hydrocarbon
combustion and reactant transport with a component
that uses the material point method (MPM) [18] to
simulate the mechanics of solid deformation and energy
transport within the cylinder. The MPM component
uses constitutive micromodels for the high-energy ma-
terial parameterized on its temperature- and pressure-
dependent thermophysical and viscoelastic properties.
These parameters are computed from quantum molec-
ular dynamics simulations [17] performed under the
conditions within the cylinder. We represent the CFD
boundary conditions as separate components to facili-
tate a discussion of algorithmic steering below.

The CFD and MPM components’ visualization and
control GUIs are used to display, specify and steer these
components’ internal data. These GUIs are used to
specify the initial conditions for the simulation, includ-
ing an initial distribution of combustible material: in
this case a pool of kerosene on the ground, an ignition
source, and initially still air for oxidation. Also, an
initial distribution of material points and constitutive
models is constructed to represent a stainless steel pipe
1 meter long suspended above the ground containing
the explosive HMX in a polymer binder.

The physical and chemical models implemented by

the components in this example are themselves the sub-
jects of novel research at C-SAFE and as such are un-
dergoing continuing development. Their exact func-
tionality is not relevant to the following discussion of
the Uintah component system.

The actual component structure of a complete Uin-
tah simulation will be much more complex than that
indicated in Figure 6. This figure is contrived so that
we can discuss in detail the interesting facets of the
Uintah runtime environment without becoming bogged
down in the untenable complexity of the complete sys-
tem.

Data Warehouse

In Figure 6, ovals represent a component called the
Data Warehouse, which is tightly coupled with the
Uintah environment itself and provides storage man-
agement services useful for iterative parallel computa-
tions. The data warehouse presents developers with
an abstraction of a global single-assignment memory,
with automatic data lifetime management and storage
reclamation. The data warehouse is aware of compo-
nent slicing, and handles migration and distribution of
ghost data across spatially decomposed computations
in an efficient way. A Uintah simulation need not nec-
essarily keep its data in the data warehouse, but those
that do gain the advantage of these services.

The data warehouse is responsible for managing the
long term storage of the simulation’s data. At the sci-
entist’s request, the data warehouse will store, in a scal-
able and parallel way, interesting data to disk. Simu-
lations that take full advantage of the data warehouse
to store all their state can be checkpointed by simply
storing a full snapshot of state. The single assignment
semantics of the data warehouse assures that the data
existing at a timestep boundary can be identified and
used to safely restart the simulation, enabling the sci-
entist to “pick up and steer” a previously completed
simulation from an intermediate point.

Visualization components can take advantage of the
fact that the data warehouse is a central repository for
the simulation data. The visualization tool can ask
the data warehouse for subsets of the simulation data
(filtered in space and/or time), thus making the visual-
ization tool’s job of displaying informative much easier.

Resource Acquisition and Simulation Startup

The first step in starting a Uintah simulation ses-
sion is to start a Master Controller Process (MCP) on
a reliable machine and attach a Uintah PSE interface
to it. The scientist specifies the computation visually
within the PSE by selecting and connecting compo-
nents from the list of those available, to obtain a rep-

resentation similar to that depicted in Figure 2.

To facilitate easy access, MCPs can dynamically
register themselves with the C-SAFE web server, at
which point, any detachable PSE graphical user in-
terface (GUI) can request a list of registered MCPs.
Once the detachable PSE GUI connects to an MCP,
the MCP provides a snapshot of the current simula-
tion state (if any) to the GUI, where it is displayed to
the user.

When a user requests that a component be instanti-
ated, the MCP (or the user if she so indicates) chooses
the best machine(s) on which to run that component.
The first step towards instantiating the component on
the given machine is to create a Slave Controller Pro-
cess (SCP) on the machine. If the component is to run
on more than one machine (or shared memory node)
then a SCP will be created on each machine/node. The
SCP will then determine the resources available to it
(e.g. the number of shared memory processors) and
may allocate a number of threads which will handle
the execution of each of the component slices assigned
to the given SCP.

In this example we are running the simulation on
9 128-processor Origin 2000 boxes, resulting in 9 Slave
Controller Processes each handling component startup
on a 128 processor shared memory node.

Component Slicing and Communication

Arrows which can be thought of as representing
physical coupling in Figure 6 in fact represent com-
ponent interface connections within Uintah. In order
for two components to be connected, they must imple-
ment compatible interfaces. For example, the partic-
ular CFD and MPM components selected can be cou-
pled only because they both implement an interface
abstraction designed for coupling combustion and solid
mechanics algorithms.

It is important to keep in mind that the components
manipulated by the scientist from the Uintah PSE in-
terface are in fact parallel components which during
execution will each be implemented by perhaps thou-
sands of slices, where each slice may run with slices of
other components on the same processor of a large par-
allel machine. Thus interface composition correlates
with parallel communication during execution.

Since these interfaces are specified in SIDL, this
communication can be optimized with no special pro-
grammer effort for situations where slices are communi-
cating within the same address space, or across boxes
via Nexus, MPI or some other message-based trans-
port.

It is plain to see that the choice of assignment of
slices of components to particular processors is a criti-

cal factor in determining simulation performance. One
such assignment is shown in Figure 7. This assign-
ment may not result in optimal performance because
the coupling between CFD and MPM components may
require bandwidth in excess of that available between
processors. Placing communicating slices on different
processors within the same node is often a better choice
than choosing different nodes.

Processor nirvana:1

CFD Region 1
(plus ?hosl cells]
ime t

Implicit CFD
(Combustion)

Still Air BC
(Top, Sides)

Processor nirvana:2

CFD Region 2
plus %host cells
ime t

Implicit CFD
(Combustion)

Still Air BC
(Top, Sides)

N
CFD Region CFD Region
Time t+1 Time t+1
[]
[]
Processor nirvana:1025 [J
Processor nirvana:1024
MPM Region 1
(plus _?host MPs)
ime t , Still Air BC CFD Region 1024
’ ", 1 (Top, Sides) | \ (Plus gif:ggttceIIS)

4
Molecular Dyn. MPM
(HE Material) (Solid Dynamics)

Implicit CFD
Combustion)

S (
¥

PM Region “a
Time t+1 1
CFD Region 1024
Time t+1
[
[
[]
Processor nirvana: 1088

)

¥ Y
Molecular Dyn. MPM

(HE Material) (Solid Dynamics)

MPM Region 64
Time t+1

Figure 7: One Possible Slicing of the Computation in
Figure 6

The slicing and processor assignment used for a
particular computation is currently determined by the
combination of inputs from the user and dynamic de-
cisions made by a rudimentary scheduler. The task of
automating and optimizing this assignment is a spe-
cialization of the more general task of dynamic load
balancing by slice migration, and is a subject of ongo-
ing work beyond the scope of this paper.

Component Startup and Composition

Once a slicing strategy has been determined and
simulation execution is ready to begin, the master con-
troller delivers to each node’s slave controller informa-
tion about what slices it is to execute. This information
includes the actual component implementation binary,
which is dynamically linked into the slave controller

process. It also includes any staging and initialization
information the component requires, as well as all pa-
rameters and constants the component’s operation may
be parameterized upon that are not communicated over
one of the component’s interfaces.

The slave controller also receives information about
the component compositions (component interface con-
nections) its slices participate in. Those slices that are
composed within a single address space communicate
by (indirect) function call. Slice compositions between
address spaces are implemented by intervening Nexus
stub functions generated for the interfaces by the SIDL
stub generator. A standard dynamic function dispatch
table makes this selection possible, and enables steer-
ing by dynamic component recomposition, as described
below.

Once the slave controllers have successfully assem-
bled the desired simulation, slices begin executing. In
the case of our example simulation, computation within
each slice occurs as the slice’s requested data becomes
available in the data warehouse. The synchronization
and propagation of data among slices is internal to and
the primary purpose of the data warehouse component.
Synchronization between the data warehouse and other
components naturally follows from the normal caller-
blocks semantics of SIDL method invocations.

Steering and Dynamic Component Recomposi-
tion

Once a simulation is running, there are several fla-
vors of steering that are possible:

Data steering involves simply changing data val-
ues without affecting the algorithmic structure of the
program. In our example, data steering would involve
intercepting values as they are placed into the data
warehouse and storing others in their stead. The data
warehouse provides operations to make this possible.
For example, heptane could be added to the pool fire
simply by making the values for heptane species con-
centration nonzero in the combustion state near the
ground plane. The same visual data manipulation tools
that the scientist initially used to specify the kerosene
are now used to steer the application.

Algorithmic extension involves adding orthogo-
nal computation and data to a running simulation. For
example, we might add a volume visualization to the
simulation to study the effects of heptane addition on
CO5 concentration in the pool fire. We do this in the
same PSE interface in which we originally performed
component composition to construct the simulation.
This time we select a volume visualization component
and connect it to the desired data in the data ware-
house. The slices of this component are best run on

a 32-processor visualization machine located at Utah.
This machine is acquired and the component slices are
started exactly as before. The visualization slices re-
quest information from the data warehouse as the sci-
entist animates visualizations of the ever growing set of
simulation results. The single-assignment semantics of
the data warehouse ensure that this inspection is does
not affect the simulation progress.

Algorithmic steering involves changing the com-
ponent composition in such a way that the simulation
algorithm actually changes as it is running. For ex-
ample, the scientist might wonder about the effects of
more realistic outdoor air motion on the time to det-
onation. If there did not already exist a component
to simulate gusty winds, and her programming skills
were up to the task, she could quickly write one in
C++ as a specialized kind of CFD boundary condition
component. The SIDL tools would be used to generate
appropriate communication stubs for her implementa-
tion from the already existing CFD boundary condi-
tion interface. Now having a gusty wind component,
the scientist would load it into the PSE builder, and re-
compose the CFD component with it rather than with
the still-air BC component. The MCP and SCP coop-
erate to deliver her new component to the appropriate
boxes. On the next timestep boundary, the still-air BC
component would decouple itself from the CFD and the
framework would couple the gusty-wind BC component
to the CFD in its place. In such a scenario, the com-
ponents being uncoupled cooperate to determine when
the uncoupling can take place without sacrificing the
robustness of the overall simulation.

In all forms of steering, the scientist must ensure
that her steering decisions do not affect the stability
of the computation in an undesired way. Discontinu-
ous changes like the instantaneous addition of quantity
of heptane to the fire’s fuel source will produce dis-
continuous changes in pressure and temperature that
can ripple out as a wave of non-physical side-effects
throughout the computation. It is assumed that the
scientist understands the magnitudes and relevance of
these effects.

Conclusion

The Uintah PSE framework provides an environ-
ment that allows scientific programmers to more easily
create coupled, parallel simulation components while
at the same time allowing them to easily explore the
effects of dynamically changing a large number of pa-
rameters during a simulation run. Because of Uintah’s
component architecture which automates the grunge
work of communication and distribution, scientists can
also more easily explore the use of different methods to

solve the same problem.

The Uintah PSE is a very powerful simulation tool
that provides a number of advances over past tools.
These include support of both distributed and shared
memory computations, increasing the number and types
of components that are interoperable within a single
framework, adding additional data interfaces between
components (Dataflow and Uses/Provides ports for par-
allel communication), and allowing a detachable user
interface that supports a number of implementations
(such as a TCL, Java, or Web Based GUI). Uintah
combines the interaction capabilities of SCIRun with
the parallel-communication capabilities of the Com-
mon Component Architecture. This allows Uintah to
support a large number of interoperable, highly parallel
components.

References

[1] Center for the Simulation of Accidental Fires
and Explosions - Annual Report, Year 2.
http://www.csafe.utah.edu/documents.

[2] Common Component Architecture Forum.

http://z.ca.sandia.gov/ cca-forum.

[3] The Common Object Request Broker: Architecture
and Specification. Revision 2.0. OMG Document, June
1995.

[4] R. Armstrong, D. Gannon, A. Geist, K. Keahey,
S. Kohn, L. McInnes, S. Parker, and B. Smolinski.
Toward a Common Component Architecture for High-
Performance Scientific Computing. In Proceedings of
the 8th IEEE International Symposium on High Per-
formance Distributed Computing, 1999.

[5] Academic Strategic Alliances
http://www.llnl.gov/asci-alliances.

[6] A. Cleary, S. Kohn, S.G. Smith, and B. Smolin-
ski. Language Interoperability Mechanisms for High-
Performance Scientific Applications. In Proceedings
of the SIAM Workshop on Object-Oriented Methods
for Interoperable Scientific and Engineering Comput-
ing, October 1998.

Program.

[7] T. De Fanti et al. Special Issue on Visualization in Sci-
entific Computing. Computer Graphics, 21(6), 1987.

[8] I. Foster and C. Kesselman. Globus: A Metacomput-
ing Infrastructure Toolkit. Intl J. Supercomputer Ap-
plications, 11(2):115-128, 1997.

[9] I. Foster, C. Kesselman, and S. Tuecke. The Nexus
Approach to Integrating Multithreading and Commu-
nication. Journal of Parallel and Distributed Comput-
ing, 37:70-82, 1996.

[10] C. R. Johnson and S. G. Parker. Applications in Com-
putational Medicine Using SCIRun: A Computational

Steering Programming Environment. Supercomputing
’95, pages 2-19, 1995.

[11] B. A. Kashiwa, N. T. Padial, R. M. Rauenzahn, and
W.B. VanderHeyden. A cell-centered ice method for
multiphase flow simulations. Technical Report LA-
UR-93-3922, Los Alamos National Laboratory, 1994.

[12] S. A. Kumar. A Comparative Analysis of Solution Ap-
proaches for Steady-State Three-Dimensional Internal
Flows. Ph.D. Dissertation, Department of Chemical
and Fuels Engineering, University of Utah, 1999.

[13] M. Miller, C.D. Hansen, S.G. Parker, and C.R. John-
son. Simulation Steering with SCIRun in a Distributed
Memory Environment. In Seventh IEEE International
Symposium on High Performance Distributed Comput-
ing (HPDC-7), July 1998.

[14] S. G. Parker and C. R. Johnson. SCIRun: A Scientific
Programming Environment for Computational Steer-
ing. Supercomputing ’95, 1995.

[15] S.G. Parker, M. Miller, C.D. Hansen, and C.R. John-
son. An Integrated Problem Solving Environment:
The SCIRun Computational Steering System. In 31st
Hawaii International Conference on System Sciences
(HICSS-31), 1998.

[16] J.A. Schmidt, C.R. Johnson, and R.S. MacLeod. An
Interactive Computer Model for Defibrillation Device
Design. In International Congress on Electrocardiol-
ogy, pages 160-161, 1995.

[17] G. D. Smith, W. Paul, M Monkenbusch, L. Willner,
D. Richter, X. H. Qui, and M. D. Ediger. Molecular
dynamics of a 1,4 polybutadiene melt. comparison of
experiment and simulation. Macromolecules: Submit-
ted.

[18] D. Sulsky, Z. Chen, and H. L. Schreyer. A Parti-
cle Method for History Dependent Materials. Comp
. Methods Appl. Mech. Engrg, 118, 1994.

Acknowledgments

This work was supported by an award from the
DOE ASCI program. We would like to thank our C-
SAFE colleagues for their valuable insights relating to
the needs of scientists with respect to a general purpose
problem solving environment.

We would also like to thank Schonbucher Institute
for Technical Chemistry, University of Stuttgart for the
photo of a pool fire used in Figure 1.

