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Abstract. An ensemble of biological shapes can be represented and
analyzed with a dense set of point correspondences. In previous work,
optimal point placement was determined by optimizing an information
theoretic criterion that depends on relative spatial locations on differ-
ent shapes combined with pairwise Euclidean distances between nearby
points on the same shape. These choices have prevented such methods
from effectively characterizing shapes with complex geometry such as
thin or highly curved features. This paper extends previous methods for
automatic shape correspondence by taking into account the underlying
geometry of individual shapes. This is done by replacing the Euclidean
distance for intrashape pairwise particle interactions by the geodesic dis-
tance. A novel set of numerical techniques for fast distance computa-
tions on curved surfaces is used to extract these distances. In addition,
we introduce an intershape penalty term that incorporates surface nor-
mal information to achieve better particle correspondences near sharp
features. Finally, we demonstrate this new method on synthetic and bi-
ological datasets.

1 Introduction

A well established method for performing statistics on an ensemble of shapes is
to compare configurations of corresponding landmarks placed on the individual
shapes. In recent years, several methods have proposed an automatic placement
of landmarks in a way that captures statistical properties of an ensemble [1,
2]. The method of Cates et al [1] uses a formulation of ensemble entropy to
deploy a dense set of landmarks, or particles, which assign correspondences be-
tween shapes within a population. The positions of the particles on the shape
surfaces are optimized using a variational framework that tries to find a bal-
ance between model simplicity via minimum entropy, and geometric accuracy
of the surface representation. However, medical or biological objects shapes are
often composed of sharp features and regions of high curvature. In such cases,
nearby particles in the ambient space may be separated by a large distance on
the object’s surface (see Fig. 1). Thus, the Euclidean distance measure can-
not capture correctly the underlying local geometry and prevents the method
from producing a faithful shape representation. This limitation reflects a failure
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of Euclidean distance to account for the intrinsic distances between points on
the surface, suggesting geodesic distance as a better choice. However, geodesic
distances are generally not computable in closed form, and interparticle inter-
actions are part of the inner loop of an interactive optimization process. Thus,
the computational burden of geodesics are prohibitive. This paper makes sev-

Fig. 1. Points near sharp features (left) are not able to achieve good distributions
with Euclidean distance, because they do not lie in the same tangent space, which is
necessary for movement that is constrained to the surfaces. Points may be nearby and
interact (center) even though they sample very different parts of the surface. Points
on nearby features (right) on different shapes (blue and green) can come into incorrect
correspondence if the system considers only distance.

eral contributions that enable better modeling of ensembles composed of shapes
with a complex geometric structure. First, we incorporate geodesic distance mea-
sures into the framework proposed by Cates, et al [1]. While accurate geodesic
distance computation is unwieldy for implicit surfaces, very fast methods exist
to compute geodesic distances between vertices of 3D mesh representations of
shapes. Thus, we propose precomputing all pairwise distances on a somewhat
fine 3D mesh of an input surface and interpolate, as required, in the process
of optimizing intrashape particle interactions. To address mismatches of corre-
spondences on highly curved features across different shapes, we introduce an
intershape penalty that accounts for the behavior of normals on highly curved
geometry. Hence, the second contribution of our paper is to integrate this in-
tershape penalty term into the variational framework for model optimization
given in [1] to improve particle correspondences near sharp features. As a final
contribution we demonstrate the use of a correspondence-based method for the
analysis of highly curved (or nonregular) shapes—the left ventricle myocardium
of the human heart—which has, so far not feasible with point correspondences.

2 Background

In the following section we provide a brief overview the particle-system corre-
spondence optimization method as proposed in [1]. The general strategy of this
method is to represent correspondences as point sets that are distributed across
an ensemble of similar shapes by minimizing an objective function that quantifies
the entropy of the system. We also describe an efficient, fine-grained algorithm
for solving the eikonal equation on triangular meshes, as proposed by Fu et al [3]
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Correspondence Optimization. Let us define a surface as a smooth,
closed manifold of codimension one, which is a subset of Rd (e.g., d = 3 for
volumes). We sample the surface S ⊂ Rd using a discrete set of N points that
are considered as random variables Z = (X1,X2, . . . ,XN )T ,X ∈ Rd drawn
from a probability density function (PDF), p(X). We denote a realization of this
PDF with lower case, and thus we have z = (x1,x2, . . . ,xN )T , where z ∈ SN .
We refer to the positions x as particles, and to a set of particles as a parti-
cle system. The amount of information encoded in this random sampling is, in
the limit, the differential entropy of the PDF, given by H[X] = −E{log p(X)},
where E{·} is the expectation. Approximating the expectation by the sample
mean, we have H[X] ≈ − 1

Nd

∑
i log p(xi). To determine the probability of a

particle’s position, p(xi), [1] uses a nonparametric Parzen-window density es-
timation given by a mixture of multivariate, isotropic Gaussian kernels with
standard deviation σ that determines the strength of particles interaction with
N neighbouring particles within the defined window. An ensemble comprised of
M surfaces, E = z1, . . . , zM can be described by a Nd ×M matrix of particle
positions P = (xk

j ), where k = 1, . . . ,M and j = 1, . . . , N . Let zk ∈ RNd be an
instance of a random variable Z, then, the combined ensemble and shape cost
function is defined by

Q = H(Z)−
∑
k

H(P k) (1)

This cost function is composed of two interacting terms. The first term pro-
duces a compact distribution of samples in shape space, while the second term
provides uniformly-distributed correspondence positions on the shape surfaces,
to achieve a faithful shape representation. The optimization process of this cost
function is defined via gradient descent as described in [1].

Fast Geodesic Distance Computation. The use of Euclidean distance
between particles in the Parzen-window density estimation in [1] requires that
nearby particles interact in the local tangent plane of the surface. However, it is
not the case for thin structures with high curvature, such as the one illustrated in
Fig. 1 (left). To address this, we replace the Euclidean distance in the kernel by
the geodesic interparticle distance. However, this modification demands a large
number of pairwise geodesic distance computations. Such computations are not
feasible without the recent developments in fast, parallel algorithms for solving
hyperbolic partial differential equations (PDEs) as well as extremely fast SIMD
hardware in the form of graphics processors (GPUs). The distance between each
point a on the surface and every other point, is given by the solution to the
eikonal equation |∇u| = 1, as discussed in [4], using the boundary condition
u(a) = 0. The computation of distances to many thousands of points on large
ensembles of shapes is feasible only if the eikonal equation can be solved in a
small fraction of a second. The fast iterative method (FIM) [4] for regular grids is
not worst-case optimal, but is extremely efficient on parallel, SIMD architectures,
such as GPUs. Here, we use an extension of the FIM for triangular meshes [3].
This algorithm computes, for instance, distances between nodes on a mesh with
thousands of vertices in less than 30 seconds on a GPU.
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3 Methodology

The input to the shape correspondence system is a collection of implicitly de-
fined surfaces. For this paper, the input surfaces are binary segmentations, and
we use the preprocessing, initialization, and particle optimization pipeline de-
scribed in [1]. Here we describe the integration of the geodesic distance for inter-
particle interactions and the surface normal based penalty term for intershape
correspondence into the framework described in Sec. 2.

Particle Position Optimization using Geodesic Distances. A trian-
gulation of each input surface is generated using the algorithm described in [5].
An example triangulation is shown in Fig. 2(a) along with the corresponding
synthetic shape. The numerical technique for fast distance computation on 3D
triangulated surfaces described at the end of Sec. 2 is then used to precompute
geodesic distances between each vertex and all other vertices within a prescribed
distance, dmax. The parameter dmax is chosen to coincide with the limited range
of influence of the Gaussian kernels that control the range of influence of each
particle. This truncation results in a sparse, symmetric matrix of geodesic dis-
tances. The entries in this matrix are then converted into a fixed point format
and stored using a List of Lists (LIL) representation for efficient memory us-
age and fast access. We call this matrix MG such that DG(v1, v2) = MG[v1, v2],
where DG(v1, v2) is the geodesic distance between vertices v1, v2. Geodesic dis-
tances between particle positions on the implicit surface can now be computed
via a barycentric interpolation scheme described below.

(a) (b)

Fig. 2. (a) An example of a triangle mesh used for geodesic distance computations.
(b) Configuration for two-layered interpolation of geodesic distance between arbitrary
points: x and y are contained in triangles defined by vertices (x1, x2, x3) and (y1, y2, y3)
respectively. The geodesic distances between vertices for all shapes are precomputed
on a GPU.

To use this discrete set of distances between particles, which lie in the volume
and are constrained to lie on the implicit surface, we interpolate the mesh-
vertex distances to the faces of the triangles. This requires two layers of linear
interpolation on the faces of the mesh. Let the barycentric coordinates of a point
x in a triangle Tx defined by vertices (v1, v2, v3) be given by (α, β, γ) such that
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the location of x can be given as x = αv1 + βv2 + γv3 where α + β + γ = 1.
Consequently, any function of x can be interpolated as f(x) = αf(v1)+βf(v2)+
γf(v3) provided its value is known at all vertices in the mesh. For the case of
geodesic distances, the function f is the distance to another arbitrary point y,
which can be evaluated on each vertex using this same interpolation scheme
for the triangle Tx that contains y. To compute DG(x, y) in a fast and efficient
manner, we first determine the triangle faces on the mesh that contain points x
and y, by projecting them onto the nearest face in the mesh. Let these triangles
defined by vertices (x1, x2, x3) and (y1, y2, y3), as shown in Fig. 2. Since the
geodesic distance is a function defined between every pair of vertices in the
mesh, we can approximate the geodesic distance between points x and y as

DG(x, y) ≈ αDG(x1, y) + βDG(x2, y) + γDG(x3, y), (2)

DG(xi, y) ≈ αDG(xi, y1) + βDG(xi, y2) + γDG(xi, y3).

Each DG(xi, yi) is simply an entry in the matrix MG as described above. Thus,
using this two-layered interpolation scheme, we can approximate geodesic dis-
tances between particle positions on the implicit surface. The Gaussian forces of
repulsion governing the motion of particles can then be computed as a function
of these geodesic distances to improve sensitivity to the underlying geometry.

Correspondence Optimization with Surface Normals. The cost func-
tion described in Eq. 1 relies on particle positions to find a balance between a
compact ensemble representation and a good distribution of particles on each
surface. However, with an ensemble containing highly curved or convoluted sur-
faces, like those shown in Fig. 1, a reliance on only positional information may
lead to incorrect correspondences. To address this shortcoming, we propose the
addition of an intershape penalty term based on surface normals to disambiguate
correspondences near highly curved features. Thus, we associate with each par-
ticle on each surface a pair of d-tuples (xi, ni) ∈ Rd × S2, where S2 is the unit
sphere.

We denote the total collection of N normals across M shapes as V . With the
assumption that N > M . Assuming a Gaussian model with a covariance Σ, we
can compute the entropy

H(V ) ≈ 1

2
log |Σ| ≈ 1

2
log |

∑
i

∑
k

n̂ki · (n̂ki )T | (3)

For the ith particle on the kth shape, n̂ki = d(nki , n̄i), where n̄i is the Fréchet
mean defined in [6]. Since the normals are points on the Riemannian manifold
MεS2, n̂ki = Logn̄i(n

k
i ) [6]. In the tangent plane Tn̄iM, we have

n̂ki = Logn̄i(n
k
i ) =

Pt(n
k
i − n̄i) arccos(nki · n̄i)

1− (nki · n̄i)2
(4)

where Pt is the idempotent projection matrix given by (I − n̄i · (nki )T ). Since Σ
will not have a full rank in practice, we implement a regularization similar to that
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described in [1] to introduce a lower bound on the eigenvalues. The optimization
problem in Eq. 1 can now be reformulated as

Q = H(Z)−
∑
k

H(P k) +H(V ) (5)

The Riemannian distances are functions of normals; n̂ki = f(nki ), which in turn
are a function of position; nki = n(xki ), the gradient descent on H(V ) with respect
to particle position xi is given by the chain rule:

∂H(V )

∂xki
=
∂H(V )

∂n̂ki
· ∂f(nki )

∂nki
· ∂n(xki )

∂xki
(6)

This incremental update gets projected onto the tangent plane of the surface, as
part of the algorithm described in Sec. 2, in order to maintain the constraint that
particles remain on the surface. As with the geodesic distances, the curvature,
∂nki /∂x

k
i , is precomputed. Here we use the formulation of curvature for the level

sets of the volume using finite differences (combined with a Gaussian kernel of
standard deviation 1.0). The means of the normals are updated after each full
iteration (one update for every particle on every shape).

4 Results and Discussion

This section details experiments designed to illustrate and validate the proposed
method. First, we present an experiment with synthetically generated coffee bean
shapes, that consist of an ellipsoid with a slot or indentation, creating a high-
curvature feature that would confound the previous approaches. We also present
an application to a study of group differences in the left ventricular myocardium.

Synthetic Data. Computational solid geometry methods were used to com-

-2.0 0.0 2.0 -2.0 0.0 2.0

Fig. 3. Mean shape computed from the proposed method (left) and the original method
(right), projected onto the first (top) and second (bottom) PCA modes, and ±2 stan-
dard deviations

pute the intersection of a small ellipsoid with axes a, b and c, and a larger el-
lipsoid with axes A, B and C, to create a coffee bean shape. The slot was then
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moved and scaled stochastically, to create a population of 10 coffee bean shapes.
The position of the slot was chosen from a uniform distribution in the range
[−B/3, B/3], and its width was sampled from a Gaussian distribution of µ = 8
and σ = 2. Both, the method in [1] and the proposed method were applied to dis-
tribute 1024 correspondences across the ensemble. Both methods identified two
dominant modes of variation, with significantly different amount of leakage into
smaller modes. These modes are illustrated in Fig. 3 for both the methods, to
2 standard deviations. The proposed method lost 4% of the total variation into
smaller modes, compared to 16% lost by the original method. Thus, the proposed
method was able to characterize the variation in the population better than the
original method, while remaining faithful to the original shape representation
(as seen from the reconstructions in Fig. 3).

Application to Group Comparison. We applied the proposed methods
to study group differences in the left ventricular myocardium of ischemic patients
and non-ischemic controls, using segmented volumes of the left ventricular my-
ocardium at end diastole (ED) as inputs. The proposed method was used to ini-
tialize and optimize 1024 correspondences across the ensemble of 21 (12 patients,
9 controls) shapes. We then used parallel analysis to project the correspondences
into a lower dimensional space determined by choosing an optimal number of
basis vectors from principal component analysis (PCA). A standard, parametric
Hotelling T 2 test was used to test for group differences, with the null hypothesis
that the two groups are drawn from the same distribution. In this case, the hy-
pothesis test results in a highly significant p-value of 0.005, with 7 PCA modes
chosen by parallel analysis. Fig. 4 (bottom row) shows the differences between

Fig. 4. Visualizing mean differences between normal and ischemic groups (blue denotes
expansion and yellow denotes contraction) using [1] (top row) and the proposed method
(bottom row)

the mean shape surfaces for the normal and ischemic groups. To visualize the
group differences driving statistical results, we use the linear discriminant vector,
rotated from PCA space into the full dimensional shape space, and mapped onto
the mean group shape surfaces to give an indication of the significant morpho-
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logical differences between groups. The above experiment was also conducted
using the method described in [1]. The resulting group differences, visualized in
Fig. 4 (top row), were also found to be statistically significant with a p-value of
0.005 using the Hotelling T 2 test. However, the shape differences obtained using
the proposed method are found to be more consistent with previously published
results presented in [7], as compared to those obtained using [1].

5 Conclusion and Future Work

This paper extends the method given by [1] to improve particle distribution and
correspondences across an ensemble of highly convoluted surfaces. The first con-
tribution is the inclusion of geodesic distance to compute the intrashape particle
interactions, which results in improved sensitivity of the particle distribution to
the underlying surface geometry. The second contribution is the introduction of
an intershape penalty term based on surface normals, to improve correspondence
near sharp features. Results on synthetic and real data indicate that the pro-
posed method provides a practical solution to compute correspondence models
of ensembles of highly convoluted surfaces in an efficient and robust manner.
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