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Fig. 1. Above is a sequence of interactions performed during an exploration session in our system (also demonstrated in our ac-
companying video). Our interactive framework allows the user to specify representative control points (insets) of desired feature
types. These control points guide a mapping of the vector field points to the interactive texture canvas, where distances between the
projected points encode similarities between their localized neighborhoods. Feature-based visualizations are generated through a
painting interface, performed on this canvas.

Abstract—
We introduce a flexible technique for interactive exploration of vector field data through classification derived from user-specified
feature templates. Our method is founded on the observation that, while similar features within the vector field may be spatially
disparate, they share similar neighborhood characteristics. Users generate feature-based visualizations by interactively highlighting
well-accepted and domain specific representative feature points. Feature exploration begins with the computation of attributes that
describe the neighborhood of each sample within the input vector field. Compilation of these attributes forms a representation of
the vector field samples in the attribute space. We project the attribute points onto the canonical 2D plane to enable interactive
exploration of the vector field using a painting interface. The projection encodes the similarities between vector field points within the
distances computed between their associated attribute points. The proposed method is performed at interactive rates for enhanced
user experience and is completely flexible as showcased by the simultaneous identification of diverse feature types.

Index Terms—Vector field, data clustering, feature classification, high-dimensional data, user interaction

1 INTRODUCTION

Vector field visualization is a challenging research problem that re-
ceives continuous attention from researchers in the community. The
ability to explore and analyze vector fields is becoming increasingly
important as the datasets grow in size and complexity. Scientists
are collecting more detailed measurements of real world phenomena,
physically-based simulations are generating larger and more elaborate
datasets, while computer hardware advances are improving compu-
tational power. These factors motivate the need for new interactive
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vector field data exploration and visualization tools.

Integral curves are a powerful and popular vector field visualization
technique [43], evident by the number of variants and related research
efforts [26]. These techniques follow the motion of a particle through
the vector field, visualizing its trajectory. The effectiveness of these
techniques is based on their ability to mimic natural phenomena; such
as, smoke highlighting the updraft above a flame or creamer depicting
the swirling current of your morning coffee.

Despite the utility of integral curve based visualizations, they are not
without their complications. Particle tracing, in particular stream-
lines, stream-surfaces and dye advection, requires intelligent place-
ment of seed points in order to highlight interesting features. When
performed manually, for user driven exploration, it is easy to overlook
important structures in the vector flow. Furthermore, these methods
provide an exploration tool but neither identify nor extract structural
information of the vector field to facilitate other processing techniques.

Feature identification [31, 14], extraction [24, 23] and tracking [35,
3, 42] approaches address these concerns and have been developed
for domain specific feature types. The structural representations of
feature boundaries, automatically generated by these methods, prove



useful while visually browsing large vector fields to quickly identify
interesting components. This added structural information facilitates
other vector field processing; for example, guiding the placement of
seed points for integral curve visualizations.

Many algorithms explicitly define feature types, restricting them to
field singularities and vortices. However, in real world applications,
the definition of a feature is driven by the dataset, simulation and sci-
entists. For instance, ocean and weather visualizations indicate an
interest in shearing flows [10], engine combustion [13] and aerody-
namics simulations [20] focus on vortices, while wildfire prediction
models analyze updrafts and down wind laminar flows [28].

In this paper, we introduce a novel and flexible method to interactively
visually highlight user-specified feature types within a vector field.
Our feature exploration method adopts philosophies from database re-
trieval techniques that are used in a variety of applications from natu-
ral language processing [37] to geometric shape comparisons [41]. In
these domains, feature vectors are associated with the database entries.
Distance computations between feature vectors are used to infer simi-
larity relationships between the associated entries. Similarly, we map
the vector field samples into an attribute space where neighborhood
queries convey relational properties to facilitate feature classification,
illustrated in Fig. 1.

Contributions We introduce a novel interactive vector field visual-
ization technique that supports flexible exploration and classification.
We identify the following contributions:

• Flexible feature identification: The framework is not specific
to any research domain and can adapt to user specifications by
classifying any desired feature type.

• Novel application of a projection: We build on an approach,
typically found in the information visualization domain, to solve
a scientific visualization problem.

• Interactive vector field exploration: The implementation
makes use of efficient linear system libraries, threaded compu-
tations, and texture-based visualizations to focus on providing
an interactive exploration experience.

2 RELATED WORK

The rendering and study of vector fields has been an ongoing source
of research challenges for the past twenty years [27]. Numerical inte-
gration forms a popular subset of vector field visualization techniques
based on the real-world observations of the effectiveness of particle
movement to accentuate flow while tracking velocity [1]. Many vari-
eties of numerical integration based techniques exist, rendering: tubu-
lar trajectory paths (streamlines) [4, 11], multiple particle traces [33],
surfaces and volumes created by sets of trajectories [16, 25], and ad-
vect clouds of dye [39, 22] extended for large and time-varying flow
fields [21, 8]. Seeding these algorithms is important for their effec-
tiveness, and while approaches automatically address this challenge
[43, 44], manual exploration can be problematic. Furthermore, numer-
ical instabilities of the vector field integration may produce incorrect
visualization results. Line integral convolution methods [6, 19] over-
come seeding challenges using global advection of randomly gener-
ated textures. We similarly use texture mapping to achieve our visual-
izations, but do not advect points, rather we focus on data clustering.

Feature Characteristics While our framework develops visualiza-
tions of vector field data, its goal better aligns with feature classifi-
cation and extraction methods [32]. Such feature-based visualization
approaches rely on the computation of local neighborhoods in order
to identify certain structural elements. For instance, critical points,
where the vector magnitudes vanish, describe important features, i.e.,
sources, sinks, vortices and saddles. Detection of these points, study-
ing the eigenvalues of localized Jacobian [15] and Hodge decomposi-
tions [31], is useful in topology-based segmentation solutions [45].

Vortex specific detection methods are based on the observation that
these regions are described by high rotation [2]. Curvature-based
methods for vortex identification approximate the curvature in the
flow of localized neighborhoods [36, 29]. Velocity gradient-based ap-
proaches have also been used for this purpose [7], but problems arise
with first-order approximations that higher-order methods try to over-
come [34]. The λ2 operator [18] accommodates for these challenges
by refering to the second eigenvalue of the tensor S2 + Ω2, being the
symmetric and antisymmetric parts of the velocity gradients (Sec. 4.1).

User-driven Classification While the previous methods are success-
ful in extracting feature information, they are restricted to specific fea-
ture types. Several methods for flow characterization aim for more
generic feature identification solutions. Our work is most similar in
nature to the flow characterization methods using pattern matching and
neighborhood comparisons.

One such method compares localized vector neighborhoods to a set of
idealized, normalized feature neighborhoods [14]. Our method is re-
lated in that we compare, albeit implicitly, the similarity of the vector
field point neighborhoods to a set of desired feature neighborhoods.
In contrast, by defining rotationally invariant attribute descriptors our
framework does not require comparison to rotations of the input pat-
terns. Our framework is more flexible, allowing on-the-fly creation of
new features and facilitating interactive user-driven classification.

A second pattern matching scheme uses rotation, scale and transla-
tion invariant moments [38]. These moments are shown to be effec-
tive at differentiating flow patterns within 2D vector fields, and would
straightforwardly apply within our attribute space computation. These
invariant moments would provide an appropriate high dimensional
space for feature classification within our framework. Instead, we rely
on other computations widely used in feature extraction, i.e., λ2, for
their known extensions to volumetric flow, a future goal of this work.

Lastly, our work is most similar in goal and approach to multi-variate
brushing [17]. In this work, the Fruchterman-Reingold graph layout
algorithm projects a spanning tree, constructed over data points de-
scribed in a high dimensional space by their multi-variate values, to
the plane. The user interacts with the visualizations by brushing on
the projection. Our framework is built on similar interactions, but im-
plements a single direct solve for the parameterization, in contrast to
iterative force-based minimization. Our direct solve enables interac-
tive control of the projection and data clustering. We further distin-
guish our method by using control points representative of idealized
or user-selected feature types, to aid navigation and user brushing of
the 2D projections.

3 SYSTEM OVERVIEW

Illustrated on the right, our method begins by mapping the vector field
points into an attribute space (Sec. 4). Each coordinate of the attribute
space evaluates a specific compu-
tation over localized vector neigh-
borhoods. Next, a bidirectional
graph is constructed from the at-
tribute points that infers the global
relationships within the vector
field. The user identifies a set of
control points with vector neigh-
borhoods that are representative of
the desired feature types. These
points are mapped into the at-
tribute space and integrated within
the attribute graph. Then, a lin-
ear system solve projects the at-
tribute points to our interactive
texture canvas (Sec. 5), assigning
the uv-coordinates to each vector



field point used to color the fi-
nal feature-based visualizations via
texture mapping. The user cus-
tomizes the final visualization by modifying the control point loca-
tions and designing a texture over the interactive canvas (Sec. 6). Our
framework enables a flexible and interactive exploration of the vector
field features (Sec. 7).

4 ATTRIBUTE NEIGHBORHOOD GRAPH

Our technique is founded on the observation that, while similar fea-
tures within the dataset may be spatially disparate, they share similar
vector field neighborhood characteristics. As such, we associate at-
tribute feature vectors with each vector field sample, mapping the vec-
tor field points into a separate attribute space. In the remainder of the
paper spatial vector field neighborhoods of a point are referred to as
VS-neighbors while the neighborhoods in attribute space are denoted
AS-neighbors. The AS-neighbors of a point provide insight into the
relationships between different regions of the vector field (Fig. 2).

This section discusses the computation of the attribute feature vectors
and, over them, the construction of an attribute neighborhood graph,
necessary for the projection computations (Sec. 5). A binary space
partitioning data structure facilitates distance computations and AS-
neighborhood queries. Lastly, this section details the necessary pre-
cautions taken to build a graph with a single connected component.

4.1 Attribute Feature Vectors

An attribute is a measurable trait computed over the VS-neighborhood
of a sample point in the vector field. Each attribute describes a single
component of the attribute feature vectors associated with the points in
the vector field, illustrated in Fig. 2. The following list names some at-
tributes and describes their related computations used in the examples
shown throughout this paper.

X/Y-Component The computation of the x- or y-component returns
the corresponding value of the normalized vector for a given point
within the vector field.

Speed The speed computation measures the magnitude of the average
vector computed over the VS-neighborhood of a point.

Flux The flux attribute approximates the mass transport in/out of the
point pi’s VS-neighborhood, N VS

i . The attribute is computed by first
walking the boundary of the VS-neighborhood to evaluate a centroidal
point, pc. The flux is then approximated by summing the inner prod-
ucts of the VS-neighborhood vectors vj , ∀j ∈ N VS

i , and the differ-
ence of the VS-neighbor point pj and pc:

∑
j〈vj , pj − pc〉. Because

this method is summed over all points, rather than focusing on the
flux through the boundary, it supports vector fields in which mass is
injected. The mass transport is normalized by the area of pi’s VS-
neighborhood to accommodate for boundary points.

λ2 Operator The λ2 attribute differentiates vortex VS-
neighborhoods, a popular computation in the feature identification
literature [18]. This component builds the Jacobian matrix J (the
velocity gradient tensor) for a point, and computes the related
matrices: S = (J + JT )/2 and Ω = (J − JT )/2. The λ2 attribute is
the second eigenvalue of the matrix defined by S2 + Ω2.

We individually normalize the attributes to the range [−1, 1] so that
each component of the attribute feature vector is equally represented.
The l2-norm of the difference vector between two attribute feature
vectors vi and vj computes the distance d between them. This dis-
tance expresses the similarity of the VS-neighborhoods of vi and vj . It
is straightforward to set the relative importance of different attributes
by scaling the range over which they are normalized, increasing their
maximum possible contribution to the l2-norm, thus effecting the com-
putation of AS-neighborhoods.

Fig. 2. The vector field points, colored based on the associated vector
magnitudes, are mapped into an attribute space defined by attribute
components {ai}ni=0. Spatial proximity of two points in the attribute
space relates to the similarity between them.

A binary space partitioning (BSP) tree accelerates nearest AS-neighbor
queries. Each node is split into two based on the median value of a di-
mension of the node’s attribute feature vectors. The sorting dimension
used is computed based on the depth of the node within the BSP-tree,
sequentially looping over the attribute space dimensions as one walks
deeper into the tree structure. In practice, this splitting scheme is ef-
ficient because of our use of the Euclidean distance computation to
compare the attribute feature vectors.

4.2 Building the Graph

The k-nearest AS-neighbor search drives the construction of the graph
G. Bidirectional graph edges are stored between each attribute fea-
ture vector and its k AS-neighbors. In practice k = 13, large enough
to ensure a well connected graph, but not so large as to significantly

Fig. 3. The initial k-graph constructed over the points in the attribute
space may consist of multiple connected components Gi. We resolve
these by introducing new edges ex between the closest pairs of con-
nected components, illustrated above for a 2-dimensional example, until
a single connected component is described.



Fig. 4. AS-neighborhood queries initiate a traversal of the attribute
graph from a chosen seed point, revealing vector field similarities.
Above, the darkened vector glyphs correspond to neighboring points
in the attribute graph. The attributes computed for the dataset above
are the xy-components of the normalized vectors. As such, the neigh-
borhoods are expected to contain points with similar vector directions.

slow down the construction. Note that after inserting the k nearest AS-
neighbor edges, the number of edges emanating from each attribute
feature vector is at minimum k. Augmented by the BSP-tree, the con-
struction of an initial attribute graph is fast (Sec. 7).

It is possible that the initial graph G contains multiple connected com-
ponents. While the connected components reflect the clusters of sim-
ilar vector field samples, we require a single connected component
for the projection technique discussed in Sec. 5. We generate a sin-
gle connected graph structure, as illustrated in Fig. 3, by iteratively
connecting the closest pairs of connected components. This is per-
formed by constructing BSP-tree representations of each connected
component to augment distance computations. A priority queue sorts
the pairs of closest points, computed between each pair of graph com-
ponents, from nearest to furthest. Finally, the algorithm inserts new
edges into G until all components are connected by popping entries
from the queue.

Attribute Neighborhoods AS-neighborhood queries of the attribute
graph G allow a user to explore relationships within the vector field
by quickly highlighting similar regions throughout the input dataset.
Illustrated in Fig. 4, a graph traversal of G from a user selected seed
point is used to visualize the regions of the vector field with compara-
ble VS-neighborhoods. The vector field vertices are colored based on
the number of graph edges between them and the seed point, becoming
lighter as the path lengths grow.

5 ATTRIBUTE-BASED PARAMETRIZATION

In this section, we further exploit the attribute graph to project the
attribute feature vectors onto our interactive texture canvas. The re-
sulting projection provides the foundation of our painting interface
(Sec. 6) to facilitate vector field exploration. The uv-parametrization
associated with each point directly define the texture coordinates used
for color look-ups while displaying a tessellation of the vector field.

5.1 Solving the Projection

The mechanism we use to map points from the attribute space to the in-
teractive texture canvas (a unit square) is based on the LSP projection
technique [30]. However, instead of dealing with normal equations as
originally proposed in [30], we use the penalty method to impose con-
straints in the Laplace matrix so that our approach is computationally
more efficient.

The projection of the attribute graph G onto the interactive texture can-
vas is computed by solving two harmonic fields, u and v. The func-
tions each map the graph to the real numbers, f : G → R, bounded by
the range [0, 1]. We build the scalar fields by individually solving the
Laplace equation for each u and v,

∆f = ∇2f = 0,

User-specified Dirichlet boundary conditions, further discussed in
Sec. 5.2, are defined at a subset of attribute feature vectors C ∈ G.
The penalty method constrains the system so that it evaluates to the
desired values for these points, fi = ci, ∀i ∈ C.

Over the attribute graph, the Laplacian operator is discretized as

∆f =
∑

j∈NG
i

wij(fj − fi),

where N G
i is the set of vertices in the 1-ring neighborhood of G for

the attribute feature vector i, and wij is the weight assigned the edge
between the points vi and vj . In [30], Euclidean distances serve as
the weighting metric assigned to the graph edges. However, because
minimizing the stress error of the projection is not our primary aim, we
found combinatorial weightswij = 1.0 for all ij-pairs to be sufficient.
This avoids potential complications associated with the matrix rank.

The system of linear equations described above can be rewritten as a
matrix operation ∆f = −Lf . The matrix L encodes the graph edges

Lij =


∑

j∈NG
i
wij , if i = j,

−wij , if j ∈ N G
i ,

0, otherwise.

Because the edges of the attribute graph G are bi-directional, L is a
symmetric, positive-definite sparse matrix.

We use the penalty method to impose constraints to the linear system
[46]. Given the set of attribute feature vector constraints C, the har-
monic scalar field is obtained by solving the linear system,

(L+ P )f = Pb, (1)

where P is a diagonal matrix with non-zero entries, pii = α, for the
entries of constrained elements i ∈ C. The penalty weight α is a very
large value, in practice α = 108. The vector b has the entries

bi =

{
ci, if i ∈ C,
0, otherwise

(2)

where ci is the constraint value to be associated with the ith attribute
feature vector.

We opt to apply constraints with the penalty method for performance
purposes. This scheme is able to make use of supernodal solution
methods [9] to update (and downdate) the Cholesky factorization,
making it possible to efficiently include and remove constraints [46].
This is a crucial property, as our conditions change frequently with
user interactions. We implemented the linear system solves using the
CHOLMOD libraries [12]. In the following section we further discuss
how the user defines and interacts with the Dirichlet boundary condi-
tions of the linear system to manipulate the projection of the attribute
feature vectors to the plane.



Fig. 5. The user interface is composed of multiple windows (labeled above) that manage a set of linked views of the dataset. The main window
contains the vector field visualization with the user-designed texture as well as vector glyphs. The projection window provides the 2D canvas on
which the user designs the highlighting texture, manipulates the location of control points, and views the projection of the attribute points. The
control point window visualizes the selected control points, and, lastly, the brush dialog allows the user to affect their painting style.

5.2 Control Points

A control point is a representative point that describes a feature of in-
terest and constrains the Laplacian system solve during the projection.
To interact with the projection of the attribute feature vectors, a num-
ber of control points are defined within the attribute graph G. These
control points may be specified by the user in two ways: (1) loading
pre-generated, idealized vector fields, and (2) selecting points of inter-
est from the input vector field itself. Control points are assigned uv-
coordinates within the interactive texture canvas, defining the Dirichlet
boundary conditions of the u and v linear system solves, Equation 1.

We pre-generate a number of ideal vector fields centered around a fea-
ture point to be used as potential control points. For example, we
build idealized source and sink singularities, stationary, laminar, di-
vergent and convergent flows, as well as vortex and saddle vector field
patterns. When these idealized fields describe feature types, the user
loads them into our system through a menu drop down.

When the features are not known a priori, as in interactive exploration,
or when the idealized vector fields are not representative of the fea-
tures within the vector field, control points may be defined from the
dataset itself. To do so, the user selects a vector field vertex. The VS-
neighborhood of this point is duplicated and stored within the list of
control points. This aspect of our approach allows the user to dynam-
ically choose features of importance so that the method is not reliant
on pre-defined feature types.

Completing the Graph When a control point is defined, the attribute
graph G (Sec. 4) is augmented with the new attribute feature vectors.
The control point pi and its VS-neighborhood points {pj}j∈NVS

i
com-

pute an associated set of attribute feature vectors vi and {vj}. These
attribute feature vectors are inserted into the attribute graph G by in-
cluding new bidirectional edges between the points {vj} and their k-
nearest AS-neighbors within G. Graph edges are inserted between vi
and each VS-neighborhood point {vj}. Notably, we rely on the VS-
neighborhood of a control point pi, rather than its AS-neighborhood,
to dictate the new graph edges. In practice, connecting the control
points in this way improves the influence of these points, better dis-
tributing the projected points.

Completing the Solve Initially each control point is assigned the uv-

coordinates (0.5, 0.5), constraints defined in vector b (Equation 2).
Consequently, the linear system solutions for u and v collapse the pro-
jection to a single point. In the following section, we discuss the sys-
tem layout and user interactions that allow the projection to be intelli-
gently distributed over the interactive texture canvas.

6 SYSTEM INTERFACE

We provide a suite of tools to modify the attribute point projections,
design highlighting textures, and choose desired feature types in order
to facilitate data exploration. The user interface is composed of mul-
tiple windows, a set of linked views, that enhances interactivity [5].
Illustrated in Fig. 5, the system interface is divided into a main win-
dow that displays both the vector and projected attribute spaces of the
dataset. A second window displays a visualization of a control point’s
VS-neighborhood as the point is manipulated within the 2D projection
view. Lastly, a third window provides the ability to modify the paint
brush functionality.

Vector Field View The main window contains the primary view for
vector visualization and data exploration. The flow fields are visual-
ized with vector glyphs that provide contextual information. Selection
of a vector glyph highlights the AS-neighborhood, illustrated in Fig. 5
as the blackened glyphs and projection points. While it is possible to
load idealized vector field control points from file, within this main
view it is also possible to train the projection by selecting control
points directly from the input field. In practice, we have found this
functionality to be pivotal in extracting unique features and differenti-
ating between similar structures of the vector fields.

Projection View The 2D projection window displays the representa-
tion of the attribute space projected on the interactive texture canvas.
In this window, the control points used to constrain the system solve
(Sec. 5.1) are displayed in dark blue (Fig. 5). Moving a control point
interactively changes the projected cloud of attribute points updating
their uv-texture coordinates, demonstrating the relationships in the at-
tribute space. The user designed visualizations are created by painting
directly onto this view, rendering directly to a texture that is referenced
while displaying the tessellation of the vector field domain. Brushing
colored strokes over regions of this window containing subsets of the
projection identifies interesting components of the vector field via tex-



Fig. 6. Multiple visualizations for a magnet-like vector flow are generated
by varying the attribute computations and control points used. Within the
textures, projected points are light blue and control points are dark blue.
Directional vectors are classified (a), and moving control points over the
texture identifies two orthogonal vector directions (b). By changing the
attribute computations and using a stationary and laminar flow control
points, isolines of the vector magnitude are rendered via separate col-
ored strokes (c). Additional control points describing divergence and
convergence differentiate between the vector field critical points (d).

ture mapping. Illustrated in Fig. 5, the user defined texture classifies
different features of the dataset.

Control Point View To facilitate the management of multiple control
points, a second window displays their VS-neighborhoods. As the user
manipulates them within the 2D projection view, this window updates
the displayed VS-neighborhood glyphs to those of the chosen control
point. This window plays a crucial role in differentiating between the
separate control points.

User Interactions After loading a vector field dataset, users define
control points to guide the projection of the attribute points. These
control points may be loaded from a collection of analytically de-
fined vector fields saved to file, or by training the projection extracting
VS-neighborhoods directly from the dataset. Each control point is as-
signed an initial parameter value, in practice (0.5, 0.5), such that the
projection collapses to a single point.

The next task is to move the projected control points within the 2D
projection window, distributing the attribute points over the canvas.
Each control point constrains the Laplacian system (Sec. 5.1) by im-
posing Dirichlet boundary conditions for both the u- and v-solves, in
accordance with their new positions on the interactive texture canvas.
As the user modifies these boundary constraints, the system updates
the uv-coordinates of all projected points. We are able to efficiently
recompute the system solves and interactively update the projected at-
tribute point locations by leveraging multi-nodal solution schemes for
fast updates. In practice it is useful to separate dissimilar control points
in the projection window to distribute the attribute points as they relate
to each control. Sometimes additional training can be useful, extract-
ing multiple control points from the dataset that are representative of
the same feature type to better cluster the similar vector field points,
illustrated in Fig. 1.

The final responsibility of the user is to design a texture within the pro-
jection window to highlight attribute points related to the various con-
trol points. This texture is loaded during the display of the vector field,
instantaneously updating the resulting visualization. The use of the
brush dialog, changing paint strokes and colors, drives our visually-
based feature classification.

7 RESULTS AND DISCUSSION

Before delving into results from complex datasets, we seek to en-
hance our understanding of the projection methodology and interac-
tion process. Fig. 6 illustrates multiple visualizations of a manufac-
tured magnet-like dataset produced using our framework. The vector

Fig. 7. Feature-based visualization of a combustion simulation shows
four distinct flow types. Strong laminar flow (red) is near the center
of the simulation. Convergent (orange), divergent (yellow) and vortex
(black) flows are classified by projection training during the exploration.

field is generated with two singularity points, a source (left) and a sink
(right), then small, random vector perturbations were introduced to
each sample. We begin our discussion by describing the visualizations
produced within this controlled environment.

The first two visualizations in Fig. 6 (a and b) have the visual effects
of a normal map (a reproduction of the setup used in Fig 4). In this
example, the attribute space is 2-dimensional, defined by the X- and
Y-component attributes. The four control points are the laminar flows
aligned in the positive and negative, X- and Y-directions. By arranging
the four control points to the sides of the interactive texture canvas and
painting different color strokes at each point (Fig. 6a), the visualization
categorizes the vectors of the magnetic field based on their similarity to
ideal laminar flows in each direction. Moving pairs of control points
into the same locations (Fig. 6b) interactively updates the resulting
projection and visualization.

The second visualization example (Fig. 6c) is similar to Fig. 2, ex-
tracting information concerning the vector magnitudes within the input
field. In this scenario, the attribute space is 3-dimensional, described
by the speed, flux and λ2. The projected points are an affine combi-
nation of the two control points, the idealized stationary and laminar



Fig. 8. Exploration of an ocean current simulation differentiating between two pairs of similar features: vortical eddies and laminar currents. Eddy
A (light blue) highlights a circular vortex while Eddy B (dark blue) is elongated. In-shore currents (sky blue) are also differentiated from off-shore
currents (navy blue).

flows, located on opposite sides of the texture canvas. Designing the
texture with series of paint strokes along the projected points, varying
in color from dark to light, identifies level-sets of the flow field with
similar vector magnitudes.

The final magnet-like field example (Fig. 6d) demonstrates the effects
of using additional control points. The attribute space is the same 3-
dimensional coordinate system used in the previous example, and the
four control points correspond to idealized stationary, laminar, diver-
gent and convergent fields. The addition of the new control points en-
ables the differentiation between source and sink singularities by clas-
sifying the projected points near to the divergent or convergent flow
points, separately. This is highlighted in the image by using red and
orange colors around the two idealized control points. The exploratory
process for this example is also shown in the accompanying video.

7.1 Simulation datasets

To emphasize the effectiveness of our framework, we present the re-
sults of our software from several exploration sessions of different sim-
ulation datasets. These results showcase the flexibility of our system,
identifying overlapping and unique features across the assorted mod-
els and sessions. The datasets are 2D slices extracted from the out-
put volumes of (1) a combustion simulation of an explosion generated
with four fuel injection points, and (2) an ocean current simulation
along a section of the Pacific seacoast. The physically-based vector
fields exhibit a dynamic nature with many interesting features, includ-
ing swirling patterns, updrafts, shearing flows, among others.

Using our feature exploration framework, we highlight different com-
ponents of the two datasets, illustrated in Figures 7 and 8. In the
combustion results, the convergent (orange), divergent (yellow), vor-
tices (black) and laminar updrafts (red) are individually characterized.
The projected attribute points facilitate the global identification of the
feature types defined by the user through the control point selection.
For the ocean dataset, we further illustrate the power of our method
by differentiating between variations of similar feature types. For
instance, the results distinguish off-shore ocean currents (dark blue)
from the shallower in-shore currents (sky blue), the difference being
vector magnitudes. Similarly, we extract two eddies separately, one
being oblong (blue) while the other follows a tight circular pattern
(light blue).

In practice, the ability to train the projections is a useful functionality
of our framework. We use the attribute graph AS-neighborhood queries
to identify vector field points that represent interesting components for

classification and use them as control points in the projection window.
The textures are designed around the control points, highlighting each
with unique colors to simultaneously classify distinct feature regions
within the dataset. Feedback from engineers and domain scientists in-
dicate that this framework is useful for the exploration of simulation
data and debugging the code that generates it. Engineers exploring
our system were able to immediately identify its utility for use in their
everyday work ranging from analysis to visualization. For instance, a
useful interaction is the identification of divergent flow in incompress-
ible fluid simulations representing bugs in the underlying code.

7.2 Analysis and Comparison

The described method was designed in C++ using the CHOLMOD and
Qt libraries. The running times for the assorted operations performed
during the exploration sessions described in the previous sections were
performed on commodity desktop computers with Linux, MacOS and
Windows. Table 7.1 presents the median, minimum, maximum and
standard deviation of the timings required to compute the attribute fea-
ture vectors, the initial graph setup, the single connected component
resolution, and the uv-projection solves. While the attribute feature
vectors and graph construction represent the most computationally
heavy operations, they are one time pre-processes performed at load
time and are highly parallelizable. Our system relies on fast compu-
tations during the projection phase, and for this, the average response
time is well below 0.01s, maintaining an interactive experience. All
timings presented are performed on a 2.26 GHz Quad-Core Intel Xeon
with 16GB memory.

Limitations When projecting a high dimensional space to lower di-
mensions, information is lost. While the projection facilitates the ex-
ploration of the vector field and its feature regions, poor selection of
the control points and/or their locations complicates the identification
of separate feature regions. Our framework requires user knowledge
about the data and its feature types, as well as careful manipulation of
the control points to distribute the projection in a way that is easy to
distinguish features.

Despite these challenges, navigation within the 2D projection space
is advantageous in that users focus on neighborhoods qualities rather
than the numeric quantities associated with them. The use of pre-
generated analytic feature neighborhoods provides an initial semi-
automated feature classification that facilitate the exploration process.
Additional paint tools may directly expose numerical measures of each
attribute to support queries based on statistical information. Further,



Dataset Size Attribute Graph Build Component Reduction Anchor Insertion System Solve
|V| (min, median, max) (min, median, max) (min, median, max) (min, median, max) (min, median, max)

Combustion 40k (0.142, 2.656, 2.678) (0.034, 0.232, 0.296) (0.011, 0.011, 0.029) (0.006, 0.059, 0.136) (0.000, 0.001, 0.048)
Ocean 49.2k (0.226, 0.2405, 3.286) (0.046, 0.1065, 0.277) (0.015, 0.016, 0.091) (0.005, 0.041, 0.094) (0.003, 0.004, 0.098)

Magnet 100k (0.335, 0.499, 6.734) (0.084, 0.194, 0.365) (0.027, 0.029, 0.128) (0.049, 0.087, 0.188) (0.004, 0.005, 0.097)

Table 1. The system timings (in seconds) accumulated for operations performed during the exploration sessions described in Sec. 6 with dataset
sizes given in terms of the number of vertices (|V|). While initialization of the graph structure is expensive, the interactivity of the system relies on
fast performance for the projection method. Note that the timing variances recorded during the attribute space construction are reflective of the
computational complexity associated with different attributes.

developers may enrich the attribute space to better differentiate new
and specific feature types.

8 CONCLUSION

We introduce a system for the interactive exploration of vector data by
adopting ideas from database retrieval techniques. The method maps
the vector field points into an attribute space, where distance com-
putations convey similarity between different points. In practice, we
found that an attribute space with a relatively low dimensionality was
sufficient in extracting the desired information; however, an arbitrary
number of attributes can be used.

The discussed framework enables a flexible feature classification
based method that is independent of the desired feature types and re-
search domain. The user-driven identification process is enhanced by
providing on-the-fly control point selection and texture painting. In
our results, we illustrate the ability of our technique to not only extract
different feature types from a dataset, but also, differentiate between
varying types of the same feature structure. These abilities are demon-
strated in the accompanying video.

The linear system solver used in our implementation efficiently evalu-
ates the projection of the attribute points to the unit square. The pro-
jection provides uv-coordinates for the vector field points to enable
texture mapped visualizations. The method scales to allow the explo-
ration of large datasets while maintaining an interactive experience.

We propose a novel application building on information visualization
based multi-dimensional scaling methods in conjunction with scien-
tific visualization techniques to improve exploration of vector data.
Our approach is noteworthy in that it supports a combination of ide-
alized and data-specific features. We make use of efficient linear sys-
tem libraries, threaded computations, and texture-based visualizations.
This allows us to provide an interactive exploration experience that
uniquely contributes to the field of feature-based visualization.

Future Work This research introduces many interesting extensions
for future study, including augmentation of dye advection and LIC
visualizations as well as the improving placement of seed points for
streamline computations. Most immediately, however, we are explor-
ing the extension of our techniques to volumetric vector fields and time
varying datasets. Extension to volumetric datasets can make use of the
existing framework, mapping the data samples to the high dimensional
attribute space then projecting downward to the 2D canvas; however,
it means that attribute neighborhood computations are adapted for the
added dimension. The interactive tools are complicated by naviga-
tion of volumetric datasets, demanding the implementation of addi-
tional interface machinery [40]. Moreover, we are currently working
on replacing the texture mapping scheme with volume rendering tech-
niques. Lastly, we are investigating different methods of handling time
varying data, weighing the benefits of adapting the graph construction
versus considering temporal attribute neighborhood computations.
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[28] N. Mölders and G. Kramm. Influence of wildfire induced land-cover
changes on clouds and precipitation in interior alaska – a case study. At-
mospheric Research, 84(2):142–168, 2007.

[29] H. Pagendarm, B. Henne, and M. Rutten. Detecting vortical phenom-
ena in vector data by medium-scale correlation. IEEE Transactions on
Visualization and Computer Graphics, 5:409–412, 1999.

[30] F. V. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz. Least
square projection: A fast high-precision multidimensional projection
technique and its application to document mapping. IEEE Transactions
on Visualization and Computer Graphics, 14(3):564–575, 2008.

[31] K. Polthier and E. Preus. Identifying vector field singularities using a
discrete hodge decomposition. Visualization and Mathematics III, pages
113–134, 2003.

[32] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. The
state of the art in flow visualization: Feature extraction and tracking. Eu-
roGraphics, 22(4):1–17, 2003.

[33] S. Rogers, P. Buning, F. Merritt, and S. Follin. Distributed interac-
tive graphics applications in computational fluid dynamics. Interna-
tional Journal of High Performance Computing Applications, 1(4):96–
105, 1987.

[34] M. Roth and R. Peikert. A higher-order method for finding vortex
core lines. IEEE Transactions on Visualization and Computer Graphics,
4:143–150, 1998.

[35] I. Sadarjoen and F. Post. Detection, quantification, and tracking of vor-
tices using streamline geometry. Computers and Graphics, 24(3):333–
341, 2000.

[36] I. Sadarjoen, F. Post, B. Ma, D. Banks, and H. Pagendarm. Selective
visualization of vortices in hydrodynamic flows. IEEE Transactions on
Visualization and Computer Graphics, 4:151–158, 1998.

[37] G. Salton and C. Buckley. Term-weighting approaches in automatic
text retrieval. Information Processing and Management, 24(5):513–523,
1988.

[38] M. Schlemmer, M. Heringer, F. Morr, I. Hotz, M.-H. Bertram, C. Garth,
W. Kollmann, B. Hamann, and H. Hagen. Moment invariants for the anal-
ysis of 2d flow fields. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1743–1750, 2007.

[39] H.-W. Shen, C. Johnson, and K.-L. Ma. Visualizing vector fields using
line integral convolution and dye advection. Symposium on Volume Visu-
alization, 2:63–70, 1996.

[40] D. Speray and S. Kennon. Volume probes: interactive data exploration
on arbitrary grids. Workshop on Volume visualization, pages 5–12, 1990.

[41] J. Tangelder and R. Veltkamp. A survey of content based 3d shape re-
trieval methods. Shape Modeling International, pages 145–156, 2004.

[42] H. Theisel and H.-P. Seidel. Feature flow fields. IEEE Symposium on
Data Visualisation, pages 141–148, 2003.

[43] G. Turk and D. Banks. Image-guided streamline placement. ACM SIG-
GRAPH, pages 453–460, 1996.

[44] V. Verma, D. Kao, and A. Pang. A flow-guided streamline seeding strat-
egy. IEEE Transactions on Visualization and Computer Graphics, 6:163–
170, 2000.

[45] R. Westermann, C. Johnson, and T. Ertl. Topology preserving smooth-
ing of vector fields. IEEE Transactions on Visualization and Computer
Graphics, 7:222–229, 2001.

[46] K. Xu, H. Zhang, D. Cohen-Or, and Y. Xiong. Dynamic harmonic fields
for surface processing. Computer Graphics, 33(3):391–398, 2009.


