
Practical Parallel Remote Method Invocation for the Babel
Compiler

Kostadin Damevski Keming Zhang Steven Parker

Scientific Computing and Imaging Institute
University of Utah, Salt Lake City, Utah 84112, USA

{damevski,kzhang,sparker}@cs.utah.edu

Abstract
Parallel components are types of software components that
contain Single Program Multiple Data (SPMD) parallel code
and are used and defined by the Common Component Archi-
tecture (CCA) component model. Parallel Remote Method
Invocation (PRMI) defines a communication paradigm be-
tween two parallel components of this kind. Within the CCA
community, we define PRMI to include two parts: collective
invocations and data redistribution. In this paper, we devise
a way to build PRMI onto the Babel compiler, which is a
central supporting technology of CCA. We perform this inte-
gration cleanly, by preserving Babel’s design principles and
allowing user choice in the wire protocol and parallel com-
munication library. In addition to this, we define a novel set
of synchronization options for PRMI that allow trading off
synchronization for better performance while not endanger-
ing the accuracy of the result.

Categories and Subject Descriptors D.1.3 [Concurrent
Programming]: Parallel Programming

General Terms Algorithms, Design

Keywords IDL Compiler, Parallel Remote Method Invoca-
tion

1. Introduction
In recent years, component technology has been a success-
ful methodology for large-scale commercial software devel-
opment. Component technology encapsulates a set of fre-
quently used functions into a component and makes the im-
plementation transparent to the users. Application develop-
ers typically use a group of components, connecting them

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

HPC-GECO/CompFrame’07,October 21–22, 2007, Montréal, Qúebec, Canada.
Copyright c© 2007 ACM 978-1-59593-867-1/07/0010. . . $5.00

to create an executable application. While component soft-
ware technology is an important and widely used tool in soft-
ware development, commodity component implementations
do not support the needs of high performance scientific com-
puting: low overhead, scientific data types, and parallel pro-
gramming. To remedy this, the CCA (Common Component
Architecture) [1] group was formed among various universi-
ties and research institutions to add the functionality of com-
ponents to existing scientific computing code while preserv-
ing the natural speed and efficiency that this code contains.

The CCA component model relies on a Scientific In-
terface Definition Language (SIDL) to define components,
ports, as well as define the component model itself. A com-
ponent specification is written in SIDL and compiled into
glue code that is later compiled into an executable together
with the user code. The prevalent way of compiling SIDL
is by using the Babel compiler [10]. Babel has the capabil-
ity of compiling SIDL to bindings for several popular pro-
gramming languages (C++, Java, Python, Fortran77 and For-
tran95), enabling coupling of components written in any of
these languages. Babel has a large and growing user commu-
nity and is an important technology behind the CCA compo-
nent model. Recently, the compiler was upgraded to produce
bindings for distributed computing through Remote Method
Invocation (RMI). The Babel RMI bindings provide a way
for components existing on separate computing resources to
communicate with little or no help from the user. Babel’s
RMI also provides a general interface within the compiler to
plug in any kind of wire protocol. The wire protocol library
is invoked by the Babel generated code to produce behavior
that the user is expecting.

Scientific computing is adopting more complex simula-
tions that combine multiple physical models. These simu-
lations apply several live simulation programs as dynamic
boundary conditions in place of the traditional static bound-
ary condition approaches. This new approach is common in
biological cell modeling, climate modeling, fusion energy
simulations and other domains. It produces results that have
higher fidelity, but requires coupling of separate simulations.
Oftentimes this coupling needs to bridge different scales and

different data decompositing. Parallel Remote Method In-
vocation (PRMI) is the component software solution to this
new set of problems in scientific computing simulations. In
fact, we are aware of several applications that currently use
Babel that could benefit from the addition of a this infras-
tructure.

Parallel programming is a tool that is consistently lever-
aged by many scientific programmers in order to increase
performance. As a result, the ability to support parallel com-
ponents is crucial when trying to provide components for
scientific computing. The choice of parallel programming
model most commonly used in scientific codes is SPMD
(Single Program Multiple Data). Parallel components that
encapsulate scientific code often rely on MPI (Message Pass-
ing Interface) [11], PVM (Parallel Virtual Machine) [13]
or other products that facilitates parallel programming. Al-
lowing parallel components of this kind to exist within a
component framework comes at very little extra cost to
the framework designer. However, the interaction seman-
tics (i.e., method invocations) between two parallel com-
ponents and between a parallel and nonparallel component
does require outside support. This is especially true when
the number of processes differ between the caller and callee
components. We use the term PRMI to describe this type of
a method invocation. In order to achieve the full practical
potential of PRMI we use M-by-N data redistribution. The
data redistribution problem comes about when, in order to
increase efficiency, data is subdivided among M cooperat-
ing parallel tasks within one component. When two or more
components of this type are required to perform a separate
computation on the same data, this data distribution has to be
decoded and mapped from the first component to the second
component’s specification. Because each component can re-
quire a different data distribution to a separate number of
parallel tasks, this problem can get complicated. Also, since
components can be connected at runtime, their distribution
requirements are not known a priori.

The PRMI problem has had a few high level solutions
within the CCA community [4]. Existing PRMI implemen-
tations use collective semantics for the invocation to involve
all caller and callee processes regardless of whether their
numbers match. A data redistribution mechanism is used to
provide each process with the needed part of the domain.
Many questions still remain of the synchronization guar-
antees that are provided by a collective invocation. Being
overly asynchronous may get the wrong result while being
completely synchronous and conservative means far slower
execution times. The synchronization issue is further limited
by different architectures that may not provide threads and
parallel libraries (e.g. MPI) upon which PRMI is based may
or may not be thread-safe.

Most PRMI implementations so far have not affected the
larger CCA user community. We believe that building PRMI
within the Babel compiler would have a large impact and

would likely be welcomed by the larger HPC community. In
this paper we contribute a way to add PRMI to the Babel
compiler, while also giving the user choice whenever pos-
sible in the amount of synchronization. This paper presents
an addition of the Babel compiler that: 1) supports PRMI
and data redistribution, 2) can work with any communica-
tion protocol implemented for Babel, and 3) provides several
synchronization options (constrained by the communication
protocols in Babel and the parallel protocol used in the com-
ponent).

We organize the discussion of our PRMI design as fol-
lows. Section 2 contains a discussion of the background
knowledge behind PRMI and Babel. In Section 3 we present
some of the related work, and in Section 4 we show a de-
tailed view of our design and implementation of the PRMI in
the Babel compiler. Section 5 contains an analysis of the syn-
chronization options in PRMI. Finally, we finish with con-
clusions of the project in Section 6.

2. Background and Related Work
2.1 SIDL and Babel

The Babel compiler translates SIDL interface specifications
into glue code for using these interfaces in several program-
ming languages. The SIDL language is used to specify types
in an implementable and platform independent form and is
necessary in defining CCA components. It is able to define
classes containing sets of implementable methods, multidi-
mensional arrays, and an extensive set of basic types (e.g.
integers, floats, strings, complex numbers, etc.). Classescan
specify only methods and not variables. Multidimensional
arrays can be declared in method signatures, but arrays of
arrays are disallowed. Every argument in a method has three
parts: a mode, a type and a name. The type and name are
normal to most programming languages, while the mode is
particular to IDLs. The mode specifies the flow of the argu-
ment when the method is called and can be one of three op-
tions: in, out or inout. Here is a class called UFO expressed
in SIDL:

class UFO {

void reportSighting(in int num_contacts,

out long ID);

}

The reportSightingmethod description above requires
two parameters. The number of contacts should be a mean-
ingful parameter to the method. However, the ID argument
has pass-by-reference semantics. The method will place this
argument in the buffer provided during its execution and re-
turn it to the calling code.

When compiled using the SIDL compiler, two corre-
sponding parts are produced from the SIDL specification:
the stub and the skeleton. These represent the “wiring”
which needs to be in place for two components to interact.
The stub is associated with the client code and the skele-

ton is coupled with the server implementation. The stub and
skeleton code act as proxies for the method invocations from
the consumer to the appropriate implementation routines of
the producer. The book by Szyperski [14] gives an excellent
overview of components and various commodity component
models.

On input of one or more SIDL interfaces, Babel produces
a set of files containing stub and skeleton code. To sup-
port distributed objects on any platform using any OS, the
stub and skeleton are coupled with all of the necessary mar-
shaling/unmarshaling and networking code. To use a Babel
object in the same address space a proxy needs to be in-
stantiated by using acreatemethod. This object’s methods
can subsequently be invoked on this proxy. A few additional
user-level methods exist in Babel that were added to enable
using an object in a separate address space (or RMI):

<T> _createRemote(in string url);

static <T> _connect(in string url);

string _getURL();

The createRemotemethod is self-explanatory, it creates
an object in a remote location specified by a URL and returns
a proxy object in the local address space. Theconnect
method creates a proxy object for an already existing remote
object when provided with a URL representing a listening
object. getURL returns this URL string representation of
an instantiated object that can be used to create a proxy
while also initializing the object to listen for remote method
invocations. As in regular method invocations, the user calls
methods on the proxy and receives a response. The user does
nothing different to invoke methods on RMI proxies that will
actually travel on the network to a remote object.

2.2 PRMI

PRMI occurs when a request is made for a method invoca-
tion on a parallel component or when a parallel component
itself makes such a request. This request can have different
semantics. For instance, the request can be made to all or
from all of the processes on the parallel component or it can
involve only one representative process. The return value can
be discarded, reduced, or copied to each process participat-
ing in the invocation. The number of options regarding paral-
lel invocations is significant and there is no single expected
behavior. Due to this, PRMI implementations are reluctant
to provide only one specific option in the design of their sys-
tems. On the other hand, systems do not want to instantiate
too many possibilities and create a state of confusion. The
most common approach is to provide two types of PRMI se-
mantics: collective and independent. The collective involves
all proxy (caller) and server (callee) processes in the invoca-
tion, while the independent behaves like regular non-parallel
RMI and is only single process to process. The independent
invocations are in fact just regular RMI in Babel that existsin
the parallel case for situations where parallelism is utilized
as a means of load distribution; if many invocations are ex-

pected to a particular component, multiple parallel processes
can be used to distribute the load. It is also our belief that
these two PRMI options cover most of the reasonable pro-
gramming decisions in the design of parallel components.
A specifier to each method in SIDL can be used to distin-
guish between the two types of calls. The specifiercollective
is placed at the start of the method signature in the SIDL,
while the independent case is the default and no specifier is
required. These two options are provided to the component
programmer to use whichever semantic choice is more fit-
ting. The ability to support data redistribution is limitedto
the collective case, as this is the only scenario under which
it makes sense to redistribute data.

Collective methods are defined as a collaboration of mul-
tiple processes that represent one computation [9]. A method
invocation between components of this type can be inferred
as one that requires the involvement of each parallel pro-
cess/thread on the caller component. Examples of such be-
havior include all cases where collaboration is required be-
tween the component’s parallel processes in order to solve a
task. By collaboration we mean that the parallel processes
will subdivide the problem space among themselves and
work independently or through some level of communica-
tion to solve the problem. Most classic parallel algorithms
fit this level of programming.

The data redistribution problem itself has been discussed
among scientific computing researchers for a substantial pe-
riod of time and systems such as PAWS [3], CUMULVS [8]
and others have been developed that solve this problem for
the limited case of multidimensional arrays. All of these sys-
tems are based on a specific data transfer API (Application
Programming Interface). This API is independent from the
actual parallel method invocations. Systems like these have
created a general solution to the data redistribution problem,
although each of them has taken a different approach to data
representation and the timing, locking, and synchronization
of the data transfer. The emergence of the CCA group has
created a unique opportunity to attempt to create a compo-
nent framework standard for each of these issues that also
addresses parallel method invocation semantics. Some of the
previous data redistribution work suggests that in order to
achieve maximum flexibility in the design, a data redistri-
bution component needs to be developed [9]. This redistri-
bution component would communicate between two compo-
nents that require a data distribution and perform this distri-
bution for them. We recognize the added flexibility of this
design; however we argue against it simply because of its
added complexity.

Recently, several groups within the CCA have developed
prototypes for PRMI [7, 5, 4]. The main similarity between
the separate efforts was the semantics of the collective invo-
cations and data redistribution. Also, the data redistribution
representations used were very similar. On the other hand,
projects differed in the way of selecting processes into a

proxy and in the means of creating the collective glue code.
The SCIRun2 [7] PRMI project used an in-house SIDL com-
piler, and DCA [5] used a stub generator leveraging the MPI
library for communication. All previous PRMI designs did
not explicitly address the amount of synchronization, which
directly and significantly affects performance. Furthermore,
as we mentioned earlier, the only practical approach to en-
able PRMI use in the wider CCA user community is to apply
it to a base CCA technology like the Babel compiler.

Baude et al. proposed a set of collective interfaces such
as multicast and gathercast to address collective communi-
cations in distributed components on a grid [2]. These col-
lective interfaces together form a solution to a similar prob-
lem as ours, but this grid approach is not suitable for parallel
computation with closely-coupled components.

3. Design
From a user standpoint, the SIDL compiler is an excellent
place from which to provide PRMI. It enables the user to
interact with the system in the setup of the parallel object
and proxy while not overburdening him and providing auto-
mated behavior as the target method is invoked. Implement-
ing PRMI at a lower wire protocol level, at a higher level as a
component, or as a separate PRMI library may allow the user
some additional flexibility, but often at a large cost. In the
PRMI as library or component cases this results in a perfor-
mance overhead due to the decoupling of the actual method
invocation from the PRMI. For instance, a PRMI compo-
nent would add an additional hop to all parallel method in-
vocation, while PRMI implemented in a library may require
that the user ensures the synchronization between the PRMI
parts with the actual method invocation. This artificial way
of synchronizing with the collective method usually requires
the timely invocation of additional library routines. Imple-
menting PRMI as a wire protocol requires large additional
information that the protocol normally does not have access
to. Also, a protocol PRMI would often confuse the user by
not clearly delineating between RMI and PRMI.

We implemented a prototype implementation on top of a
recent version of the Babel compiler. The PRMI Babel uses
version 1.0.0 of the compiler and includes changes to both
the runtime and code generation. We used the “SimpleProto-
col” as our transport mechanism and we tested several sim-
ple examples.

An important aspect of collective invocations is the level
of synchronization imposed on the user’s implementation by
the underlying system. In order to provide a guarantee of
collectiveness, systems often enforce a barrier on the col-
lective invocation. This unarguably is necessary in certain
cases to provide user-expected behavior, but at a very signifi-
cant cost of execution speed, which is unacceptable for many
high performance computing applications. We argue that at
times when the wire protocol and other circumstances allow
it, PRMI systems should extend unsynchronized behavior as

much as possible. The main goal of the multiple kinds of
PRMI synchronization presented in this paper is to loosen
the synchronization reigns for a subset of the applications
that regular implementation of PRMI inflict.

3.1 Parallel Remote Method Invocation

As in previous work in this area, our approach is to extend
SIDL with acollectivekeyword. SIDL already has two other
method keywords that we can leverage together with thecol-
lectivekeyword:nonblockingandoneway. We use combina-
tions of these keywords in order to define different synchro-
nization levels. The difference between these two keywords
is thatnonblockingprovides a ticket mechanism to wait for a
particular result (out arguments), whileonewaymethods al-
low no out arguments or synchronization and are fully asyn-
chronous. We combine keywords in order to get three differ-
ent locking behaviors: ”synchronous”, ”nonblocking asyn-
chronous”, and ”oneway asynchronous”. A combination of
collective and onewaykeywords produces ”oneway asyn-
chronous” calls,collectiveandnonblockingplaced in front
of a SIDL method produce ”nonblocking asynchronous” and
in the case where only thecollectivekeyword is specified
we have just ”synchronous”. When Babel uses a wire pro-
tocol without threads, we conservatively allow only ”syn-
chronous” PRMI. Similarly, to allow asynchronous PRMI
we require a version of the parallel library (e.g. MPI, PVM)
that is thread-safe. We give an overview of each of the dif-
ferent synchronization strategies:

• synchronous. These parallel invocations should work
in all system environments so they are built to work without
any thread support. Even if threads exist in the wire protocol,
the parallel library may not be thread-safe so we synchronize
conservatively in order to get the right behavior in all scenar-
ios. The conservative synchronization style of these parallel
invocation comes at a significant performance cost.

• nonblocking asynchronous. The standard nonblock-
ing methods in Babel return immediately when invoked and
each method returns a ticket that can be used to wait until the
call finishes or to periodically check its status. We extend
this existing ticket mechanism for Babel nonblocking calls
to additionally control collective nonblocking calls. Forpar-
allel objects receiving invocations from multiple proxies, we
provide a guarantee that two method calls coming from the
same proxy (caller) will execute in order and will be non-
overtaking on the callee.

• oneway asynchronous. Only ’in’ arguments are al-
lowed so the only guarantee we provide for these calls is
ordering and non-overtaking behavior of invocations com-
ing from the same caller.

First, we take the time to explain the changes to the
Babel runtime classes that we made in order to support
PRMI. A list of the classes that we modified and added to-
gether with the added methods is given in Figure 1. These
will likely only be useful to people already familiar with
the inner workings of the Babel compiler. After survey-

--Generated Code--

+setProxyArrayPart()

+setObjectArrayPart()

+_createParallel()

+_connectParallel()

+_getParallelURLs()

ProtocolFactory

+createParallelInstance()

+connectParallelInstance()

+createIndependentInstance()

+connectIndependentInstance()

InstanceRegistry

+registerParallelInstance()

Parallel Context

+initalize()

+barrier()

+getRank()

+getSize()

+finalize()

+isThreadSafe()

ParallelInstanceHandle

+init()

+getProtocol()

+getProtocolProperties()

+getObjectID()

+getObjectURLs()

+getInstanceHandleArray()

+close()

CollectiveInvocation

+init()

+invokeMethod()

+invokeNonblocking()

+invokeOneway()

ParallelArrayPart

+setPart()

+setPartToBlock()

+setPartToCyclic()

+setPartToBlockCyclic()

MODIFIED NEW

Figure 1. A list of the modified and new classes in Babel to enable PRMI.

ing these changes, we give the code for a simple example
PRMI invocation between a parallel proxy and a parallel ob-
ject. Our intention in presenting the example is to show the
changes the user would make to their code if intending to
use PRMI. Later, we discuss changes in the Babel code gen-
erated classes and changes to support data redistribution.

3.1.1 Changes to Babel Runtime

Babel provides two ways of connecting to remote compo-
nents. One is using thecreateRemotemethod that creates
a remote object and connects to it. The other is using a
connectmethod to connect to an already existing remote ob-

ject. A Babel Object Server (BOS) is needed on each node
where a server object exists.

We propose two new methods to enable PRMI that are
similar to the ones already used in Babel:

sidl.BaseClass

_createParallel(in array<string,1> nodeList);

sidl.BaseClass

_connectParallel(in array<string,1> objList);

We chose to return asidl.BaseClasslike the original Ba-
bel method and not a special proxy. Instead, the appropri-
ate parallel method will be generated and connected in the
proxy’s function table. This approach is in line with the one

Babel RMI used to build on top of in-process Babel invoca-
tions. A method to register a parallel server object is needed
that is collective and synchronizes on a barrier ensuring that
all of the processes call it:

collective void

InstanceRegistry::registerParallelInstance(

in sidl.BaseClass instance);

To implement this method we need to be able to call to
the parallel library (e.g. MPI, PVM) to ensure that all co-
horts have been initialized. We define a ParallelContext in-
terface that offers methods that will wrap calls to barriers,
initializers, etc. We present this interface fully later inthis
text. First we present our modification to theProtocolFac-
tory class that is used by Babel for establishing connections.
We add four new methods to this class to support connecting
to parallel components. These changes affect generated code
only:

class ProtocolFactory {

...

static ParallelInstanceHandle

createParallelInstance(

in array<string,1> urls,

in array<string,1> typeNames);

static ParallelInstanceHandle

connectParallelInstance(

in array<string,1> urls,

in bool ar);

static sidl.rmi.InstanceHandle

createIndependentInstance(

in array<string,1> urls,

in array<string,1> typeNames);

static sidl.rmi.InstanceHandle

connectIndependentInstance(

in array<string,1> urls,

in bool ar);

}

The two calls added toProtocolFactorycreate a new in-
ternal Babel class called aParallelInstanceHandle. This new
class is a collection of InstanceHandles used to make collec-
tive invocations. It is created by the upper two static meth-
ods, while the lower two “independent” calls only allocate a
InstanceHandle used in order to make a serial RMI call. Both
of these calls are necessary as PRMI is defined by the collec-
tive keyword on method granularity. Therefore, a proxy may
have both parallel and serial methods requiring both aIn-
stanceHandleand aParallelInstanceHandle. A ParallelIn-
stanceHandleis a container of several instance handles and
is defined in SIDL as:

class ParallelInstanceHandle {

bool init(

in array<sidl.rmi.InstanceHandle,1> h);

string getProtocol();

string getObjectID();

array<string,1> getObjectURLs();

sidl.prmi.CollectiveInvocation

createCollectiveInvocation(in string m);

bool close();

}

TheParallelInstanceHandleclass is used to create aCol-
lectiveInvocation. This new class is a container ofInvoca-
tion classes belonging to each of the instance handles that
exist in a ParallelInstanceHandle and it is used to make a
collective invocation from one caller component process to
one or more of the callee component’s processes. TheCol-
lectiveInvocationis created only from instance handles that
this particular caller cohort (if the proxy and object are both
parallel) needs to invoke. For more information of how this
decision is made consult our previous work [7]. The struc-
ture ofCollectiveInvocationclass is:

class CollectiveInvocation

implements-all sidl.io.Serializer {

bool init(

in array<sidl.rmi.Invocation,1> invs);

sidl.rmi.Response invokeMethod();

sidl.rmi.Ticket invokeNonblocking();

void invokeOneWay();

}

Notice that theCollectiveInvocationclass extends theSe-
rializer interface allowing the packing and unpacking of at-
tributes to the invocation as is the case with serial remote
invocations in Babel. Also the class contains methods to in-
voke in different ways (invokeMethod, invokeNonblocking,
and invokeOneWay). These methods implement the seman-
tics of each particular call that we make available in our
PRMI design. The appropriate invocation method is used
in the generated code that corresponds to the SIDL method
keywords.For consistency to Babel RMI we also add a par-
allel version of RMI’s getURLmethod:

collective array<string,1> _getParallelURLs();

The ParallelContext interface we mentioned before is
used to wrap calls to the surrounding parallel library. Parallel
libraries like MPI and PVM implement concrete classes
inheriting from thisParallelContextinterface:

interface ParallelContext {

void initialize();

void barrier();

void getRank();

void getSize();

void finalize();

bool isThreadSafe();

}

class MPIParallelContext

extends ParallelContext {

}

In order to be able to disallow asynchronous PRMI when
the protocol or environment disallows it, we provide special
method that we expect to be implemented by each proto-
col and parallel library in Babel. In theParallelContextin-
terface, implementing classes should implement aisThread-
Safemethod that Babel can invoke in order to make deci-
sions on synchronization. Similar method are also imple-
mented by the wire protocol class indicating whether the
protocol uses threads and whether asynchronous behavior is
possible.

3.1.2 Example of PRMI Initialization Code

In this section, we show an example of a parallel client and
server using our Babel PRMI implementation. This simple
example invokes one collective method (calledm1) and will

better show how the changes we made can be used by a CCA
programmer. The server part of the example follows:

ProtocolFactory pf;

if(!pf.addProtocol("simhandle",

"sidlx.rmi.SimHandle")) {

std::cout << "Error in addProtocol\n";

exit(1);

}

SimpleOrb echo = SimpleOrb::_create();

echo.requestPort(12121);

int tid = echo.run();

ServerRegistry::registerServer(echo);

ServerObj server = ServerObj::_create();

server._getParallelURLs();

The getParallelURLsmethod will internally callbarrier
on theParallelContext. In turn, theParallelContextwill ini-
tialize the parallel library before calling a barrier if that is
necessary. It is understood that initialization of the parallel
library will be performed before any user code’s method is
invoked and therefore it need not be called explicitly by the
user. An alternative to thegetParallelURLsmethod is the
following method:

InstanceRegistry::

registerParallelInstance(server);

This method performs the same service asgetParallelURLs
and registers an callee instance with the InstanceRegistryal-
lowing it to be called by a distributed parallel proxy. Simi-
larly, the registerParallelInstancemethod will wait on bar-
rier internally. The example code for the client looks like
this:

ProtocolFactory pf;

if(!pf.addProtocol("simhandle",

"sidlx.rmi.SimHandle")) {

std::cout << "Error in addProtocol\n";

exit(1);

}

ServerObj client =

ServerObj::_connect(urlList);

client.m1();

The meaning ofconnectis straightforward. As with the
server, all of these methods are collective and we want to
make sure that all caller processes successfully connect to
the callees so we also synchronize on a barrier. An alterna-
tive way to connecting is to create a remote object:

ServerObj client =

ServerObj::_create(nodeList);

client.m1();

createresults with a barrier on the callers andParallel-
Context::initializecalled on the callees.

3.1.3 Parallel Exceptions

The semantics of PRMI create a scenario where individual
caller processes in a parallel component may not be directly
aware of exceptions occuring in a callee process. The collec-
tive semantics require that every caller process be informed
of any and all exceptions. Additionally, multiple heteroge-
neous exceptions can occur during the execution of a paral-
lel component, necessitating an exception reporting system
able to handle more than one exception at a time. We did
not address parallel component exception in our prototype,
but previous work in this area details several approaches in
handling this problem [6, 12].

3.2 Data Redistribution

In past work on this problem several representations were
used to explain domain decomposition and data redistribu-
tion. In our implementation, we choose a simple and effec-
tive design of providing a first, last, and stride data descrip-
tion strategy. This strategy prescribes that for each part of
the global array space that a process has been assigned or
has requested, the user specifies the first element, the last el-
ement and the stride of the elements in between. Multiple
specifications are possible per each array dimension.

To specify the data representation in Babel we add a
class to the Babel runtime calledParallelArrayPart. This
class will be used to describe which portions of the global
array we have or want. We provide a couple of built in
methods for some common data distribution types such as
block, cyclic, and blockcyclic. Here is the interface for the
ParallelArrayPartclass:

class ParallelArrayPart {

setPart(int dim, int first,

int last, int stride);

setPartToBlock(int dim);

setPartToCyclic(int dim);

setPartToBlockCyclic(int dim);

}

We allow an arbitrary number of ArrayParts per dimen-
sion as long as they make sense together. If a dimension is
not specified we assume that the whole dimension is given
by the caller and in the converse case that none of it is needed
by the callee. We add a couple of methods to distribute the
ParallelArrayParts between the proxy/object process in or-
der to calculate a data redistribution schedule:

void setProxyArrayPart(string array_arg_name,

ParallelArrayPart [] parts);

void setObjectArrayPart(string array_arg_name,

ParallelArrayPart [] parts);

The actual data is transferred when a method containing
the distributed array is invoked. This method has to be col-
lective and contain an additionalparallel keyword placed in

front of an array data type that we use to identify distributed
arrays. Changes to the Babel code generator account for the
rest of the modifications that were required in order to enable
data redistribution in Babel. Since data redistribution isonly
possible for collective invocations, the methods designedfor
these invocations were extended with this additional func-
tionality.

4. Synchronization Modes
We presented three synchronization options in the design
of PRMI: oneway asynchronous, nonblocking asynchronous
and synchronous. An example of the progression of the
thread of execution for each type of method is given in Fig-
ure 2. In this section we’ll try to explain our choice of syn-
chronization trade-offs to enable three PRMI synchroniza-
tion types and explain some of the high-level implementa-
tion parts that we needed in order to make these synchro-
nization choices available.

When designing PRMI, it is crucial to provide the user
with a consistent set of guarantees. In the case of most
programming language execution order is something that a
programmer relies on for program correctness. When pro-
gramming in a middleware that is multithreaded and offers
support for an operation such as PRMI, the invocation or-
der given by a user should be preserved. In the past we
have identified situations when some reordering may take
place [6] with user awareness. However, in implementing
general PRMI, we choose not to reorder any invocations and
ensure that calls made on the proxy execute in order on the
server. An object may receive calls from multiple proxies,
and we see no reason why synchronization should preserve
inter-proxy order. Therefore, our implementation makes no
guarantees of ordering of invocations from more than one
proxy.

To provide the single proxy invocation ordering some
synchronization is necessary. Another choice we make is
to synchronize on the object (callee) side and never on the
caller side. Previous implementations have synchronized on
the proxy (caller) side, but in a threaded environment this is
not necessary. We eliminate any proxy synchronization for
all but the conservative “collective” invocations which have
to be deadlock free in the absence of threads.

The algorithm of maintaining ordering of a PRMI is
based on three assumptions:

1. only the callees check the invocation order, callers do not
check or wait.

2. each parallel stub (proxy) is identified by a UUID.

3. the invocation and/or data redistribution follow all-to-all
pattern

When a PRMIIx from a member caller arrives at a callee,Ix
carries its rank and size. (Ix,rank) registers with the callee if
it is not already registered. If (Ix,rank) is already registered,
thenIx is put into a pending queue. The registration entry (Ix,

rank) remains until all (Ix, rank) from each member caller
has registered and responses have been all sent back. The
pendingIx’s should now be all reset and treated as if they
are just received.

This algorithm guarantees that the PRMI requests from
the same parallel caller proxy do not overtake the previous
PRMI, but allows

• each member caller to receive response and sends request
without any delay from the caller side;

• the callee to process a request for a member caller if it
has receives all required distribute data;

• the callee to sends a processed response back to the caller
without waiting for the completion PRMI requests from
other caller members.

5. Conclusions
This paper presents a method to build Parallel Remote
Method Invocation (PRMI) into the SIDL compiler Babel.
The method we propose is relatively simple to implement,
preserves Babel’s design, and presents three PRMI synchro-
nization options to the user. We believe that if PRMI was
provided by Babel in the manner that we propose, many
new application paradigms would be able to leverage the
CCA software engineering principles.

This design is also more generally applicable to any ex-
isting and future SIDL compilers. The Babel classes and im-
plementational details may be somewhat different, but the
general ideas are the same. Similarly, the synchronization
paradigm we propose is efficient and flexible enough to be
used by any PRMI tool.

6. Acknowledgments
The authors gratefully acknowledge support from NIH
NCRR and the DOE ASCI and SciDAC programs.

References
[1] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn,

L. McInnes, S. Parker, and B. Smolinski. Toward a Common
Component Architecture for High-Performance Scientific
Computing. InProceedings of the 8th IEEE International
Symposium on High Performance Distributed Computing,
1999.

[2] F. Baude, D. Caromel, L. Henrio, and M. Morel. Collective
interfaces for distributed components. InCCGRID ’07:
Proceedings of the Seventh IEEE International Symposium
on Cluster Computing and the Grid, pages 599–610. IEEE
Computer Society, 2007.

[3] P. H. Beckman, P. K. Fasel, W. F. Humphrey, and S. M.
Mniszewski. Efficient coupling of parallel applications
using PAWS. InProceedings of the 7th IEEE International
Symposium on High Performance Distributed Computation,
July 1998.

Figure 2. The synchronization options given for (top to bottom) synchronous (smethod), nonblocking asynchronous
(n a method) and oneway asynchronous (oa method) parallel remote method invocation.

[4] F. Bertrand, R. Bramley, A. Sussman, D. E. Bernholdt,
J. A. Kohl, J. W. Larson, and K. B. Damevski. Data
redistribution and remote method invocation in parallel
component architectures. InIPDPS ’05: Proceedings of the
19th IEEE International Parallel and Distributed Processing
Symposium (IPDPS’05), Washington, DC, USA, 2005. IEEE
Computer Society.

[5] F. Bertrand, Y. Yuan, K. Chiu, and R. Bramley. An
approach to parallel mxn communication.Special Issue
of the International Journal of High Performance Computer
Applications, 19(4), 2005.

[6] K. Damevski and S. Parker. Imprecise exceptions in
distributed parallel components. InProceedings of 10th
International Euro-Par Conference (Euro-Par 2004 Parallel
Processing), volume 3149 ofLecture Notes in Computer
Science. Springer, 2004.

[7] K. Damevski and S. Parker. M x N data redistribution
through parallel remote method invocation.Special Issue
of the International Journal of High Performance Computer
Applications, 19(4), 2005.

[8] G. A. Geist, J. A. Kohl, and P. M. Papadopoulos. CUMULVS:
Providing fault-tolerance, visualization and steering of
parallel applications. InEnvironment and Tools for Parallel
Scientific Computing Workshop, Domaine de Faverges-de-la-
Tour, Lyon, France, August 1996.

[9] K. Keahey, P. K. Fasel, and S. M. Mniszewski. PAWS: Col-
lective invocations and data transfers. InProceedings of the
10th IEEE International Symposium on High Performance
Distributed Computation, July 2001.

[10] S. Kohn, G. Kumfert, J. Painter, and C. Ribbens. Divorcing
language dependencies from a scientific software library.
In Proceedings of the 10th SIAM Conference on Parallel
Processing, Portsmouth, VA, March 2001.

[11] Message Passing Interface Forum.MPI: A Message-Passing
Interface Standard, June 1995.

[12] C. Ṕerez, A. Ribes, and T. Priol. Handling exceptions
between parallel objects. In M. Danelutto, M. Vanneschi,
and D. Laforenza, editors,Euro-Par, volume 3149 ofLecture
Notes in Computer Science, pages 671–678. Springer, 2004.

[13] V. S. Sunderam. PVM: a framework for parallel dis-
tributed computing.Concurrency, Practice and Experience,
2(4):315–340, 1990.

[14] C. Szyperski.Component Software: Beyond Object-Oriented
Programming. Addison-Wesley Publishing Company, 1998.

