

Parallel Remote Method Invocation and M-by-N Data Redistribution

Kostadin Damevski and Steven Parker

School of Computing
University of Utah

Salt Lake City, UT 84112
{damevski,sparker}@cs.utah.edu

Abstract

 Components can be a useful tool in software de-
velopment, including the development of scientific
computing applications. Many scientific applications
require parallel execution, but commodity component
models based on Remote Method Invocation (RMI) do
not directly support the notion of parallel compo-
nents. Parallel components raise questions about the
semantics of method invocations and the mechanics of
parallel data redistribution involving these compo-
nents.
 Allowing parallel components to exist within a
component framework comes at very little extra cost
to the framework designer. However, the interaction
semantics (i.e. method invocations) between two par-
allel components or between a parallel and non-
parallel component can be complex and should re-
quire support from the underlying runtime system.
 The parallel data redistribution problem comes
about when in order to increase efficiency, data is
subdivided among cooperating parallel tasks within
one component. When two or more components of this
type are required to perform a separate computation
on the same data, this data distribution must be de-
coded and mapped from the first component to the
second component's specification.
 We demonstrate a method to handle parallel
method invocation and perform automatic data redis-
tribution using the code generation process of an
interface definition language (IDL) compiler. The
generated code and runtime system accomplish the
necessary data transfers and provide consistent be-
havior to method invocation. We describe the imple-
mentation of and semantics of Parallel Remote
Method Invocation (PRMI). We describe how collec-
tive method calls can be used to provide coherent

interactions between multiple components. Prelimi-
nary results and benchmarks are discussed.

1. Introduction and related work

 Component technology is an important and widely
used tool in software development. However, com-
modity component implementations do not support
the needs of high performance scientific computing.
To remedy this, the CCA (Common Component Ar-
chitecture) [1] Forum was formed among various
universities and research institutions, including the
University of Utah, Indiana University, various De-
partment of Energy research laboratories, and others.
The group's goal is to add the functionality of compo-
nents to existing scientific computing code while pre-
serving the speed required by these applications.
 Parallelism is a tool that is consistently leveraged
by many scientific programmers in order to increase
performance. As a result, the ability to support paral-
lel components is crucial when trying to provide
components for scientific computing. The choice of
parallel programming model for this purpose is
SPMD (Single Program Multiple Data). Parallel com-
ponents can be based on MPI (Message Passing Inter-
face), PVM (Parallel Virtual Machine) or any other
product that facilitates this very common type of par-
allel programming. Allowing parallel components to
exist within a component framework comes at very
little extra cost to the framework designer. However,
the interaction semantics (i.e. communication) be-
tween two parallel components and between a parallel
and non-parallel component is not obvious and may
benefit support from the component framework. This
is especially true when the number of processes differ
between the two interacting components.
 Many component models rely upon an underlying
object model that provides Remote Method Invoca-

tion (RMI). RMI provides method call functionality
over a network, typically through a network proxy
that is juxtaposed between two components, the caller
and callee. RMI enables a component to interact with
another without requiring knowledge of its internal
structure. Extending this to the parallel component
case is termed PRMI (Parallel Remote Method Invo-
cation). Possible ways of defining PRMI can be seen
in the work of Maasen et al. [7], however there is no
evidence to date of a definite decision on the optimal
semantics of PRMI. From a practical standpoint, a
policy that will describe expected behavior when util-
izing PRMI is required.
 M-by-N data redistribution is also an important
piece of the high performance scientific components
puzzle. The M-by-N problem comes about when in
order to increase efficiency, data is subdivided among
M cooperating parallel tasks within one component,
and N parallel tasks in a different component, where
M and N are both positive integers. When two or
more components of this type are required to perform
a separate computation on the same data, this data
distribution has to be decoded and mapped from the
first component to the second component's specifica-
tion. Since each component can require a different
data distribution this problem can get complicated.
Also, since components can be dynamically com-
posed at runtime their distribution requirements may
not be known prior. Therefore, data transfer schedules
must be computed on the fly.
 The M-by-N problem has been discussed among
scientific computing researchers for a substantial pe-
riod of time and systems such as PAWS [2],
CUMULVS [3] and others have been developed
which solve this problem for the limited case of multi-
dimensional arrays. All of these systems are based on
a specific data transfer API (Application Program-
ming Interface). The data transfer API is separate
from the actual method invocations or other control
flow. These systems have created a general solution to
the M-by-N problem. However, each of them has a
unique API and has taken a different approach to data
representation and the timing, locking, and synchroni-
zation of the data transfer. The emergence of the CCA
group has created a unique opportunity to attempt to
create a component framework standard for each of
these issues.
 In addition, some of the M-by-N work suggests
that in order to achieve maximum flexibility in the
design, a specific M-by-N redistribution component
needs to be in place [6]. This M-by-N redistribution

component will stand between two components which
require a data distribution and perform this distribu-
tion for them. We recognize the flexibility of this
design, however, we argue against it because of its
inherent inefficiency for many problems, and because
of semantic differences between parallel and non-
parallel interactions. We believe that this inefficiency
stems from the fact that this component would make
unnecessary copies of data to its address space in a
distributed component environment. The semantic
differences stem from the fact that RMI is used be-
tween non-parallel components, yet parallel-to-
parallel interactions are performed using this alternate
mechanism.
 In another approach, we based our M-by-N redis-
tribution mechanism on PRMI, treating distributed
data as another method call argument in a PRMI in-
vocation. Naturally, this choice led us to placing all of
the necessary pieces to perform data redistribution in
the Interface Definition Language (IDL) compiler and
the stub/skeleton code it generates. This decision was
similar to the design of PARDIS [5], which uses the
CORBA IDL to express distributed arguments in a
component environment. However, in order to pro-
vide some necessary flexibility in the design, our sys-
tem also relies on two methods to describe the data
distribution at runtime. The primary contribution of
this work is providing parallel remote invocation se-
mantics that would maximize the expressiveness of
parallel components. By placing a useful tool such as
M-by-N data redistribution on top of these parallel
method invocation semantics we show that parallel
remote method invocation and automatic data redis-
tribution mechanisms can be combined with the help
of an interface definition language compiler, resulting
in a tool that can benefit a scientific software pro-
grammer. Moreover, this mechanism preserves the
fundamental features of components, namely that a
component should not be required to expose imple-
mentation details, in this case the details of internal
data decomposition.
 The design of the PRMI and M-by-N data redistri-
bution has been implemented within the SCIRun2
component framework, a Problem Solving Environ-
ment (PSE) designed for large-scale parallel computa-
tion. This framework is compliant to the Common
Component Architecture (CCA) framework specifica-
tion. Specifically, the compiler upon which our design
is based uses CCA’s interface language, the SIDL
(Scientific IDL). The PRMI and M-by-N data redis-

tribution are solely implemented through the SIDL
compiler and its runtime support library.
 The discussion that follows will assume a distrib-
uted environment. The text is organized as follows:
Chapter 2 gives an overview of our PRMI approach.
The M-by-N data redistribution mechanism is dis-
cussed in chapter 3. Chapter 4 gives an overview of
our array representation and the data redistribution
schedule calculation. In chapter 5 we show several
preliminary performance results. Finally, chapter 6
and 7 explains conclusions and future work of this
project.

2. Parallel Remote Method Invocation

 Parallel Remote Method Invocation occurs when a
request is made for a method invocation on a parallel
component or when a parallel component itself makes
such a request. Since many options exist in PRMI
design and it is not reasonable to provide them all, the
ultimate goal in the design of the PRMI semantics
was to cover most of the reasonable programming
decisions in the design of parallel components. In
order to accomplish this we recognized two types of
PRMI behavior: collective and independent. We have
extended the SIDL to use the keywords collective and
independent as descriptors for each method. By de-
fault, methods are independent.

2.1. Collective PRMI

 Collective components are defined as a collabora-
tion of multiple processes that represent one computa-
tion [6]. A method invocation between components of
this type can be inferred as one that requires the in-
volvement of each parallel process/thread on the
component, typically in unison. Examples of such
behavior include all cases where collaboration (intra-
component communication through MPI or some
other library) is required between the component's
parallel processes in order to solve a task. Many clas-
sic parallel algorithms fit this programming approach.
Several cases are possible within the collective PRMI.
These are: M=N, M>N, and M<N where M is the
number of parallel processes on the caller component
and N is the number of parallel processes on the callee
component. Figure 1 describes the behavior of our

system under each case, while ensuring the desired
semantics.
 Collective calls are required to be invoked on all
caller processes, and are guaranteed to be invoked
only once every callee component. These calls are
synchronous and non-overtaking. Their conception
was motivated by the need to perform M-by-N data
redistribution. In fact, the collective calls and data
redistribution usually appear in unison. Within a col-
lective invocation, there is no guarantee in place that
determines which caller process communicates with
which callee process. This suggests that all input and
output data between each process of the method invo-
cation should be the same, which is standard practice
for collective operations using a SPMD programming
model. Complex communication patterns can be ex-
pressed more effectively using M-by-N data redistri-
bution. Synchronization primitives are in place to
make successive calls non-overtaking. However, there
is no implicit barrier primitive between the processes
on the caller or on the callee when the method is in-
voked. This allows a degree of asynchronous behavior
that increases efficiency. However, aspects of M-by-N
data redistribution involve additional synchronization.
These will be discussed later.

2.2. Independent PRMI

We recognized the need to provide some support for
cases not involving invocations made on every par-
ticipating process. We name these independent calls.
The independent invocation suggests that any compo-
nent process can and will satisfy the request. The
assumption is that all of the parallel processes provide
the same functionality to the user. One example of
this is a parallel component implementing a getRan-
domNumber() method. All processes of this compo-
nent have the functionality of producing a random
number. Whenever this method is invoked we care
only that a component produces a random number.
We are not concerned which of the parallel process
satisfy this request. The sole support we provided for
the independent invocation is the ability to turn off the
collective mechanism and direct the independent call
as a regular method call to a component's parallel
process.

Figure 1. Scenarios for interaction between two parallel components. M is the number of processors in the caller,
and N is the number in the callee. (top-right) M = N. The whole lines represent method invocations, while the dashed
represent return values. (top-left) M < N. The whole lines represent method invocations, while the dashed represent
return values. The grey lines stand for invocations which take place without the knowledge of the process out of which
they were initiated. (bottom) M > N. The whole lines represent method invocations, while the dashed represent return
values. The dotted lines stand for invocations that are special reply requests.

3. M-by-N Data Redistribution

 M-by-N data redistribution builds upon PRMI,
where the data is redistributed automatically when the
invocation is made. We limited the M-by-N problem
to the case of multi-dimensional arrays on any number
of dimensions. Furthermore, the approach we took in
solving the M-by-N problem was in treating the redis-
tribution data as another parameter in the parallel
method invocation. In order to express this, we ex-
tended the CCA's SIDL specification to provide a
distribution array type. This defined type is used in
method signatures to represent a distribution array of
a certain type and dimension. We chose to define a
distribution array type separate from usual method
and class definitions. This definition was chosen in
order to limit the need to declare a distribution array,
its dimensions and type for each use of the array. Fur-

thermore, we have bound this type to a specific distri-
bution and allow reuse of specific distributions and
calculated data redistribution schedules using this
mechanism. Redistribution schedule calculation is
expensive in terms of communication so we wanted to
allow mechanisms for its reuse. The type definition
follows the expected scoping rules so that it is only
valid in the scope it is defined and any nested scopes.
The distribution array type can be included in more
than one method declaration and would signify a dis-
tribution array as a parameter to a particular method.
An example of the changes to the SIDL can be seen
below.

package PingPong {
 distribution array D <int, 1>;
 interface PingPong {
 collective int pingpong(in D test);
 };
};

This is a pingpong example of the modified SIDL that
represents M-by-N distribution types. The type “D" is
defined as a one-dimensional distributed array of in-
tegers that is bound to a particular distribution sched-
ule. In this example, the collective keyword is not
strictly necessary, as the compiler will assume that
methods containing a distribution type are always
collective.
 As we compiled the IDL code that contained a
distributed array type, the stub/skeleton code changed
significantly by adding the necessary code to perform
the data redistribution. When executed, this code per-
forms the necessary distributions. By doing this, we
have alleviated the component programmer from any
responsibility of redistributing the data. The distribu-
tion is done on a point to point basis in such a way
that a data transfer link is established directly between
two processes that require transfer of data. Synchroni-
zation primitives are in place so that the method does
not execute until all of the data is completely trans-
ferred, even when the data is sent from multiple
sources. The current system provides a data redistri-
bution mechanism for in, out and inout arguments as
well as return values.
 In addition to the IDL modifications, two methods
were provided in order to express and exchange the
data distribution from each process' perspective at
runtime:

setCalleeDistribution(

DistributionHandle dist_handle,
MxNArrayRep array_representation);

setCallerDistribution(

DistributionHandle dist_handle,
MxNArrayRep array_representation);

 Each of these methods was designed to be called
collectively by all of the callee and caller parallel
processes respectively. Their end purpose is to make
the infrastructure aware of the data distribution that
the caller has and the distribution that the caller
wants. Both of them expect the same group of argu-
ments: a handle for the distribution parameter in ques-
tion and a description of the array distribution that a
particular process contains. Our implementation of the
M-by-N data redistribution does not require the user
to report the dimensions of the global array. The sys-
tem infers this information. The array representation
will be described in more detail below.
 The immediate action of the setCalleeDistribution
method is to establish the fact that a particular com-

ponent is a callee in respect to a particular distribu-
tion. Also, the proper distribution objects are created
and the callee waits to receive the distribution meta-
data from all of its callers. The setCallerDistribution
method, on the other hand, performs a scatter/gather
to all of the callee processes exchanging the appropri-
ate metadata.
 When the setCallerDistribution method is com-
plete in all of the participating processes, both the
callee and caller processes have the necessary meta-
data and the necessary objects instantiated that will
perform the data distribution. We have chosen to re-
port distributions at runtime since this provides more
flexibility to the component writer. A lot of data dis-
tributions depend on the number of processes under
which they are executed, therefore making it much
more convenient for users of our system to support
the reporting of distributions at runtime. A disadvan-
tage of this particular decision is that it requires the
redistribution schedule to be calculated at runtime.

4. Array Representation and Transfer Schedule

 To represent the array distribution we use the
PAWS [2] data model. It consists of the first element
of the array, the last element of the array, and a stride
denoting the number of array spaces in between two
elements. For instance, the data representation (first =
0, last = 100, stride = 2) for an array named arr would
represent the array starting at arr0, ending at arr100,
and taking every second element in between (i.e. arr0,
arr2, arr4, arr6 … arr100). Using some of PAWS's
terminology we call this description an index, and we
use one index to describe each dimension of the array
in question.
 A distribution schedule is expressed through a
collection of intersecting indices. These indices,
which are obtained by intersecting two of the regular
data representation indices, describe the exact data
that needs to be transferred between a given callee
and caller process. The intersection of indices is in
fact the calculation of the redistribution schedule. The
intersection is of two indices at a time, so that indices
are intersected for the same dimension of the two
processes' array representations. The intersection al-
gorithm rests upon Euclid’s theorem [11]:

(Thm.): There exists i, j in Z such that
a*i+b = c*j+d if and only if b-d=0 mod
gcd(a,c)

This theorem directly motivates the following algo-
rithm for the intersection of array indices (in pseudo
C/C++):

//Calculate lcm and gcd of the strides:
int lcm_stride = lcm(stride1,stride2);
int gcd_stride = gcd(stride1,stride2);

//Find first and stride of intersection
intersectionIndex->stride = lcm_stride;
if (first1 % gcd_stride) ==
 (first2 % gcd_stride) {

 extended_euclid(stride1,stride2,
 &m,&n);
 I = first1 - (stride1*m*
 (first1-first2))/gcd_stride;
 J = I + lcm_stride * ceil(
 (max(first1,first2) -I)
 /lcm_stride);
 intersectionIndex->first = J;
 //Find the last
 intersectionIndex->last =
 min(last1,last2);
}
else {

 //No Intersection
 intersectionIndex->first = 0;
 intersectionIndex->last = 0;
 intersectionIndex->stride = 0;
}

 The index intersection pseudo-code uses helper
functions for lcm (Least Common Multiple), gcd
(Greatest Common Divisor) and the the extended
Euclid's algorithm. The extended Euclid’s algorithm
finds the greatest common divisor, g, of two positive
integers, a and b, and coefficients, m and n, such that
g = ma + nb.
 This algorithm provides us with an efficient
method of calculating the redistribution schedule that
is able to adapt to all possible combinations of first,
last and stride. The algorithm can also adapt to nega-
tive strides. To our knowledge, this fully general algo-
rithm has not been published previously.

5. Preliminary Results

 A series of experiments have been performed and
their results will be discussed in this chapter. The
intention of these experiments was to demonstrate the
functional capabilities of our system and to quantify
the invocation overhead of the PRMI, with and with-
out data redistribution. The purpose of this work was
to facilitate high-performance component implemen-
tations, and not to develop them. Therefore, these

results supply a validation to the design of our system,
but are not intended to be ends by themselves.
 The following tests were performed on a 256 node
Dell PowerEdge 2650 cluster. Each node in this clus-
ter contains two Inter P4 Xeon 2.4 GHz CPUs. The
nodes run version 8.0 of Red Hat Linux and 100
Megabit Ethernet was used as the network intercon-
nect.
 The system we developed can be used by a variety
of applications. In order to demonstrate this, we im-
plemented a few “classic” parallel algorithms, includ-
ing LU matrix factorization, Jacobi’s solution to the
LaPlace heat equation, and odd-even merge sort. Each
of these applications provides a different data redistri-
bution pattern to exercise the system and show that all
of them can be expressed. These examples ranged
between 2 and 3 components. We experimented with
different numbers of processes per each parallel com-
ponent. Figure 2 shows a component implementation
of the odd-even merge sort algorithm. This sorting
algorithm was particularly easy to implement using
the data redistribution capability that our system pro-
vides. The implementation relies on 3 components:
sorter, splitter and starter. The started component
manages the execution of the problem. The splitter
component requires no internal implementation, as its
purpose is only to act as a data redistributing proxy
which splits and combines the even and odd elements
of the array to be sorted. The sorter component im-
plements a simple merge sort algorithm. This imple-
mentation of odd-even sort relies heavily on the M-
by-N data redistribution mechanism to perform as-
pects of the algorithm itself. It is also important to
note that this implementation is not recursive and due
to that requires a number of parallel processes per
each component corresponding to the number of ar-
rays to be merged. This is a weakness of this algo-
rithm design, not the underlying array redistribution
mechanism.
 The following tables express the execution times
our system exhibited while executing the characteris-
tic applications we implemented. To fully stress the
system, all applications were executed so that each
parallel process was located on a separate cluster node
(all times are in microseconds).

LaPlace Heat Equation
Matrix Rank Time

10 0.023293
50 0.73736

100 8.37276
150 32.7804
200 43.4538
250 78.431
300 131.924

Experiment used a 1 to 4 M-by-N distribution.

LU Factorization
Matrix
Rank Time

40 0.035614266
100 0.14665567
160 0.473564593
200 0.676691
320 1.14721401
600 5.68645942

2000 60.994763
Experiment used a 2 to 6 M-by-N distribution.

Odd-Even Merge Sort
Matrix Rank Time

500 0.010483
1000 0.011189
2000 0.016644
5000 0.032934
10000 0.063244
50000 0.148052

100000 3.003914
Experiment used a 1 to 2 to 2 M-by-N distribution.

Figure 2: Components implementing the odd-even
merge sort algorithm. Circles within components repre-
sent number of parallel processes.

5.1. Overhead Analysis

 To be useful for scientific applications, this system
must achieve high performance. Our system is a pro-
totype and still requires several optimizations, but
demonstrates that these mechanisms can be effective
in parallel to parallel data transfer. This analysis of the
overhead our system imposes on the execution of an
application has the intention of providing us with a
clear picture of our system, therefore allowing im-
provements to minimize the overhead. We used the
applications we designed to run a series of experi-
ments, noting the exact time required to accomplish
the PRMI and M-by-N data redistribution from the
perspective of one participating process. One experi-
ment had the intention of partitioning and analyzing
the data redistribution on one caller process. The
benchmark was made on an application that was solv-
ing a 2000 by 2000 matrix using LU Factorization.
The results of this experiment are provided in Figure
3.
 The experiment shows that data marshaling is the
most expensive task in the redistribution from the
caller perspective. The data are marshaled element by
element, constantly requiring the underlying commu-
nication library to be invoked. Currently, SCIRun2
relies on the Nexus communication library from the
Globus Toolkit [12, 13, 14] for this purpose. The data
marshaling is a task whose time share grows as the
data grow larger and will be considered as a prime
candidate in system optimization. Most notably, the
Nexus API does not facilitate marshaling of strided
data, and therefore requires a separate functional cal
for each data element. Another interesting aspect of
this experiment was the relatively brief time (0.23%
of total redistribution time) it took for the system to
calculate the redistribution schedule. The total time
the caller process took to redistribute the data was
4.74 seconds. We measured 2.66 seconds for a repre-
sentative callee process to receive and assemble the
data in the same application.
 As an additional method of determining the over-
head imposed by the PRMI and M-by-N data redistri-
bution we measured method call times of different
types of invocations. We measured the invocation
time (time to execute a method which does nothing)
of all the invocation types our system supports. The
experiment was executed so that every process had a
specific node to execute on, making all invocations
distributed. The parallel component cases used one

SSTTAARRTTEERR

SSPPLLIITTTTEERR

SSOORRTTEERR

process for the caller and four callee component proc-
esses. The chart in Figure 5 shows preliminary results
of this experiment. For the method invocations in-
volving data redistribution, the callee requires a cyclic
distribution, so the caller component must marshal
and send every 4th array element (4 byte integers) to
each of the callees. Figure 4 illustrates this benchmark
setup.
 This experiment requires data to be sent from the
caller to each of the 4 callees. The collective invoca-
tion is able to mask the call latencies so that the col-
lective call is only 2.8 times as long as a serial
invocation. This is an improvement over the factor of
4 that you would expect if the caller performed these
calls in sequence, and this ratio improves as more
processors are added. Data redistribution (shown by
the last two bars of Figure 4) was considerably more
costly than a collective invocation. This is due to
inefficiencies in our implementation of data packing
and unpacking mechanisms rather than with PRMI
itself. We also have not yet implemented reuse of
communication schedules, so the schedule must be
computed and communicated on every call. We be-
lieve that future optimizations, largely targeted to the
underlying communication infrastructure, will dra-
matically increase the performance of our system.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Marshal Data Send Data Calculate Schedule

Figure 3: Overhead breakdown of the data redistribu-
tion of a 2000-by-2000 matrix.

6. Conclusions

 This paper described an approach in building
automatic M-by-N data redistribution through an In-
terface Definition Language (IDL). In order to ac-
complish this, we described a method for Parallel
Remote Method Invocation (PRMI). Our goal was to

Figure 4: Benchmark setup where a single caller proc-
ess splits a contiguous array into 4 strided sections.

0

1000

2000

3000

4000

5000

6000

7000

8000

serial invocation independent
PRMI

collective PRMI
(no MxN)

collective PRMI
(w/MxN

400bytes)

collective PRMI
(w/MxN

1000bytes)

In
vo

ca
tio

n
Ti

m
e

(u
s)

Figure 5: Comparison of invocation types supported by
the SCIRun2 system.

illustrate a way of handling PRMI that would be sim-
ple and would encompass most invocation scenarios.
We described our extensions to the Scientific IDL
(SIDL), as well as the two methods we provided to
report a component’s distribution at runtime. Finally,
we showed initial performance results of our system
while executing a characteristic application.
 Using a combination of an IDL and runtime array
distribution API to perform these tasks is a novel ap-
proach in handling complex data distributions and
PRMI. It allows a programmer to redistribute data
from one component to another automatically, while
allowing a significant degree of freedom for the

prgrammer to have direct control over the redistribu-
tion process.

7. Future Work

 A feature that we value as very important to the
success of out project is the ability to express subsets
of processes upon which we can leverage the PRMI
and M-by-N data redistribution. For instance, a set of
parallel processes on the caller and callee component
could be specified as ones that should participate in a
collective call, therefore relaxing the requirement of
all processes to be involved in the invocation. This
will increase flexibility as well as allow for our sys-
tem to accommodate an even larger array of applica-
tion.
 The future work of this project also involves per-
meating our M-by-N and PRMI infrastructure through
the component framework and GUI (Graphical User
Interface) of our system. Another interesting feature
we plan on adding are less restrictive distribution
descriptions. Through this we can allow a process to
specify, for instance, that it only requires a stride of
two for its array and is not concerned with the size of
the array it receives. This would make our redistribu-
tion system more powerful and usable. This feature
may also be interesting in optimizing the system to
various architectures. Finally, we plan to improve the
performance of the system.

8. Acknowledgements

 This work was funded by the Department of En-
ergy Center for Component Technology for Terascale
Simulation Software (CCTTSS) and by NSF ACI-
0113829. We wish to acknowledge Scott Owens for
discussions regarding and help with the array redistri-
bution problem.

References

[1] R. Armstrong, D. Gannon, A. Geist, S. Kohn, L.

McInnes, S. Parker, and B. Smolinski. Toward a
common component architecture for high-
performance scientific computing. In Proceed-
ings of the 8th IEEE International Symposium on
High Performance Distributed Computation,
July 1999.

[2] P. H. Beckman, P. K. Fasel, W. F. Humphrey,
and S. M. Mniszewski. Efficient coupling of par-
allel applications using PAWS. In Proceedings of
the 7th IEEE International Symposium on High
Performance Distributed Computation, July
1998.

[3] G. A. Geist, J. A. Kohl, and P. M. Papadopoulos.

CUMULVS: Providing fault- tolerance, visuali-
zation and steering of parallel applications. In
Environment and Tools for Parallel Scientific
Computing Workshop, Domaine de Faverges-de-
la-Tour, Lyon, France, August 1996.

[4] Object Management Group, 2002. URL:

http://www.omg.org.

[5] K. Keahey and D. Gannon, PARDIS: A Parallel

Approach to CORBA, In Proceedings of the 6th
IEEE International Symposium on High Per-
formance Distributed Computing (best paper
award), August 1997.

[6] K. Keahey, P. K. Fasel, and S. M. Mniszewski.

PAWS: Collective invocations and data transfers.
In Proceedings of the 10th IEEE International
Symposium on High Performance Distributed
Computation, July 2001.

[7] Jason Maassen, Thilo Kielmann, and Henri E.

Bal. GMI: Flexible and efficient group method
invocation for parallel programming. Technical
report, Faculty of Sciences, Division of Mathe-
matics and Computer Science, Vrije Universiteit,
Amsterdam, The Netherlands, 2001.

[8] Steven G. Parker. The SCIRun Problem Solving

Environment and Computational Steering Soft-
ware System. PhD thesis, The University of
Utah, August 1999.

[9] Clemens Szyperski. Component Software: Be-

yond Object-Oriented Programming. Addison-
Wesley Publishing Company, 1998.

[10] Scott Kohn, Gary Kumfert, Jeff Painter, and Cal

Ribbens. Divorcing Language Dependencies
from a Scientific Software Library. In Proceed-
ings of the 10th SIAM Conference on Parallel
Processing, Portsmouth, VA, March 12-14,
2001.

[11] Tom Epperly, Scott Kohn, and Gary Kumfert.

Component Technology for High-Performance
Scientific Simulation Software. Working Confer-
ence on "Software Architectures for Scientific
Computing Applications", International Federa-
tion for Information Processing, Ottawa, Ontario,
Canada, October 2-4, 2000.

[12] Kenneth H. Rosen. Elementary Number Theory

and Its Applications. Addison-Wesley Publishing
Company, 1984.

[13] I. Foster, N. Karonis, C. Kesselman, G. Koenig,

and S. Tuecke. A secure communications infra-
structure for high-performance distributed com-
puting. In Proceedings of the 6th IEEE
International Symposium on High Performance
Distributed Computation, July 1997.

[14] I. Foster and C. Kesselman. Globus: A meta-

computing infrastructure toolkit. The Interna-
tional Journal of Supercomputer Applications
and High Performance Computing,
11(2):115{128, Summer 1997.

[15] I. Foster, C. Kesselman, and S. Tuecke. The

Nexus approach to integrating multi-threading
and communication. Journal of Parallel and Dis-
tributed Computing, 37 (1):70{82, 1996.

