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Abstract

We present a novel method for automatic shape model building from a collection of training shapes. The result is a shape model con-
sisting of the mean model and the major modes of variation with a dense correspondence map between individual shapes. The framework
consists of iterations where a medial shape representation is deformed into the training shapes followed by computation of the shape
mean and modes of shape variation.

In the first iteration, a generic shape model is used as starting point – in the following iterations in the bootstrap method, the resulting
mean and modes from the previous iteration are used. Thereby, we gradually capture the shape variation in the training collection better
and better. Convergence of the method is explicitly enforced.

The method is evaluated on collections of artificial training shapes where the expected shape mean and modes of variation are known
by design. Furthermore, collections of real prostates and cartilage sheets are used in the evaluation.

The evaluation shows that the method is able to capture the training shapes close to the attainable accuracy already in the first iter-
ation. Furthermore, the correspondence properties measured by generality, specificity, and compactness are improved during the shape
model building iterations.
� 2007 Published by Elsevier B.V.
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1. Introduction

Methods based on analysis of shape variation are
becoming widespread in medical imaging. These methods
allow a statistical modeling of prior shape knowledge in
tasks where the image information itself often is not strong
enough to solve the task automatically. The obvious exam-
ple is the use of deformable models in segmentation, where
the preferred deformations are determined by a statistical
shape model. Another important task is shape analysis
and classification, where a statistical shape model provides
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distributions of healthy and diseased organs for diagnostic
methods.

The most common statistical shape models consist of a
mean shape with deformations. The mean and the corre-
sponding deformations are constructed through statistical
analysis of shapes from a collection of training data. Each
shape in the training set is represented by the chosen shape
representation, and analysis of the parameters for the rep-
resentation gives the mean and variations.

The best known shape model of this type is the Active

Shape Model (Cootes et al., 1995). Here, the shapes are rep-
resented by a point distribution model (PDM) with given
point-wise correspondence. The mean model is achieved
after Procrustes alignment of the shapes followed by simple
mean position computation of each point in the model.
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Principal component analysis (PCA) is used to provide the
variations.

PCA is only valid for Euclidean parameter spaces and is
restricted to producing linear shape variations. Other
approaches for shape models based on PDM’s allow more
complex, non-linear shape variations through the use of
kernel PCA (Schölkopf et al., 1998). Alternatively, the
shape model can be based on other shape representations
such as the implicit Level Set formulation as in Cremers
et al. (2002).

This paper pursues a medial shape representation in the
form of the m-rep (Pizer et al., 1996). This representation
offers an intuitive visualization of the shape by means of
the sheet of sampled medial atoms. Compared to PDM’s
this representation is less simple since the parameter space
is not Euclidean but consists of a combination of position,
scaling, and orientation parameters. Standard PCA is
therefore not applicable. However, the analogue of PCA
has been developed for a more general space of shape rep-
resentations. This is the principal geodesic analysis (PGA)
that applies to shape representations that form Lie groups
(Fletcher et al., 2003b).

1.1. Establishing correspondence

A key element in constructing shape models is the repre-
sentation of the shapes in the training collection. This must
be done in a manner that defines/preserves correspondence
across the population. For PDM’s the simplest method is
by manual selection of the boundary points by an expert
of the specific anatomical structure. In 2D this is a time-
consuming and tedious process – in 3D it is not feasible.
However, this process can be automated and several
approaches for this have been published.

Morphable Surface Models (Shelton, 2000) create corre-
spondences and a shape model from surface meshes that
are deformed onto first one of the shapes and then the
resulting mean shape in a bootstrap optimization method.
The deformations are guided by regularization terms
penalizing surface deformation and correspondence distor-
tion in a multi-resolution optimization.

The Iterative Closest Point algorithm (Besl and
McKay, 1992) is used as basis in the approach by Brett
and Taylor (2000) where corresponding points are gener-
ated from sparse surface meshes and then propagated in a
binary tree.

The approach presented by Davies et al. (2002) starts by
generating roughly corresponding PDM boundary points
from a spherical harmonics shape representation. This set
of boundary points and their correspondences are then
optimized through a minimum description length (MDL)
approach. The method is inspired by the method in Kotch-
eff and Taylor (1998) and both aim at optimizing an expres-
sion for correspondence optimality (model compactness)
directly rather than the previous methods that rely on
optimizing properties that are intuitively geometrically sen-
sible. Recently, a faster, gradient descent based improve-
ment of the MDL optimization scheme in 3D has been
developed (Heimann et al., 2005).

The correspondence problem can also be attacked as a
registration problem as done in both (Rueckert et al.,
2003; Twining et al., 2005). Finally, for shape models based
on a Level Set representation, there is also a mathemati-
cally well-founded framework for automated shape model
building based on statistics of warpings between example
shapes (Charpiat et al., 2005). For more references to meth-
ods for constructing shape model correspondence, see
Cootes’ time-line of developments (Cootes, 2005).

1.2. The contributions of this paper

The contribution of this paper is a novel, automated
shape modeling method. The core is a bootstrap process
that iteratively optimizes the shape representation on a
training collection and then derives the PGA mean and
modes of deformation. Through the bootstrap iterations,
the PGA mean converges to an increasingly accurate shape
mean for the collection. The PGA modes of variation con-
verge and give the modes of variation for the shape model.

The flavor of this work resembles the MDL method in
Davies et al. (2002). The main difference – apart from the
shape representation – is that the MDL approach starts
the optimization process from shape representations
derived directly from the training shapes but with relatively
poor correspondence. The MDL optimization then hopes
to retain the representation/shape fit while optimizing the
correspondence. Conversely, the PGA bootstrap starts
from a generative model with explicit correspondence but
with poor fit to the individual training shapes. The boot-
strap process then keeps the correspondence while optimiz-
ing the individual shapes to fit to the training shapes.

We evaluate the PGA bootstrap method for construct-
ing shape models for three shape collections. The first is
a set of simple, artificial shapes where the expected mean
and shape variations are intuitively clear.

Second, we use a population of prostates. The collection
consists of 46 cases where the prostates were segmented in
the course of radiation treatment of prostate cancer. In the
CT scans routinely used in radiation treatment planning,
the prostate boundaries are quite fuzzy – therefore, the
prior knowledge in a statistical shape model is essential
for segmenting the prostate.

Finally, we build a shape model for articular cartilage
from knee MR scans. Analysis of articular cartilage is cen-
tral in disease progression quantification (for osteoarthri-
tis) and the shape model is useful for automatic
segmentation methods and crucial for defining the corre-
spondence needed for analysis of focal measures such as
thickness.

We extend previous work (Dam et al., 2004) but this
paper has several key contributions:

� The shape match that drives the model deformation is
novel.
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� The model regularization is novel.
� Convergence of the shape model building iterations is

now enforced.
� The method is here evaluated for modeling of artificial

shapes and knee cartilage sheets as well as the prostate
collection from our previous work.
� Correspondence properties of the framework are

evaluated.

These contributions result in far better shape representa-
tions and more intuitive shape models than in our previous
work.

We first introduce the basic problem of shape modeling
in Section 2. After this we present our framework in Sec-
tions 3–6. The collections of real prostate and knee carti-
lage sheets are introduced in Sections 7 and 8.

The evaluation in Section 9 shows that our framework
manages to capture the shapes in the training collection
near the attainable accuracy and that the method iterations
improve the correspondence properties. Thereby, we con-
clude that our method is a promising automatic shape
model building method.

2. Problem statement

When building a shape model, the task is to construct a
compact description of a distribution of shapes observed
through a training collection. The task at hand determines
which aspects of shape to model. In this work, we focus on
the ‘‘overall shape”. Thereby, we ignore fine scale details
and seek a compact representation of smooth shapes.

Here we introduce a collection of artificial shapes where
the desired shape model is intuitively clear (see Fig. 1). We
also use a noisy version of the basic shapes with pixel-wise,
normal distributed variation in the local thickness (with a
standard deviation of 20% of the basic thickness).

Since we seek a model of smooth shapes, we aim for a
smooth representation of the training shapes. The basic
Fig. 1. Collection of artificial, flat shapes. Top row shows the five shapes with
show center slices of the basic and noisy shapes, respectively. Bottom row show
smoothed.
version could be seen as a smooth approximation of the
noisy version. For pairs of basic and noisy shapes, the
mean dice similarity coefficient (DSC) is 0.94. DSC
defines volume overlap between sets A and B as
2jA \ Bj/(jAj + jBj) (Dice, 1945). A shape model represen-
tation of the noisy shapes should aim for an equally good
overlap.

For a given, real-world data collection, only the ‘‘noisy”

version is available. It is therefore not possible to determine
the desired overlap between the data collection shapes and
the smooth shape model representation directly. In order
to estimate how accurately a smooth model can at best rep-
resent the shapes, such a collection can be compared to a
version where each shape is smoothed. This is done by
smoothing the corresponding binary image with a Gauss-
ian at the scale of the data voxels followed by thresholding.
Other smoothing kernels are possible, but this seems to be
the natural, least committed choice defined by the data col-
lection. We denote the mean volume overlap between the
original collection shapes and the smoothed versions as
the attainable accuracy. This attainable accuracy is deter-
mined by the training collection alone. Furthermore, it is
not a strict, theoretical upper limit for the overlap between
the collection shapes and the smooth shape model but
rather a pragmatic golden standard. Whether a smooth
shape model will be able to approach this attainable accu-
racy when representing the shapes will be determined by
the model rigidity/flexibility, sampling/compactness, and
other model properties.

For the basic version shapes, the DSC between shapes
and smoothed shapes is 1.00. For the noisy version, this
attainable accuracy is 0.95. Thereby, we have estimates
for how well the overlap between the shapes and the shape
representations should be.

A shape model constructed from shape representations
of these training collections should result in a distribution
of flat, rectangular shapes with varying degrees of thick-
ness, bending and width. Since we focus on modeling
varying thickness, width/length ratio, and bending. The two center rows
s the slice from the fourth shape as basic, noisy, basic smoothed and noisy
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‘‘overall shape” the basic and the noisy collections should
result in virtually identical shape models.

2.1. Properties of a statistical shape model

In general, when building shape models for anatomical
shapes, there are a number of desirable properties to strive
for. First, the model should represent the shapes
accurately.

Second, the model should approximate an assumed
underlying statistical distribution of shapes. This distribu-
tion is obviously unknown for anatomical shapes, but a
collection of training shapes can be used to model it from.
The success of this modeling is often evaluated indirectly in
terms of the generality and specificity of the model. Gener-
ality is the ability to recognize/model unknown shapes
from the underlying distribution. Specificity is the ability
to accept only plausible shapes as belonging to the distribu-
tion. These two desirable properties are to some degree
opposing: generality suggests a flexible model whereas
specificity suggests a more constrained model.

In addition to modeling the anatomical shapes, the
shape model should also provide a coordinate system that
allows focal analysis of corresponding locations in the
shapes. The correspondence given by the coordinate system
should respect anatomically corresponding landmarks.
This requirement suggests that the shape model should
restrict deformations that destroy correspondence – mak-
ing the model less flexible and thereby opposing both the
desires for accuracy and generality.

Finally, for robustness and computation reasons, the
model should ideally be a sparse representation of the ana-
tomical shapes. This desire for compactness in the model
opposes the desire to represent the shapes accurately.

It is non-trivial to propose a unifying theory that reveals
how these desirable properties should be balanced against
Fig. 2. Left: medial atom. Right: grid of 8 � 8 medial atoms with the interpol
version illustrates the b vectors and implied boundary point vectors as well.
each other. For specific tasks in medical image analysis,
the evaluation should be focused on the clinical end goal
instead. In our presentation of a general framework, we
will discuss how to evaluate accuracy, generality, specificity,
correspondence, and compactness individually in the sec-
tions below.

3. Medial shape representation: m-rep

We use a medial shape representation, m-rep, as our
smooth shape representation of choice. Below, we briefly
review the geometry and the framework for image segmen-
tation (Pizer et al., 2003; Joshi et al., 2002) before the image
match and the regularization terms essential for the shape
model building framework are introduced in the next
section.

The m-rep is based on the medial axis of Blum and
Nagel (1978). In this framework, a 3D geometric object is
represented as a set of connected continuous medial sheets,
which are formed by the centers of all spheres that are inte-
rior to the object and tangent to the object’s boundary at
two or more points. Here we focus on 3D objects that
can be represented by a single medial sheet.

We sample the medial sheet M over a spatially regular
lattice of medial atoms (see Fig. 2) defined as a 4-tuple
m = {x, r,F,h}, consisting of: x 2 R3 and r 2 Rþ, the cen-
ter and radius of the sphere, F 2 SO(3) an orthonormal
local frame parameterized by (b,b\,n), where n is the nor-
mal to the medial manifold, b is the direction in the tangent
plane of the fastest narrowing of the implied boundary sec-
tions, and h 2 [0,p) the object angle determining the angu-
lation of the two implied opposing boundary points to the
local frame. Given an m-rep figure, we fit a smooth bound-
ary surface to the model. We use a subdivision surface
method (Thall, 2002) that interpolates the boundary posi-
tions and normals implied by each atom.
ated, implied boundary illustrated by the dotted surface. The online color



Fig. 3. The image match at a model boundary point is computed as the
distance to the shape boundary. The desired shape is shown in thin black
with dotted iso-distance curves. The model boundary is shown in thick
black. The gradient of the shape boundary distance function and the
model boundary normals are used to ensure that the boundary point does
not get attracted to the wrong boundary. Shape distance is negative inside
the object, so shape distance gradient arrows point away from the center
of the shape. When the model normal is in opposite direction to the shape
distance gradient (determined by the sign of the dot product) the boundary
distance is not just the value of the shape boundary distance function but
approximated by adding the maximal shape radius. This is the case for the
thicker part of the model boundary. The principles are identical in 3D.
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4. From shapes to m-reps

The previous section describes how to derive a shape
from an m-rep model. For shape model building, it is
required to go the other way: from the shape to an m-
rep. Since the m-rep is a generative shape model, represent-
ing a shape is equivalent to segmenting the binary image
corresponding to the shape.

Following the deformable models paradigm, an m-rep
model M is deformed into an image I by optimizing an
objective function:

F ðM; IÞ ¼ LðM; IÞ þ aGðMÞ þ RðMÞ ð1Þ
The function L, the image match, measures how well the
model matches the image information, while G, the geomet-

ric typicality, gives a prior on the possible variation of the
geometry of the model weighted by a P 0. The last term R,
the model regularization, is an addition to the standard m-
rep framework. In the basic m-rep framework, there is no
unique model corresponding to a given shape – the model
regularization term is designed to pick a ‘‘nice” representa-
tive among the manifold of possible representations. These
terms are described in detail below.

4.1. Objective function: image match

In this shape model building framework, m-rep models
are fitted to the desired shapes. In the previous work
(Dam et al., 2004), the image match term of the objective
was computed as the correlation between the image and a
Gaussian derivative kernel in the normal direction of the
object at the implied boundary points. This image match
term proved to be too local. In a segmentation setting
where the model can be initialized close to the desired
shape, this type of image match is often sufficient – but
while building a shape model there is no prior shape model
and therefore the image match needs to be able to attract
the model boundary to the shape boundary without requir-
ing accurate initialization.

Instead we here introduce the distance from the model
boundary to the shape boundary integrated over the model
boundary as the basic image match function to minimize.
This has some clear advantages. First, a distance transform
from the shape boundary can be computed prior to model
optimization and thereby ensure fast optimization. Second,
the model can be attracted to the shape from infinitely far
away.

The computation of the distance from the model bound-
ary to the shape boundary has two special cases in order to
help the optimization.

First, we use the shape boundary distance gradient and
the model boundary normal to determine whether the near-
est shape boundary is the correct one (as illustrated in
Fig. 3). This is done to ensure convergence to the correct
optimum. Otherwise the model could shrink to a single
point arbitrarily located at the shape boundary and reach
minimal shape match penalty. Also, it avoids faulty local
minima where a part of the model boundary gets stuck at
the wrong shape boundary. This is checked at the model
boundary point given by the parameter s with the transi-
tion function ws (for wrong side):

wsðsÞ ¼ minð1;maxð0;�mbnðsÞ � gðsÞÞÞ
where mbn is the model boundary normal and g is the
shape distance function gradient. By not normalizing the
gradient, we avoid arbitrary directions given by gradients
close to zero. The function gives a soft transition between
0 and 1 for model boundary point on the right vs. wrong
side.

Second, for thin shapes the central part of the model
optimization is the phase where the model ends need to
crawl into the shape ends (illustrated in Fig. 4). This is
problematic since the shape boundary distance function
offers no help. The ends of the model are equally likely
to move slightly inwards or outwards depending on the
local narrowing of the thin shape and then get stuck in a
local minimum.

One solution to this problem could be to let the end
parts of the model be optimized by the distance to the
shape boundary in a direction normal to the model (as
opposed to normal to the shape boundary as described
above). This will fail for special shapes (for example a con-
stantly curving shape) and experiments on both artificial
and real data also show that the ends get stuck in local
minima.

Another solution is to add the distance from the model
boundary to the shape boundary in a direction normal to
the model boundary – integrated over the shape boundary
instead of over the model boundary. This would solve the
problem. However, computing distances from the model
boundary is computationally costly since the model is
repeatedly changed during optimization.

We propose to add a constant expanding force to the
end parts of the model boundary that are inside the shape



Fig. 4. For boundary points at the ends of the model, the shape boundary distance function offers no help for the deformation of the model. The thick
black model boundary points with a normal approximately perpendicular to the black shape boundary distance gradient are assigned an outward force in
the optimization that allows the model to crawl into the ends of the shape. The principles are identical in 3D.

E.B. Dam et al. / Medical Image Analysis 12 (2008) 136–151 141
boundary. In the optimization scheme, this simply means
that the change of the image match is defined as the signed
displacement in a direction normal to the model boundary.
This is applied at model boundary points where the normal
is approximately perpendicular to the shape boundary dis-
tance gradient. As the model crawls into the end of the
shape during optimization, the boundary distance gradient
becomes approximately parallel to the model boundary
normal and this expanding force is canceled.

Analogously, for model boundary points outside the
shape boundary also with normal approximately perpen-
dicular to the shape boundary distance gradient, an
imploding force is added. Thereby, the model boundary
can also crawl into thin indentations in the shape.

The model boundary places where crawling is relevant
are detected by the transition function crawl:

crawlðsÞ¼min 1; max 0;2� 1

hcrawl

angleðmbnðsÞ;gðsÞÞ�p
2

��� ���� �� �� �

The free parameter hcrawl determines how close to perpen-
dicular the model boundary and the shape boundary dis-
tance function gradient must be before crawling. The
term inside j � j is an angle being zero when the model
boundary normal and the shape boundary distance func-
tion gradient are perfectly perpendicular. The remaining
expression ensures crawl equal 1 for this angle smaller then
hcrawl with a linear transition to 0 for the angle increasing to
2hcrawl.

The image match term of the objective function, L, is
now computed as the integral of the boundary distance,
modified as described above, at each model boundary
point:

LðM; IÞ ¼
Z
BðMÞ
ð1� wsðsÞÞDistðsÞ þ wsðsÞðSdistðsÞ

þ shapeDiamÞds

DistðsÞ ¼ ð1� crawlðsÞÞjSdistðmbðsÞÞj þ crawlðsÞDisplðsÞ

DisplðsÞ ¼ �signðSdistðmbðsÞÞÞ ombðsÞ
ot

�mbnðsÞ

where mb is a model boundary point using some parame-
terization s of the model boundary BðMÞ. Sdist is the shape
boundary distance transformation function – computed
using an anisotropic version of the Danielsson distance
transform (Danielsson, 1980) and tri-linearly interpolated
to provide values at arbitrary model boundary point
positions.

As explained above, the transition function ws deter-
mines whether to use the shape boundary distance directly
or to add the diameter of the shape shapeDiam (computed
as twice the maximal internal absolute shape boundary dis-
tance) and thereby go across the shape when computing the
distance to the shape boundary.

And crawl determines whether crawling is relevant at the
model boundary and thereby invokes the displacement
given by Displ. The parameter t in the partial derivative
on mb is a fiducial optimization evolution parameter –
the term simply means that a movement in the direction
of the model boundary normal is interpreted as a step
towards the shape boundary. The sign of the shape dis-
tance function ensures that this term applies both for
model boundary points inside the shape crawling out into
extrusions and for points outside crawling into
indentations.

The details make the image match function appear com-
plicated. It is simply the distance from the model boundary
to the shape boundary – just with two intuitively simple
special cases that ensure that the model boundary does
not get stuck on the outside shape boundary and that the
model boundary is allowed to crawl into thin extrusions/
indentations.

These two special cases would not be necessary if the
image match was, for instance, the sum of the distances
from the shape to the model and the distances from the
model to the shape. However, since the shape boundary
distance transformation can be computed once before opti-
mization of the model the method presented here is much
more computationally efficient.

4.2. Objective function: geometric typicality

Intuitively, the geometric typicality term is a geometry
prior that ensures that the model optimization favors mod-
els with a probable geometry. However, when building a
shape model, no shape prior is available. Therefore, the
geometric typicality term, G, is defined as the change in
the boundary from the previous optimization stage (where
mb0 is the previous boundary position):

GðMÞ ¼ �
Z
BðMÞ

kmbðsÞ �mb0ðsÞk2

r2
ds

With a statistical shape model that defines global deforma-
tions by a linear combination of major modes of variation,
such as the PCA model in the active shape model or the
PGA modes presented in Section 5, the term above can
be supplemented by the standard Mahalanobis distance
(Mahalanobis, 1936) as is done in the bootstrap framework
presented in Section 6.
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4.3. Objective function: model regularization

The model regularization term, R, corresponds in spirit
to the curvature and neighbor distance terms that are pres-
ent in the original active contour model (Kass et al., 1988)
as well as contemporary implementations of shape model
building frameworks based on the active shape model
(Thodberg and Olafsdottir, 2003; Thodberg, 2003; Hei-
mann et al., 2006). The term is added in order to keep
the model ‘‘nice” and thereby also ensures correspondence.

Model regularity is essential for ensuring proper corre-
spondence across model instances. Ideally, the model regu-
larization does not affect the geometry of the model – it just
dictates the choice of model parameterization among the
manifold of possible models that can represent a given
shape. However, due to sampling and implementation
details, the model regularization will affect the resulting
model geometry marginally.

For a medial atom m with neighbor atoms mi (see
Fig. 5), we define the model regularization term:

RðmÞ ¼ cdist

1

8

X8

j¼1

rd dðm;mjÞ; dð�; �Þ
h i2

þ ccurv

1

4

X4

i¼1

angleðm�mi;m�m�iÞ2

þ corient angleðb; bidealÞ2 þ
1

4

X4

i¼1

jangleðmi �m�i; nÞ
 

�p=2j2
!
þ cboundary

Z
BðMÞ

1

8

X8

j¼1

1�mbnðsÞ �mbnjðsÞ

The first term penalizes unevenly spaced atoms weighted by
the constant cdist. Here d(�, �) is the distance between atoms,
rd is the relative difference, and dð�; �Þ is the mean vertical/
horizontal/diagonal distance between neighboring atoms
for the model.

The second term penalizes high curvature and non-reg-
ular angles in the atom grid weighted by ccurv. The atom
m�i is the neighbor opposing mi (as illustrated in Fig. 5).
m m

m
m

mmm

m

m

2

−4−3

−1

3
4

−2

1

Fig. 5. The central medial atom, m, has eight neighbors numbered
i = 1 . . .4 with opposing neighbors i = �1 . . .�4. When the relative
neighbor positions are not important, we number the neighboring atoms
j = 1 . . .8.
The term weighted by corient penalizes non-regular orien-
tation of the atom coordinate frame. The first part com-
pares the b direction with bideal which is a weighted sum
of the horizontal and vertical vectors between opposing
neighbors across the atom. The weights are given by a lin-
ear combination of the atom coordinates scaled to between
0 and 1 such that orientation should preferably be straight
away from the coordinate center (illustrated in the online
color version in Fig. 2). The second half of the term penal-
izes if the atom orientation normal vector n is not perpen-
dicular to the atom grid.

The final term penalizes high curvature of the resulting
model boundary weighted by cboundary. The curvature is
approximated by the dot products between the boundary
point normal and the neighboring boundary point nor-
mals. The equations above demand some special cases for
medial atoms with fewer than eight neighbors at the edge
of the medial sheet. We leave these special cases as imple-
mentation details.

Each of the regularization terms above are reasonable as
they penalize undesirable shape model behavior. However,
the specific formulation and combination of the terms
could be rephrased in a more theoretical framework. The
formulation above has the advantage that each term is sim-
ple, fast to compute, and as the results section shows, it
does actually ensure model regularity.

4.4. Automatic fitting of shape model

Optimization of the objective function above now allows
deformation of an m-rep model such that it represents a
given shape. The optimization function is optimized using
a multi-scale conjugate gradient method. The multi-scale
element consists of optimizing with the gradient computed
at successively smaller scales in order to avoid getting stuck
in local minima.

We start from a suitable m-rep model and then perform
the following steps:

� The model is translated and scaled to the center of mass
and volume of the shape (computed using the corre-
sponding binary volume).
� The model is optimized at the figural level. The allowed

transformations are a global similarity transform plus
an elongation of the entire figure.1

� The model is optimized at the atom level. Each medial
atom is independently transformed by a similarity trans-
form plus a rotation of the object angle.

We apply this model fitting method using the starting
model shown in Fig. 2 to represent the shapes in the collec-
1 This choice of allowed transformation is natural in the m-rep figural
framework – however, in a general shape representation it would be
natural to allow anisotropic scaling of the shape in all directions. This loss
of a degree of freedom will then has to be compensated at the
deformations at the atom level.



Fig. 6. The result of the automatic fitting of the initial model from Fig. 2 to the basic and noisy versions of the fourth shape from the artificial collection in
Fig. 1 (it is here rotated compared to Fig. 1). (a) The starting model after translation and scaling. (b) After optimization at the figural level. (c) After
optimization at the atom level against the basic version. (d) After optimization at the atom level against the noisy version.

2 Alternatively, the limits on the coefficients ak could be defined in terms
of the Mahalanobis distance which would be particularly appropriate for
higher dimensions.
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tion of artificial, flat shapes. For this we use the following
parameters: a = 100 in the figure stage and a = 0 in the
atom stage, hcrawl = 0.4, cdist = 0.000015, ccurv = corient =
0.0003, and cboundary = 0.003.

The choice of parameters is somewhat arbitrary and the
result of experiments showing the suitable order of magni-
tude rather than specific values. The exception is the choice
of a = 100 in the figure stage. For building a shape model
(as opposed to performing segmentation using an existing
shape model) geometric typicality does not really make
sense so a = 0 would be the natural choice. However, for
shapes with no natural orientation, such as the potato-
shaped prostates introduced below, the figure stage optimi-
zation can result in an arbitrarily oriented model. For
correspondence considerations a stable model orientation
is desirable and therefore a = 100 is used in the figure stage
even though it is not significant for the collection of flat
shapes.

The resulting deformed models are illustrated in Fig. 6.
The mean DSC between pairs of shapes and fitted models is
0.97 for the basic collection and 0.93 for the noisy collec-
tion. This is slightly lower than the overlap between the
shapes and the smoothed versions of them (1.00 and 0.95
as stated in Section 2). There are a few causes for this.
First, the choice of smoothing scale is somewhat fiducial
– chosen such that the smoothing of the noisy shapes
estimates the smooth basic shapes well. Second, Gaussian
smoothing is not explicitly modeling the implicit smoothing
performed by the shape representation. However, in gen-
eral the shape model samples the medial axis sparsely
and thereby trades attainable precision for compactness
in representation.

Thereby, a collection of shapes can be represented auto-
matically by the model optimization method. In order to
build a statistical shape model, the distribution of shapes
needs to be determined from the resulting collection of
models. This is done below.

5. Principal geodesic analysis

Principal geodesic analysis (PGA) (Fletcher et al.,
2003b) is a generalization of principal component analysis
(PCA) to curved manifolds. We briefly review the results
here.

As shown in Fletcher et al. (2003b), the set of all medial
atoms forms a Lie group M ¼ R3 � Rþ � SOð3Þ � SOð2Þ,
which we call the medial group. Likewise, the set of all m-
rep models containing n medial atoms forms a Lie group
Mn, i.e., the direct product of n copies of M. This allows
the definition of the exponential and logarithmic maps,
exp(�) and log(�), that define the geodesics of the medial
group.

5.1. M-rep means and PGA

The Riemannian distance between m-rep models M1,
M2 2Mn is given by dðM1;M2Þ ¼ k logðM�1

1 M2Þk. Thus,
the intrinsic mean of a set of m-rep models M1, . . .,MN is
the minimizer of the sum-of-squared geodesic distances:
l ¼ arg minM2Mn

Pn
i¼1k logðM�1

i MÞk2.
Principal components of Gaussian data in Rn are defined

as the projection onto the linear subspace through the
mean spanned by the eigenvectors of the covariance
matrix. If we consider a general manifold, the counterpart
of a line is a geodesic curve.

As shown in Fletcher et al. (2003a), the covariance struc-
ture of a Gaussian distribution on Mn may be approxi-
mated by a covariance matrix R in the Lie algebra mn.
The eigenvectors of this covariance matrix correspond via
the exponential map to geodesics on Mn, called principal

geodesics.
Analogous to linear PCA models, we may choose a sub-

set of the principal directions uðkÞ 2 mn with corresponding
variations kk that is sufficient to describe the variability of
the m-rep shape space. New m-rep models may be gener-
ated within this subspace of typical objects. Given a set
of coefficients {a1, . . .,al}, we generate a new m-rep model

by M ¼ l exp
Pl

k¼1akuðkÞ
� �

, where ak is chosen to be within

½�3
ffiffiffiffiffi
kk

p
; 3

ffiffiffiffiffi
kk

p
�.2



Fig. 7. Montage with the first three modes of variation for the noisy collection. The center column shows the mean shape. The first row shows first mode
of variation that captures both bending and the width/length ratio (note that the correlation between bending and width/length ratio is present in the
training data – similar to the variation between fourth and fifth shape in Fig. 1). Second mode captures mainly bending. The third mode captures thickness
almost exclusively.
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Algorithms for computing the m-rep mean and the prin-
cipal geodesic analysis on a population of m-rep figures are
given in Fletcher et al. (2003a) and revised in Fletcher and
Joshi (2004).

The resulting mean shape and the first three modes of
variation for the noisy version of the artificial collection
are illustrated in Fig. 7. The first two modes capture
bending and width/length ratio. The third mode captures
thickness. These three modes capture 99% of the total
variation.

6. Shape model bootstrap

The building blocks for the shape model building frame-
work are now ready. Using a fiducial starting model, we
use the model optimization method from Section 4 to cre-
ate representations of each shape in the desired training
collection. Principal geodesic analysis is used to extract a
mean and modes of deformation from these shape repre-
sentations as described in Section 5.

In principle, this could be it. However, if the starting
model requires much deformation in order to fit the shapes,
the correspondence from shape to shape is potentially
ruined to some degree. And since the fiducial starting
model is by definition not taylor-made to fit the shapes, this
is a real risk. Furthermore, the resulting shape mean could
have a bias towards the starting model.

Therefore, it makes sense to redo the shape representa-
tion optimization step again – now starting from the
derived shape mean instead of the fiducial starting model.
And in the natural generalization, to iterate this process
until the derived shape mean and modes of variation no
longer change.
During these iterations, the shape model modes of vari-
ation are added to the shape transformations. This is done
during the figure level deformation where the allowed
transformations are then a linear combination of a similar-
ity transformation, a scaling, and the PGA modes.
Thereby, the Mahalanobis distance is added to the geomet-
ric typicality term in Section 4.2 (using the notation from

Section 5.1, the Mahalanobis distance is
Pl

k¼1
ak
ck

).

Possibly, the variation in the atom level deformations
could also be trained during the bootstrap iterations and
included in the allowed deformations. The reasons for
not doing this are firstly that we wish to model the overlap
shape and its variation which is naturally captured in glo-
bal modes of deformations. Second, anatomical correspon-
dence is likely better preserved with global deformations
than independent, local deformations. Finally, focusing
the majority of the deformation in the global, figural level
makes the optimization faster.

The overall idea is that during the bootstrap iterations,
the shape mean will converge, and that the global modes
of variation will capture most of the necessary deformation
such that only little deformation is needed at the atom
level. This ensures both fast optimization and good corre-
spondence in the optimized models.
6.1. Convergence

The PGA shape model building bootstrap iterations
should run until the resulting shape mean and modes of
deformation converge. However, a mathematical proof of
convergence of the process seems unattainable – or at the
very least highly complicated giving requirements on the
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regularization parameters based on properties of the collec-
tion of training shapes.

In order to ensure well-behaved evolution of the mean
and modes of variation we therefore propose a simple
scheme inspired by simulated annealing (Kirkpatrick
et al., 1983). By adding an increasing penalty for change
of the model representing each individual shape between
bootstrap iterations, we explicitly dampen the evolution
and enforce convergence.

From the second iteration, we add the following anneal-
ing term, A, to the objective function in Eq. (1) for the
model M in bootstrap iteration k:

AðMkÞ ¼ w2ðk�2Þ
XN

n¼1

kxk
n � xk�1

n kþ
Z
BðMÞ
kmbðsÞk �mbðsÞk�1kds

 !

The first term is the sum of squared distances between atom
positions compared to the model for the same shape in the
previous bootstrap iteration. Analogously, the second term
is the sum of squared distances between corresponding
boundary positions compared to the previous bootstrap
iteration. The parameter w determines the overall magni-
tude of the penalty – which is simply doubled each iteration
in order to ensure relatively quick convergence.
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6.2. Resulting shape model properties

We demonstrate the full shape model building frame-
work on the collection of basic artificial shapes from Sec-
tion 2. The method is run using the starting model shown
in Fig. 2, the parameters given in Section 4.4, and
w = 0.001. The effects of the iterations in the bootstrap
method are illustrated by the graphs in Figs. 8 and 9.

Fig. 8 focuses on the accuracy of the shape representa-
tion by evaluating how well the models fit the shapes in
the training collection. In our framework it is obvious that
representation accuracy needs to be evaluated. It is often
assumed unnecessary to evaluate (as in Styner and Gerig,
2001), however, optimization of correspondence properties
alone can easily lead to flawed representation accuracy as
demonstrated in Heimann et al. (2006). We measure the
fit both as the boundary distance from the image match
term L in Eq. (1) and as DSC.

Fig. 9 (left) illustrates the convergence of the bootstrap
iterations by measuring mean distances between the corre-
sponding points in each shape from the previous iteration.
Fig. 9 (right) illustrates the improved correspondence dur-
ing the bootstrap iterations as measured by the model com-
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pactness (defined as the accumulated variation captured by
a fixed number of modes of variation).

These figures illustrate that as the model building itera-
tions progress, the resulting shape model represents the
training shapes slightly more accurately while improving
the correspondence at the same time. The correspondence
properties of the resulting shape models are evaluated more
thoroughly for the prostate and cartilage collections in Sec-
tion 9.2.

The effects of the model building iterations are not spec-
tacular on this collection of shapes where the model perfor-
mance only improves little after the first iteration. This is
simply because the artificial shapes are quite simple and
therefore relatively easy to capture without need for opti-
mizing the shape model through the iterations. Accord-
ingly, the resulting mean model and modes of variation
after the 10 iterations (not illustrated) are similar to those
illustrated in Fig. 7.

6.3. Basic vs. noisy model

As stated in Section 2, due to the aim of capturing
‘‘overall shape”, the models resulting from the basic and
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Fig. 10. Comparison of the statistical shape models captured from the
noisy and basic collections of artificial shapes. For each mode of variation,
the two resulting shapes for the two models are compared by computing
the mean distance between corresponding points. Even for large defor-
mations along the main modes, the shapes produced by the two models
differ minimally compared to the voxel size (1 mm).

Fig. 11. Sagittal slices of the manual segmentations of rectum, prostate (brigh
Notice the variation in the shape of the segmented prostates as well as the jagg
from another orientation than the one they were segmentation from. The volu
noisy versions of the artificial collection should be virtually
identical. Fig. 10 illustrates that this is actually the case. We
measure the difference between the basic and noisy model
with varying degree of deformation along the main modes
of variation (up to 3 standard deviations in each mode) as
captured by the shape model building method. The
difference between pairs of deformed basic and noisy mod-
els is measured as the mean Euclidean distance between
corresponding boundary and medial points in the two
shape representations. By measuring distance between
corresponding points rather than just between nearest
boundary/medial points, the distance also captures the
degree of correspondence between the two models.

In the following sections, we introduce the collections of
real prostate and cartilage sheet shapes. These structures
have less obvious shape characteristics and are more chal-
lenging with respect to shape model building.

7. The UNC pelvis CT collection

Prostate cancer is a common type of cancer among
males from age 50. In order to perform radiation treat-
ment, the prostate needs to be segmented. This is particu-
larly challenging when done from CT due to low contrast
with neighboring tissue – a statistical shape model is there-
fore useful for the segmentation. Furthermore, a shape
model can be used for analyzing the optimal radiation
beam configuration.

The pelvis scan collection was retrospectively selected
from the archives of UNC Health-care (Chapel Hill, NC,
USA) and Western Wake Radiology (Cary, NC, USA).
The scans were acquired from Siemens Somotom 4+ CT
scanners without contrast agents of resolution
0.01 � 0.01 � 0.4 mm3 or 0.015 � 0.015 � 0.3 mm3. The
collection has 46 scans in total – all manually segmented
by trained radiologists by slice-wise outlining in the axial
plane using MASK (Tracton et al., 1994) and ana-

struct_editor, from the PLan-UNC suite developed at
UNC–CH Radiation Oncology. For more detail on the
pelvis scan collection, see Dam et al. (2004).

The collection has manual segmentations for prostate,
bladder, and rectum (see Fig. 11). All cases are diagnosed
test), and bladder (darkest) from two cases in the UNC pelvis collection.
ed profiles typical of manual slice-wise segmentations when viewing them
mes vary from 12 cm3 to 144 cm3.
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with prostate cancer so the resulting shape model will not
necessarily model prostates in general. For instance, an
increase of the size of the prostate is common for prostate
cancer patients. Since the shape model is to be used for
analysis of patients diagnosed with prostate cancer, this
bias towards cancerous prostates is desirable.

Using the estimate from Section 2 of the attainable vol-
ume overlap between the prostate shapes and a smooth
shape representation, we get a highest attainable mean
DSC overlap of 0.92. The lowering of the attainable over-
lap is caused by the jagged profiles in the shapes due to
slice-wise manual outlining.

8. The CCBR knee MRI collection

Osteoarthritis is a common degenerative joint disease
that affects the majority of the elderly population result-
ing in pain and reduced range of motion. The central pro-
cess defining disease progress is breakdown of articular
cartilage. Quantitative analysis of articular cartilage is
crucial for clinical studies aimed at developing treatments
beyond pain relief. A cartilage shape model is useful in
cartilage segmentation and needed to provide the coordi-
nate system for analysis of focal measures such as
thickness.

We prospectively acquired the knee scans on an Esaote
C-Span low-field 0.18 T scanner dedicated to imaging of
extremities using a Turbo 3D T1 sequence (flip angle 40�,
TR 50 ms, TE 16 ms). The scans are made through the
sagittal plane with a voxel size in the range
0.7031 � 0.7031 � (0.7031/0.7813/0.8594) mm3. Approxi-
mate scan time is 10 min. From a larger collection, 25 scans
were randomly selected for training the shape model. The
articular cartilage was manually segmented by a radiologist
by slice-wise-outlining (see Fig. 12) using a dedicated anno-
tation tool.

The scans include both left and right knees – right knee
scans were reflected in order to apply the same methodol-
ogy to all scans. The test subjects were males and females
of ages between 21 and 72 years with varying degrees of
osteoarthritis (scores 0–3 on the Kellgren and Lawrence
scale (Kellgren and Lawrence, 1957)).

Using the estimate from Section 2 of the attainable vol-
ume overlap between the cartilage sheets and a smooth
shape representation, we get a highest attainable mean
Fig. 12. Left: sagittal slice from an MR scan. Center: zoom of the same slice.
radiologist outlining in that slice.
DSC overlap of 0.86. The relatively low attainable overlap
is due to firstly slice-wise manual outlining, but primarily
the fact that the shapes are quite thin, and therefore small
boundary displacements account for a relatively large
change in volume (overlap).

9. Evaluation

The shape model building framework that we present
here is almost entirely automatic. The exception is the
choice of starting model. For all the shape collections we
model here, we start from a generic, flat, rectangular model
– however, the grid dimensions differ. The collection of
basic/noisy flat shapes are modeled using an 8 � 8 model,
the knee cartilage by an 8 � 4 model more obvious for
elongated shapes, and the prostates by a 4 � 4 model.
The prostates could also be modeled by an 8 � 8 model –
the specific choice is an informal choice of representation
compactness against accuracy. Alternatively, the choice
could be automated like in Styner and Gerig (2001) simply
by trying different dimensions and picking the one with
best performance.

The parameters for the optimization process are the
same for all collections (listed in Sections 4.4 and 6.1).

In the evaluation, we first focus on the evolution during
the model building bootstrap iterations. Then we illustrate
the resulting shape models for the collections of real pros-
tate and cartilage shapes.

9.1. Evolution of accuracy

We first evaluate the evolution of the resulting shape
representations as the shape model building iterations
progress.

Like in Section 6.2 we track the accuracy of the shape
representations in terms of mean boundary distance (L in
Eq. (1)) (Fig. 13, left) as well as DSC volume overlap
(Fig. 13, right) between shapes in the collection and the
optimized model. As the graphs show, there are slight
improvements in representation accuracy as the bootstrap
iterations evolve.

The convergence of the shape model building process is
also illustrated (Fig. 13, bottom) and for three of the collec-
tions, the method converges within the 10 iterations. For
the prostate collection, there is still some minor evolution.
Right: the corresponding golden standard segmentation resulting from the
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Fig. 13. Evolution of the mean boundary distance (left) and the DSC
volume overlap (center) as function of the bootstrap iteration. For all
shape collections, the accuracy of the representations improve slightly.
The process converges for three collections, while the prostate model is
still evolving slightly (right).
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9.2. Evolution of correspondence

Evaluation of the evolution of correspondence proper-
ties is illustrated in Fig. 14. Inspired by Styner et al.
(2003), we measure generality, specificity and compactness.

Generality measures the ability to recognize unknown
examples from the same class of shapes. Specificity is
the ability not to allow shapes that are far from the
shapes in the training collection – meaning that only plau-
sible shapes are statistically probable in the resulting
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Fig. 14. Evolution of correspondence properties during the shape model
building iterations. We evaluate generality, specificity, and compactness
for the four collections of shapes. In general, generality and compactness
improve during the iterations while specificity remains constant.
shape distribution. To some degree, generality and speci-
ficity are opposing requirements. Finally, compactness is
the ability to model the shape distribution with few, pow-
erful parameters.

Generality is approximated in a leave-one-out fashion
by measuring the minimal distance from each shape
instance to the PGA shape space spanned by the remaining
shapes in the collection. Specificity is evaluated by sam-
pling 1000 random shapes from the PGA shape space
(we sample the shape parameters from a multi-variate
Gaussian since for relatively small deformations this is a
close approximation of the true shape space) and measur-
ing the minimal distance to one of the shapes from the
training collection.

For both generality and specificity, distance between
two shapes is measured as the mean Euclidean distance
between corresponding boundary and medial points in
the two shape representations generated following Section
4.4. By measuring distance between corresponding points
rather than just between nearest boundary points, the eval-
uation of generality and specificity also indirectly evaluates
the correspondence ability of the model.

Compactness is measured as the relative variance cov-
ered by a fixed number of shape variation modes. For
the artificial shapes, we use two modes, and for the real
shapes we use 10 modes.

The overall picture is that generality and compactness
are improved during the shape model building iterations
while specificity is virtually constant. Thereby, the frame-
work manages to improve the overall correspondence of
the shape models.

9.3. The resulting shape models

We illustrate the resulting shape models for the prostate
and cartilage sheet collections with the standard displays of
the mean shape accompanied with shapes at a few standard
deviations away along the major modes of variation.

As is typically the case, the modes capture both shape
variation which is difficult to describe in simple terms as
well as modes with nice, intuitive anatomical foundation.
Examples of the latter is the third mode for the prostate
model (in Fig. 15) which is most likely related to deforma-
tion due to pressure from the bladder.

The third mode in the model for the tibial medial car-
tilage sheet (Fig. 16) also has an interesting anatomical
relation – it captures the overall bending of the sheet
which in previous work has been shown to have a close
relation to the presence of osteoarthritis (Folkesson
et al., 2006).

9.4. Focal statistics

The coordinate system of the resulting shape model
allows focal statistics across a population of shapes. We
illustrate this by the map in Fig. 17 of the focal variation
in cartilage thickness for the collection of tibial cartilage



Fig. 15. Prostate shape model resulting from the shape model building method. The rows illustrate first, second, and third mode of variation. Each shape
mode is shown with the mean shape in the center and then ± one and two standard deviations away from the mean. The first mode (shown from sagittal
view) can be characterized as skewness of the prostate. The second mode (from coronal view) is a Laurel/Hardy variation. The third mode (from sagittal
view) could be related to the location of the bladder which pushes down on the prostate from top left.

Fig. 16. Cartilage sheet shape model resulting from the shape model building method. The first mode (shown from axial view) is again a Laurel/Hardy
variation. The second mode (from sagittal view) mainly captures curving of the posterior part of the sheet. The third mode (from sagittal view) captures the
overall bending of the cartilage sheet.
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sheets. The thickness variation is focused in the central val-
ley of the cartilage sheet and up towards the intercondylar
spine – anatomically corresponding to the load-bearing
region of the cartilage sheet.

9.5. Results summary

In Table 1, we summarize the key performance measures
for the shape models generated above for the four collec-
tions of training shapes. The number of training shapes is
given parenthesized for each collection.

First, we show the accuracy of the optimized shape
representations as the resulting fit vs. the training collec-
tion shapes. This is measured both in terms of mean
boundary distance and as mean DSC overlap. For DSC,
both values for the estimate for the attainable value from
Section 2 and the performance of the optimized shape
models are listed.
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Fig. 17. Focal variation for the tibial cartilage sheets. The maps of the
local mean (left) and standard deviation (right) across the collection of
cartilage sheets show that the largest thickness as well as variation is
primarily located in the load-bearing region of the cartilage sheet.

Table 1
Summary of results

Collection Basic Noisy Prostate Cartilage
Size 5 5 46 25

Accuracy
Voxel size (mm) 1.0 1.0 0.13 0.8
Boundary distance (mm) 0.23 0.33 0.08 0.23
DSC, attainable 1.00 0.95 0.92 0.86
DSC, evaluation 0.98 0.93 0.90 0.86

Correspondence
Generality (mm) 0.027 0.028 0.013 0.013
Specificity (mm) 0.61 0.62 0.67 0.58
Compactness (%) 91 91 84 88

First, for each collection the representation accuracy is given as mean
boundary distance as well as volume overlap (DSC) between shapes and
models. The boundary distance can be compared by the mean voxel side
length. The DSC values compare the ‘‘attainable accuracy” for the shape
collection to performance of the models. Second, the correspondence
properties for each collection are given.
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Second, we show the correspondence property evalua-
tion values for generality, specificity, and compactness.

10. Conclusion

We present a framework for automatic shape model
building from a collection of training shapes. The method
consists of alternating steps of deforming a shape repre-
sentation into the training shapes following by calcula-
tion of the shape mean and the modes of shape
variation. The mean and modes are then used as the
starting point in the next iteration of the shape model
building method.

The basic framework is heavily inspired by our previ-
ous work (Dam et al., 2004). However, in particular the
optimization based on boundary distance ensures that
the new method represents the training shapes close to
the attainable accuracy. For the prostate collection, this
means a significant improvement from a mean DSC vol-
ume overlap of 0.80–0.90 (compared to the attainable
accuracy of 0.92).

We evaluate our shape model building method on four
collections of training shapes, among these prostates and
cartilage sheets. The evaluation shows that the method is
able to represent the shapes close to the attainable accu-
racy already after the first iteration. Through the itera-
tions the resulting shape mean and modes of variation
are optimized such that the correspondence properties
are improved.

The resulting shape means and modes of deformation
look intuitively pleasing and correspond well with the
expectations. This is particularly clear for the collections
of artificial shapes where the expected mean and modes
are known by design.

Thereby, we argue that our overall framework is suit-
able for automatic construction of statistical shape models.

10.1. Future work

The framework presented above allows construction of
a statistical shape model from the a collection of training
shapes. The results show that the method is good for rep-
resenting the shapes and for extracting reasonable shape
means and modes of variation.

The evaluation of the correspondence properties gives
intuitively pleasing results. The collection that proves to
be the most challenging is the collection of prostates. This
is revealed by the slower rate of convergence combined
with the slightly worse values for correspondence proper-
ties. This is to be expected since the prostate shapes have
little natural correspondence defined by their geometry.
For such shapes the correspondence should probably
rather be defined by the surrounding organs. Since our
shape representation of choice has been used extensively
for multi-object models, this is a natural, future extension
of our method. Thereby, our method will also be extended
to allow more complicated shapes.

The intuitive look of the resulting shape mean and
modes of variations indicates that the framework is reason-
ably well behaved. Also, the evaluation of both the repre-
sentation accuracy and as well as the correspondence
properties shows good performance of the framework.
However, since the method has been evaluated on different
data sets than the sets leading, alternative methods were
evaluated against in Styner et al. (2003) or Heimann
et al. (2005), it is very hard to conclude how our method
performs compared to these methods.

The devil’s advocate could argue that our method is
based on a naive confidence in the robustness of the corre-
spondence properties of a medial model and that we there-
fore focus too much on geometric regularization and
representation accuracy instead of directly optimizing the
correspondence properties as done in Davies et al. (2002).
Therefore, we look forward to performing a proper evalu-
ation against the main competing methods – inspired by
the excellent study in Styner et al. (2003).
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This future will be focused on evaluation the ability to
model actual anatomical correspondence rather than math-
ematical properties related to correspondence. Only such a
direct evaluation will reveal whether the ideas underlying
our framework are sound and robust.
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