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Abstract. The use of statistical shape models in medical image analysis
is growing due to the ability to incorporate prior organ shape knowledge
for tasks such as segmentation, registration, and classification.

Shape models are trained from collections of segmented organs. Though
manual interaction during training can ensure correspondence, it also
introduces bias and ruins reproducibility — automation is desirable.
We present a novel shape model construction method via a medial shape
representation. The automatic method is based on an iterative bootstrap
method that alternates between shape representation optimization and
analysis of shape mean and variations.

The method is used to create a model from 46 segmented prostates with
quantitatively and intutitively good results.

1 Introduction

Methods based on analysis of shape variation are widespread in medical imaging.
These methods allow incorporation of statistical prior shape knowledge in tasks
where image information alone is not enough to solve the task automatically.
The classical example is the use of deformable models in segmentation.

Most statistical shape models consist of a mean shape with deformations that
are constructed through statistical analysis of shapes from a training collection.
Each shape is described partially by the chosen shape representation, and anal-
ysis of the parameters for the representation gives the mean and variations.

The best known is the Active Shape Model (ASM) [1] where the shapes are
represented by a point distribution model (PDM) with given point-wise corre-
spondence. The mean model is simply the mean of each point after Procrustes
alignment. Principal component analysis (PCA) provides the variations.

This work pursues the medial shape representation m-rep [3]. The m-rep
represents shape by means of the sheet of sampled medial atoms. This param-
eter space is not Euclidean but consists of a combination of position, scaling,
and orientation parameters. Standard PCA is therefore not applicable. However,
the analogue that applies to shape representations that form Lie groups is the
Principal Geodesic Analysis (PGA) [4,5].



A key step in constructing shape models is the representation of the training
shapes. This must define correspondence across the population. For a PDM the
simplest method is manual selection of the boundary points by a medical expert.
In 2D, and especially 3D, this is a time-consuming and non-reproducible. How-
ever, this is automated by Davies [6] by first generating boundary points from
a spherical harmonics representation and then optimizing the boundary points
and their correspondence in a Minimum Description Length (MDL) approach.

This work presents an essentially automatic shape modeling method. The
essense is an automatic bootstrap process that iteratively fits the shape model
to training shapes and then derives the PGA mean and modes of deformation.
Through the bootstrap iterations, the PGA mean and variations are optimized
to allow automatic fitting of all shapes in the training collection. The main differ-
ence compared to [6] is that the MDL approach starts the optimization process
from representations with good training shape fit and poor correspondence. The
MDL process then protects the shape fits while optimizing the correspondence.
The PGA bootstrap starts from a generative model with explicit correspondence
but with poor fit to the individual training shapes. The bootstrap process then
keeps the correspondence while optimizing the fit to the training shapes.

Another method generates an m-rep mean model from training shapes through
a spherical harmonics representation that is transformed to Voronoi skeletons [7].
Our approach provides modes of variation as well and is cleaner since the m-rep
is the only representation in play. A similar bootstrapping approach that uses
an atlas/registration methodology instead is presented in [8].

We evaluate the presented PGA bootstrap for construction of a prostate
shape model. The training collection consists of 46 cases where the prostates were
segmented in the course of prostate cancer external-beam radiation treatment.
Especially in CT scans with slice thickness 2mm or larger, the boundaries of the
prostate have low contrast — therefore, prior knowledge in a statistical shape
model is essential to making automatic segmentation possible.

The contributions of this work are threefold: a) The PGA bootstrap method
that allows essentially automatic generation of a shape model with mean and
main modes of variation, b) Introduction of the necessary geometric regulariza-
tion term for the m-rep, and ¢) The resulting prostate model that will be central
in segmentation and analysis of prostates in radiation treatment planning.

2 The UNC Pelvis Collection

The slice-based segmentation programs, MASK [9] and anastruct_editor, from
the PLan-UNC suite of radiotherapy treatment tools developed at UNC-CH
Radiation Oncology, were used to manually produce binary segmentations. Pro-
static fat is included in the prostate’s shape, as is seen in clinical practise, both
because of the difficulty of finding the border between these and the prostate
and the chance that these will contain significant counts of cancer cells. Seminal
vesicles are excluded from the prostate.



The ungated CT scans are acquired from non-immobilized supine patients at
UNC Healthcare (Chapel Hill, NC, USA) and Western Wake Radiology (Cary,
NC, USA) on Siemens Somotom 4+ scanners without contrast agents.

Retrospective patient images are selected from the archives based on techni-
cal criteria, such as adequate image quality and anatomical coverage (the entire
bladder down through the prostate apex), as well as shape and anatomical con-
siderations such as very large bladders, prosthetic hips, or surgical procedures
proximal to the prostate, yielding “normal cancerous” prostates.

The collection has 46 sets with manual segmentations for prostate, bladder,
and rectum (see figure 1). All cases are diagnosed with prostate cancer so the
resulting shape model will not necessarily model prostates in general. For in-
stance, an increase of the size of the prostate is common for prostate cancer
patients. Since the shape model is to be used for analysis of patients diagnosed
with prostate cancer, this bias towards cancerous prostates is desirable.

Fig. 1. Sagittal slices of the manual segmentations of rectum, prostate (brightest), and
bladder (darkest) from two cases in the UNC pelvis collection. Notice the large variation
in the shape of the segmented prostates. The volume varies from 12cm?® to 144cm?.

3 Medial Shape Representation: M-rep

We use a medial shape representation, m-rep, and here briefly review the geom-
etry and the framework for image segmentation [10,11] and introduce a novel
regularization term essential for the bootstrap framework.

The m-rep is based on the medial axis of Blum [12]. In this framework, a 3D
geometric object is represented as a set of connected continuous medial sheets,
which are formed by the centers of all spheres that are interior to the object and
tangent to the object’s boundary at two or more points. Here we focus on 3D
objects that can be represented by a single medial sheet.

We sample the medial sheet M over a spatially regular lattice of medial atoms
defined as a 4-tuple m = {x,r, F, 6}, consisting of: x € R? and r € R, the center
and radius of the sphere, F € SO(3) an orthonormal local frame parameterized
by (b,b%,n), where n is the normal to the medial manifold, b is the direction



in the tangent plane of the fastest narrowing of the implied boundary sections,
and 6 € [0,7) the object angle determining the angulation of the two implied
opposing boundary points to the local frame. Given an m-rep figure, we fit
a smooth boundary surface to the model. We use a subdivision surface method
[13] that interpolates the boundary positions and normals implied by each atom.

3.1 Segmentation using m-reps

Following the deformable models paradigm, an m-rep model M is deformed into

an image I by optimizing an objective function:
FM,I)=L(M,I)+aGM)+ R(M)

The function L, the image match, measures how well the model matches the

image information, while G, the geometric typicality, gives a prior on the possible

variation of the geometry of the model weighted by « > 0. The last term R, the

geometric reqularization, is a novel addition to the m-rep framework.

This objective function is optimized in a multiscale fashion. That is, it is
optimized over a sequence of transformations that are successively finer in scale.
Here we will only be concerned with the figural level and the medial atom level.
At the figural level the transformation we use is a similarity transformation
plus an elongation of the entire figure. At the atom level each medial atom is
independently transformed by a similarity plus a rotation of the object angle.

M-rep models are fit to binary segmentation images of the prostates. These
binary images are blurred slightly to smooth the objective function, which is
optimized with a conjugate gradient method. The image match term of the
objective function, L, is computed as a correlation with a Gaussian derivative
kernel in the normal direction to the object boundary:

LM,T) = [ [, 0.G(t) I (s+ (t/r)n) dtds
where s is a parameterization of the boundary B(M), 9;G is the Gaussian deriva-
tive kernel, r is the radius function, and n is the boundary normal.

The geometric typicality term, G, is defined as the change in the boundary
from the previous level of scale (where sq is the boundary position at that level):

2
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The geometric regularization term, R, essentially corresponds to the curva-
ture and neighbor distance terms in the active contour model and is added during
the bootstrap iterations that are introduced in section 5 at the atom scale level
in order to keep the model nice. For a medial atom m with neighbor atoms m;:

diam?
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Here d(-, ) is the distance between atom centers (weighted by 1/+/2 for diagonal
neighbors), d(-,-) is the mean distance for the model, and rd is the relative
difference. Furthermore, diam is the model diameter, IV is the number of atoms,
m_; is the neighbor opposing m; on the other side of m, and bjgear is the b
vector as in an ideally oriented atom at that position in the lattice.




4 Principal Geodesic Analysis

Principal geodesic analysis (PGA) [5] is a generalization of principal component
analysis (PCA) to curved manifolds. We briefly review the results here.

As shown in [5], the set of all medial atoms forms a Lie group M = R3 x R* x
SO(3) x SO(2), which we call the medial group. Likewise, the set of all m-rep
models containing n medial atoms forms a Lie group M™", i.e., the direct product
of n copies of M. This allows the defintion of the exponential and logarithmic
maps, exp(-) and log(-), that defines the geodesics of the medial group.

4.1 M-rep Means and PGA

The Riemannian distance between m-rep models M;, M, € M" is given by
d(M;,M3) = ||log(M;'M,)||. Thus, the intrinsic mean of a set of m-rep
models My, ..., My is the minimizer of the sum-of-squared geodesic distances:
p=arg min 3;L, || log(M; 'M)|J?

MeMmn»

Principal components of Gaussian data in R" are defined as the projection
onto the linear subspace through the mean spanned by the eigenvectors of the
covariance matrix. If we consider a general manifold, the counterpart of a line is
a geodesic curve.

As shown in [4], the covariance structure of a Gaussian distribution on M™
may be approximated by a covariance matrix X in the Lie algebra m™. The
eigenvectors of this covariance matrix correspond via the exponential map to
geodesics on M ™, called principal geodesics.

Algorithms for computing the m-rep mean and the principal geodesic analysis
on a population of m-rep figures are given in [4].

Analogous to linear PCA models, we may choose a subset of the principal di-
rections u®) € m” with corresponding variations Ay that is sufficient to describe
the variability of the m-rep shape space. New m-rep models may be generated
within this subspace of typical objects. Given a set of coefficients {au,...,q;},

we generate a new m-rep model by M = pexp (22:1 aku(k)), where ay, is
chosen to be within [—3v/Ag, 3v/ Akl

5 Shape Model Bootstrapping

The segmentation program Pablo provides a user interface that allows construc-
tion of m-rep models and optimization of the parameters for fitting to a specific
training case [10]. For this work, a batch version of Pablo was developed.

The shape model bootstrapping method is now strikingly simple. From a fidu-
cial starting model, the batch fitting process is used to give rough representations
of each shape. The PGA then generates the mean model and corresponding prin-
cipal geodesics from the 46 fitted prostate models. This mean model is then used
to fit the shapes using batch Pablo where the principal geodesics are now used
during the figural stage. This bootstrapping procedure is iterated.



The idea is that the new mean of the fitted models is a better prototype than
the initial model and as the bootstrap iterations progress the generated mean
model converges to a good prototype.

5.1 Bootstrapping from the Generic Model

The Generic is the default 4x4 m-rep that Pablo generates as a starting model
for building handcrafted models. The choice of the specific 4x4 grid of medial
atom reflects a choice of sampling resolution combined with the intention of
starting the bootstrap from a neutral, non-committed model. Figure 2 shows
the starting model and the progression during bootstrap iterations.
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Fig. 2. The Generic model and the resulting bootstrap image match evolution. Image
match s as defined in section 3.1 and DICE volume overlap is used (the volume of the
intersection between model and manual segmentation divided by their mean volumes).

5.2 Convergence

In this work, we address the question of convergence pragmatically. The image
match and volume overlap values above appear to be converging. Formal proof
of the necessary requirements (in terms of starting model and parameter choices)
for convergence of the PGA mean and modes is left for future work.

Visual inspection of the mean models after up to 200 bootstrap iterations
indicates that the mean is actually converging. Without formal convergence cri-
teria, we use the heuristic approach of running the bootstrap until the image
match values cease to improve significantly.

The geometrical regularization introduced in equation 1 is essential to achiev-
ing convergence. Without regularization the boundary converges but the medial
grid becomes arbitrarily distorted and thereby ruins correspondence — see figure
3. The grid and dist terms keeps the sheet regular and evenly spaced, implode
prevents the atoms from collapsing, and swirl keeps the boundary points in prox-
imity to the related atoms. The constrained evolution that is achieved through
the geometrical regularization ensures nice correspondence properties through
a regular coordinate system on the boundary as well as inside and outside the
resulting shape model.



5.3 Resulting Prostate Shape Model

The resulting Prostate mean shape model is compared to the result of running
the bootstrap without geometrical penalty in figure 3. Without geometrical re-
strictions, the small deformations in each bootstrap iteration build up and distort
the model arbitrarily.

The 10 modes of variation include 98% of the variation in the training collec-
tion. This ensures little need for atom optimization in the segmentation process
which speeds up the segmentation method considerably. The automatic fitting
achieves image match in the range 0.73-0.87 with mean 0.82 and a mean DICE
volume overlap of 0.80. We consider this excellent given the large variation in
shape and the non-smooth boundary profiles in the binary segmentations in the
training collection (see figure 1).
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Fig. 3. Top: Comparing medial grid after 100 iterations without and with geometrical
reqularization (o = 0.25, vygist = 0.02, Vimpiode = 0.0002, v4ri¢ = 0.002, Yswiri = 0.03).
Bottom: Resulting Prostate Mean Model with 1 standard deviation of the first principal
geodesic mode of variation — a Laurel/Hardy effect. All seen in anterior-posterior view.

The shape model is here evaluated on binary images. In the full m-rep seg-
mentation framework, the shape model is combined with profile models for the
local boundary (as done in [14] that uses an experimental version of the PGA
bootstrap method) instead of just using the Gaussian derivative profile.

Apart from being directly applicable for segmentation, the shape model and
the condensed PGA parameterization is applicable for shape classification.



6 Conclusion

We present a novel shape model construction method using a medial shape rep-
resentation. The method is essentially automatic based on an iterative bootstrap
method that alternates between shape representation optimization and principal
geodesic analysis of shape mean and variations. The method constructs an m-rep
shape model consisting of a mean and corresponding main modes of variation.
The non-automatic step is the choice of initial model — we have chosen a generic
4x4 atom grid that is a suitable compromise between compactness and accuracy.
The method is evaluated on a training collection of 46 manually segmented
prostates. The resulting model is quantitatively and qualitatively excellent.
Future work is centered on evaluating our method against the MDL approach
that generate an ASM [6]. Central points to evaluate are compactness, corre-
spondence, and legality (how likely are illegal models). Furthermore, modelling
of kidneys, hearts and other anatomical structures is to come. Also, ongoing work
explores representing medical atoms as a Riemannian symmetric space rather
than a Lie group. We have extended the theory of PGA to this space, and future
work will involve building the prostate shape model under this new framework.
Acknowledgement: We sincerely thank Per Halverson at Western Wake
Radiology (Cary, NC, USA) for supplying pelvis scans for the collection.
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