
SCIRun: Application to Atmospheric Dispersion
Problems Using Unstructured Meshes.

C.R. Johnson1, M. Berzins2, L. Zhukov1, and R. Co�ey1

1Dept. of Computer Science, University of Utah, Salt Lake City, Utah, USA
2CPDE Unit, Computer Studies, University of Leeds, Leeds LS2 9JT,UK

Abstract

We present an overview of SCIRun, a scienti�c problem solving envi-
ronment that allows the interactive construction, debugging, and steering
of large-scale scienti�c computations. Using this \computational work-
bench," a scientist can design and modify simulations interactively via a
data
ow programming model. SCIRun enables scientists to design and
modify model geometry, interactively change simulation parameters and
boundary conditions, and interactively visualize geometric models and sim-
ulation results. We show an integrated prototype problem solving environ-
ment for computational
uid dynamics may be constructed by combining
SCIRun with the Tetrad/CSPRINT codes. The success of the approach
is illustrated by using the resulting code to solve an atmospheric di�usion
example consisting of time dependent p.d.e.s on unstructured tetrahedral
spatial meshes.

1 Introduction.

In recent years, the scienti�c computing community has experienced an explo-
sive growth in both the possible size and the possible complexity of numeric
computations. One of the signi�cant bene�ts of this increased computing power
is the ability to perform complex three-dimensional simulations. However, such
simulations present new challenges for computational scientists. How does one
e�ectively analyze and visualize complex 3D data? How does one solve the prob-
lems of working with very large datasets often consisting of tens to hundreds of
gigabytes? How does one provide tools that address these computational prob-
lems while serving the needs of scienti�c users? These problems are particularly
acute in the area of transient three-dimensional reacting
ows in which it is pos-
sible to generate very large data sets purely because of the numbers of chemical
species involved and the time-dependent nature of the problem.

Scienti�c visualization clearly plays a central role in the analysis of data
generated by scienti�c simulations. Unfortunately visualization is often per-
formed only as a mystical post-processing step after a large-scale computational
batch job is run. For this reason, errors invalidating the results of the entire
simulation may be discovered only during post-processing. What is more, the
decoupling of simulation and visualization presents serious scienti�c obstacles

1

2SCIRun: Application to Atmospheric Dispersion Problems Using Unstructured Meshes.

to the researcher. This issue was addressed by the 1987, Visualization in Sci-
enti�c Computing (ViSC) workshop which concluded that scientists not only
want to analyze data, they also want to interpret what is happening to data
and want to steer calculations in real-time by changing parameters, resolution or
representation. This interactive visual computing is a process whereby scientists
communicate with data by manipulating its visual representation during pro-
cessing. The more sophisticated process of navigation allows scientists to steer,
or dynamically modify computations while they are occurring. These processes
are invaluable tools for scienti�c discovery.

Although these thoughts were reported more than ten years ago, they express
a simple and still current idea: scientists want more interaction than is currently
present in most simulation codes. While the scienti�c computing community is
still trying to �nd better ways to address these needs, we feel that the problems
encountered by computational scientists encompass a wider range of issues, in-
cluding but not restricted to scienti�c visualization. In this paper, we give an
overview of the SCIRun1[11] problem solving environment and focus on incor-
porating an unstructured tetrahedral mesh solver, called Tetrad, [3], and use it
with the CSPRINT time integration software [1] within SCIRun to solve a tran-
sient atmospheric di�usion problems with multiple species on an unstructured
adaptive tetrahedral mesh. In doing so we will demonstrate the applicability of
SCIRun to complex multi-species multidimensional transient
ows.

2 SCIRun - a Computational Steering System

SCIRun is a scienti�c programming environment that allows the interactive con-
struction, debugging and steering of large-scale scienti�c computations [8, 7, 6].
SCIRun can be envisioned as a \computational workbench," in which a scien-
tist can design and modify simulations interactively via a data
ow programming
model. SCIRun enables scientists to modify geometric models and interactively
change numerical parameters and boundary conditions, as well as to modify the
level of mesh adaptation needed for an accurate numerical solution. As opposed
to the typical \o�-line" simulation mode - in which the scientist manually sets
input parameters, computes results, visualizes the results via a separate visual-
ization package, then starts again at the beginning - SCIRun \closes the loop"
and allows interactive steering of the design, computation, and visualization
phases of a simulation.

The data
ow programming paradigm has proven useful in many applications.
In the scienti�c community, it has been successfully applied in several scienti�c
visualization packages, including AVS from Advanced Visual Systems Inc. and
Iris Explorer from NAG. We have extended the use of the data
ow programming
model into the computational pieces of the simulation. To make the data
ow
programming paradigm applicable to large scienti�c problems, we have iden-
ti�ed ways to avoid the excessive memory use inherent in standard data
ow

1SCIRun is pronounced \ski-run" and derives its name from the Scienti�c Computing and
Imaging (SCI) research group which is pronounced \ski" as in \Ski Utah."

C.R. Johnson1, M. Berzins2, L. Zhukov1, and R. Co�ey1 3

implementations, and we have implemented �ne-grained data
ow in order to
further promote computational e�ciency.

2.1 An Iterative Environment for Scienti�c Computing

Currently, the typical process of constructing a computational model consists of
creating (modifying) a discretized geometric model and its associated mathemat-
ical model. Once the solution is computed results are analyzed using a separate
visualization package and the cycle repeated.

The \art" of obtaining valuable results from a model has up until now re-
quired a scientist to execute this process time and time again. Changes made to
the model, input parameters, or computational processes are typically made us-
ing rudimentary ine�cient tools (text editors being the most common). Ideally, a
system should link all these computational components so that all aspects of the
modeling and simulation process could be controlled graphically within the con-
text of a single application program. This is not the current standard of scienti�c
computing because of the di�culties in creating such a uni�ed program. These
di�culties arise from the need to integrate a wide range of disparate computing
disciplines (such as user interface technology, 3D graphics, parallel computing,
programming languages, and numerical analysis) with a wide range of equally
disparate application disciplines (such as medicine, meteorology,
uid dynamics,
geology, physics, and chemistry). Our approach to overcoming these di�culties
is to separate the components of the problem. SCIRun's data
ow model employs
\modules" that can be tailored for each application or computing discipline in a
single uni�ed framework. In this paper we will show how modules in time inte-
gration and unstructured mesh computational
uid dynamics have been linked
with SCIRun.

2.2 Steering

SCIRun is an integrated problems solving environment in which allows the user
to interactively control scienti�c simulations while the computation is in progress
[10, 9]. This control allows the user to vary model or computational parame-
ters during simulation. SCIRun is designed to provide high-level control over
parameters in an e�cient and intuitive way, through graphical user interfaces
and scienti�c visualization. These methods permit the scientist or engineer to
\close the loop" and use the visualization to steer phases of the computation in
an advantageous way. As changes in parameters become more instantaneous, the
cause-e�ect relationships within the simulation become more evident, allowing
the scientist to develop more intuition about the e�ect of problem parameters,
to detect program bugs, to develop insight into the operation of an algorithm,
or to deepen an understanding of the physics of the problem(s) being studied.

2.3 Requirements of SCIRun as a Computational Steering System

SCIRun was designed to solve speci�c problems in Computational Medicine, but
has been since extended to other computational science and engineering problem
domains. In attacking the speci�c problems, we found that there were a wide

4SCIRun: Application to Atmospheric Dispersion Problems Using Unstructured Meshes.

range of disparate demands placed on such a system. Each of these demands
reveals a di�erent facet of what we call SCIRun.

2.4 SCIRun the Operating System

In a sophisticated simulation, each of the individual components (modeling, mesh
generation, nonlinear/linear solvers, visualization, etc.) typically consumes a
large amount of memory and CPU resources. When all of these pieces are con-
nected into a single program, the potential computational load is enormous. In
order to use the resources e�ectively, SCIRun adopts a role similar to an op-
erating system in managing these resources. SCIRun manages scheduling and
prioritization of threads, mapping of threads to processors, inter-thread commu-
nication, thread stack growth, memory allocation policies, and memory exception
signals (such as segmentation violations).

2.5 SCIRun the Scienti�c Library

SCIRun uses a visual programming interface to allow the scientist to construct
simulations through powerful computational components. While the visual pro-
gramming environment is the central focus of SCIRun, it requires a powerful set
of computational tools. In the �rst stage of SCIRun, we have concentrated on
integrating the computational components that we have used to solve our own
computational problems. Such tools Delaunay 3D tetrahedral mesh generators
and mesh adaptation routines, direct and iterative linear and nonlinear equations
solvers and �nite element space discretisation routines, see [8]. We have recently
expanded focus and are now in the process of integrating popular libraries and
tools, see [8] into the SCIRun environment, much as will be shown here with
TETRAD in Section 2.7 below.

2.6 SCIRun the Development Environment

Perhaps the most powerful facet of SCIRun is the ability to use it in the devel-
opment phases of a simulation. SCIRun augments the development environment
by providing convenient access to a powerful set of computational components.
However, these components could never be comprehensive, so SCIRun also pro-
vides an environment whereby new modules can be developed e�ciently. If a
module fails, SCIRun stops the module at the point of error, thus allowing the
developer to attach a debugger to the program at the point of failure. This avoids
the frustrating experience of trying to reproduce these errors in the debugger.
In addition, SCIRun provides simple instrumentation of module performance
(CPU times printed out interactively), feedback execution states (waiting for
data, percent completed, etc.), and visualization of memory usage. SCIRun
employs dynamic shared libraries to allow the user to recompile only a speci�c
module without the expense of a complete re-link. Another SCIRun window
contains an interactive prompt which gives the user access to a Tcl shell that
can be used to interactively query and change parameters in the simulation.

C.R. Johnson1, M. Berzins2, L. Zhukov1, and R. Co�ey1 5

2.7 Application Requirements{An Atmospheric Dispersion Example

SCIRun is not magic { it is simply a powerful, expressive problem solving envi-
ronment for constructing steerable applications, either from existing applications
or starting from the ground-up. The application programmer must assume the
responsibility of breaking up an application into suitable components. More im-
portantly, it is the responsibility of the application programmer to ensure that
parameter changes make sense with regard to the underlying problem physics.

The application we consider here is taken from a model of atmospheric dis-
persion from a power station plume - a concentrated source of NOx emissions,
[2]. The photo-chemical reaction of this NOx with polluted air leads to the
generation of ozone at large distances downwind from the source. An accurate
description of the distribution of pollutant concentrations is needed over large
spatial regions in order to compare with �eld measurement calculations. The
present trend is to use models incorporating an ever larger number of reactions
and chemical species in the atmospheric chemistry model. The complex chem-
ical kinetics in the atmospheric model gives rise to abrupt and sudden changes
in both space and time in the concentration of the chemical species in both
space and time. These changes must be matched by changes in the spatial mesh
and the timesteps if high resolution is required, [4]. The di�erence in time-scale
between the reaction of these species leads to sti� systems of equations which
require implicit numerical solvers and special linear equations solvers [1]. The
requirements of such a problem are that it is necessary to combine:

� Unstructured tetrahedral mesh generation and adaptation.

� Physically realistic spatial discretisation methods.

� Sti� ode integrators tailored to the application.

� Fast interactive visualization for multi-species
ows

� Computational steering facilities for transient problems.

These requirements were met by combining the SCIRun software with the
spatial discretisation, mesh adaptation and time integration codes CSPRINT
and TETRAD [1, 3] and by wrapping these codes in SCIRun modules, with
converters to map to the SCIRun data structures, see Section 5 below.

3 SCIRun Data
ow System

SCIRun composes computational and visualization algorithms with these data
elements using a data
ow style \boxes and wires" approach. An example of the
atmospheric di�usion data
ow network using Tetrad is shown in Figure 1. The
basic features of the SCIRun data
ow system are summarized below.

� A module represents an algorithm or operation, is drawn as a box in the
network, with input and output ports to de�ne its external parameters.

6SCIRun: Application to Atmospheric Dispersion Problems Using Unstructured Meshes.

Figure 1. A data
ow network, showing modules (boxes), connections (wires) and the

i/o ports on the modules that the wires connect). The plume and mesh shown are in

the early stages of development.

� A port provides a connecting point for routing data to di�erent modules.
Ports are typed: each datatype has a di�erent color, and datatypes cannot
be mixed. In SCIRun, ports can be added to and removed from a module
dynamically. Input ports are represented on the top of the module icon,
and output ports are on the bottom. Output ports can cache (user-de�ned)
datasets to avoid recomputation.

� A datatype represents a concept behind the numbers. Datatypes are quan-
tities such as scalar �elds or matrices, but are not the speci�c representa-
tions, such as unstructured grids, or sparse matrices, etc.

� A connection connects two modules together and thus controls where data
is sent within SCIRun. The output port of one module is connected to the
input port of another module. Output ports can be connected to multiple
input ports, but input ports accept only a single connection.

� A network consists of a set of modules and the connections between them.
This represents a complete data
ow \program."

The data
ow library is responsible for deciding which modules need to be ex-
ecuted and when. A module is typically re-executed when the user changes a
module parameter, when new data is available at an input port, or when data
is required at its output port. The SCIRun scheduler analyzes the data
ow
graph to determine what other modules will also need to be executed. The mod-
ules actually communicate directly with each other using a threadsafe FIFO for

C.R. Johnson1, M. Berzins2, L. Zhukov1, and R. Co�ey1 7

the dataset hando�s. A centralized scheduler is used in order to avoid redun-
dant module re-execution in a branching situation. Since we leave the central
scheduler out of the loop for individual dataset hando�s, it does not become a
bottleneck in the execution of the program.

The Data
ow library also contains a base class from which all modules are
derived. This class contains the data structures that are required to imple-
ment the data
ow structures; it also contains various utility functions, such as
update progress, a function that the module writer can call periodically to up-
date the graph on the module icon that indicates the approximate percentage of
work the module has completed.

4 Steering in a Data
ow System

All of the pieces described above have been designed to support steering of large
scale scienti�c simulations. SCIRun uses three di�erent methods to implement
steering in this data
ow oriented system:

1. Direct lightweight parameter changes. For example the TETRAD interface
module allows the user to change the tolerance used for remeshing and and
the number of re�nement levels used. even while the module is executing.

2. Cancellation. When parameters are changed, the module can choose to
cancel the current operation. For example, if boundary conditions are
changed, it may make sense to cancel the computation in order to focus
on the new solution. This makes the most sense when solving elliptic
problems, since the solution does not depend on any previous solution.

3. Feedback loops in the data
ow program. For a time varying problem, the
program usually goes through a time stepping loop with several major
operations inside. The boundary conditions are integrated in one or more
of these operations. If this loop is implemented in the data
ow system, then
the user can make changes in those operators which will be integrated on
the next trip through the loop.

These three methods provide the mechanisms whereby computational parame-
ters can be changed during the execution of the program.

5 Atmospheric Di�usion Equation Example

The power plant plume application outlined in Section 2.7 is modelled by the
atmospheric di�usion equation in three space dimensions given by:

@cs

@t
= �

@ucs

@x
�

@vcs

@y
�

@wcs

@z
+D(

@cs

@x
;
@cs

@y
;
@cs

@z
)

+Rs(c1; c2; :::; cq) +Es � (�1s + �2s)cs; (5.1)

where cs is the concentration of the s'th compound, u,v and w, are wind veloci-
ties, Kx and Ky are di�usivity coe�cients and k1s and k2s are dry and wet de-
position velocities respectively. Es describes the distribution of emission sources

8SCIRun: Application to Atmospheric Dispersion Problems Using Unstructured Meshes.

for s'th compound and Rs is the chemical reaction term which may contain non-
linear terms in cs. D() is the di�usion term, which is set to zero here. For n
chemical species an n-dimensional set of partial di�erential equations (p.d.e's) is
formed where each is coupled through the nonlinear chemical reaction terms.

The test case model covers a region of 300 x 500 km. and is a three-
dimensional form of that used by [2] and although far from a detailed, does repre-
sent the main features which would commonly be found in an atmospheric model
including slow and fast nonlinear chemistry, concentrated source terms and ad-
vection The chemical mechanism contains only 7 species but still represents the
main features of a tropospheric mechanism, namely the competition of the fast in-

organic reactions
O2

NO2 ! O3 + NO and NO + O3 ! NO2 + O2

with the chemistry of volatile organic compounds (VOC's), which occurs on a
much slower time-scale. This separation in time-scales generates sti�ness in the
resulting equations. The reaction rate constants have been chosen as in Tomlin
et al. [4]. and the photolysis rates were parametrised as a function of the solar
zenith angle, see [4]. The background concentrations listed by [2] form the ini-
tial conditions for the model. These concentrations will then change diurnally
as the chemical transformations take place. The power station is taken to be
the only source of NOx and this source is treated by setting the concentration
in the chimney set as an internal boundary condition. In terms of the mesh gen-
eration this ensures that the initial grid will contain more elements close to the
concentrated emission source. The concentration in the chimney corresponds to
an emission rate of NOx of 400kghr�1 and only 10% of the NOx to be emitted
as NO2. We have assumed a constant wind speed of 5ms�1 in the x-direction
with y and z components of one tenth of this value.

5.1 Tetrahedral Finite Volume Spatial Discretisation Method.

Spatial discretisation of the model atmospheric di�usion equation on unstruc-
tured tetrahedral meshes reduces the set of p.d.e's in four independent variables
to a system of ordinary di�erential equations (o.d.e's) in one independent vari-
able -time. This system of o.d.e's can then be solved as an initial value problem,
using the software tools that exist for this purpose[1]. For advection dominated
problems it is important to choose a discretisation scheme which preserves the
physical range of the solution [3]. The method used here is a , cell centered,
�nite volume discretisation scheme of [3] which enables accurate solutions to
be determined for both smooth and discontinuous
ows by making use of the
upwind techniques for the advective parts of the
uxes.

5.2 Time Integration.

The time integration method used is the theta method module of the CSPRINT
software which is designed for the moderate accuracy solution of sti� systems
using local error control in time, [1]. Once the p.d.e's have been discretized in
space we are left with a large system of coupled o.d.e's of dimension m � n where
m is the number of mesh points, and n the number of species. These equations

C.R. Johnson1, M. Berzins2, L. Zhukov1, and R. Co�ey1 9

may now be written for a single species as

_U = FN (t; U(t)) ; U(0) given ; (5.2)

where U(t) = [U(x1; y1; z1; t); :::; U(xN ; yN ; zN ; t)]
T . The point xi; yi; zi is

the centroid of the i th cell and Ui(t) is a numerical approximation to the exact
solution to the p.d.e. evaluated at the centroid i.e. u(xi; yi; zi; t) . The time in-
tegrator computes an approximation, V (t), to the vector of exact p.d.e. solution
values at the mesh points. This numerical solution at tn+1 = tn + k, where k is
the time step size, as denoted by V (tn+1), is computed from

V (tn+1) = V (tn) + (1� �)k _V (tn) + � k FN (tn+1; V (tn+1)); (5.3)

in which V (tn) and _V (tn) are the numerical solution and its time derivative at
the previous time tn and � = 0:55 . The equations to be solved for the correction
to the solution �V for the p + 1 th iteration of the modi�ed Newton iteration
used with the Theta method are:

[I � k�J] �V = r
�
t
p
n+1

�
(5.4)

where J =
@ F

N

@U
, �V =

h
V (tp+1n+1)� V (tpn+1)

i
and

r
�
tpn+1

�
= � V (tpn+1) + V (tn) + (1� �)k _V (tn)� �kFN (tn+1; V (t

p
n+1));

The solution of this system of equations constitutes the major computational task
of the calculation. The cpu times are excessive unless special solution techniques
such as splitting the nonlinear equations [1] into a set of
ow terms and a reactive
source term are employed. Consider the o.d.e. function FN (t; U(t)) de�ned
by equation (5.2) and decompose it into two parts:

FN (t; U(t)) = F
f
N (t; U(t)) + F s

N (t; U(t)) (5.5)

where F
f
N (t; U(t)) represents the discretization of the convective
ux terms f

and g in equation (1) and F s
N (t; U(t)) represents the discretization of the of

the source term h in the same equation. The splitting approach used, [1], is to
employ the following approximation to the Jacobian matrix used by the Theta
method within a Newton iteration:

I � k�J � [I � k� Jf] [I � k� Js]) + O(k2): (5.6)

where Jf =
@ F

f

N

@U
; Js =

@F s
N

@U
. The new iteration may thus be written as

[I � k�Js] �V � = r
�
t
p
n+1

�
(5.7)

where �V � is the operator splitting approximation to �V . The advantage of
this is that each block of equations corresponding to a tetrahedral element may

10SCIRun: Application to Atmospheric Dispersion Problems Using Unstructured Meshes.

be solved separately using the Gauss Seidel method of Verwer [5]. The Jacobian
matrix [I � k
Js] is split into L, the strictly Lower triangular, D, the Diagonal
and U the strictly Upper triangular matrices. and the equation rearranged to
get

(I �
kD�
kL)�V �

m+1 =
kU�V �

m + r(tpn+1): (5.8)

This approximation introduces a splitting error which fortunately only alters the
rate of convergence of the iteration as the residual being reduced is still that of the
full o.d.e. system. A lack of convergence of this iteration is dealt with by reducing
the timestep k. The matrix I � k�Js is the Jacobian of the discretization of the
time derivatives and the chemistry source terms. This matrix is thus composed of
independent diagonal blocks with as many block as there are tetrahedra. Each
block has as many rows and columns as there are p.d.e.s. and each block's
equations may be solved independently . The choice of a time step is a di�cult
issue in reacting
ow problems however in this case the chemistry reacts quickly
compared to wind speed. The approach here is thus to use a standard local
error control, though it is often the case that the convergence of the iteration
that limits the timestep.

5.3 Mesh Generation and Adaptation

The initial unstructured meshes used are created from a geometry description
using the SCIRun [8] mesh generator. The initial mesh inside a rectangular
bounding box was generated with approximately 5000 elements. This resulted
in a largest element with a side length 50km It is di�cult to directly relate the
size of unstructured meshes to regular rectangular ones, but our original mesh
was comparable to the size of mesh generally used in regional scale atmospheric
models. The �ne scale grids used in present regional scale models are of the order
of 10-20km. For a power plant plume with a width of approximately 20km, it
is impossible to resolve the �ne structure within the plume using grids of this
size,[4], hence our use of adaptive grids. Close to the chimney the mesh was
re�ned to elements of length 5km or 500m depending on the mesh level used.
This ensured that the mesh would be re�ned to a reasonable resolution in this
region of steep gradients.

These meshes are then re�ned and coarsened by the TETRAD [3] mesh adap-
tation module which is based on the re�nement of tetrahedra into 8 tetrahedra
with appropriate adjustments to ensure that the mesh is conforming at the edges.
The criterion for the application of the adaptivity used in this work is based on
re�ning or dere�ning the mesh based on the magnitude of solution gradients of
the key chemical species NO and NO2 across the faces of the tetrahedron, see [3].
For applications such as atmospheric modeling it is important that a maximum
level of re�nement can be set, to prevent the code from adapting to too high
a level in regions with concentrated emissions. This is especially important if
sources which are close to point sources in nature exist. For the test problem
here the maximum level of re�nement was a user de�ned parameter that was
often limited to level 2 or 3. At the same time a su�ciently small re�nement

C.R. Johnson1, M. Berzins2, L. Zhukov1, and R. Co�ey1 11

tolerance must be set so as to ensure enough re�nement to determine the detail
of the plume.

5.4 Integration with SCIRun

The integration of the above routines with SCIRun required writing a few SCI-
link functions that could be called both from SCIRun and the program to provide
control parameters for the program and get the feedback during the execution.
No other changes where made to SCIRun. The transient aspect of the problem
was dealt with by the integration module TETRAD/SPRINT sending out new
mesh on every time step (rarely) or more usually immediately after to each
remesh. Then, while the module would continue time integration, the rest of
SCIRun network would process and visualize the current mesh.

The major advantage of SCIRun is provided by computational steering, i.e.
the possibility not only to set up initial conditions and parameters, but also
to have control over the execution. In the case of TETRAD the user interface
allows the user to set up initial parameters of the problem: the position of the
pollution source, initial velocity of the
ow and level of re�nement. If in the
process of execution user decides that the re�nement level or the re�nement
tolerance is to high or too low, then it can be changed for the next re�nement.
Similarly the species used as the basis for re�nement can be altered dynamically.
without quitting and losing any part of the data. An important "What -if"
question is to do with the e�ect of the changes in the wind velocity on the
existing solution. Accordingly we allowed the user to change the wind velocity
during the execution. At the same time the visualization module provided 3D
visualization of the
ow, so without stopping computation one can look at the
plume from di�erent directions and angles, explore its cross-section as the plume
develops. This example shows, that SCIRun can be used not only with its
\native" modules, but can also successfully play a role of a framework to support
all di�erent kind of scienti�c computations.

6 Visualization Modules

6.1 Salmon Module

One of SCIRun's key modules is a graphical viewer named Salmon, so named
for its ability to spawn multiple views (Roe) and its ability to send messages
upstream in the data
ow network. Salmon collects the geometric primitives
from any number of modules and presents them in a single 3D view. The user
can rotate scale and then translate the objects as well as manipulating lighting
camera parameters and rendering method, in order to obtain the desired view.
Other views can be spawned to separate windows to simultaneously display the
objects from other viewpoints. In the case of multi-species
ows the requirement
to see di�erent species at the same time is obvious.

Geometric primitives are passed from the modules to Salmon as a subset
of a scenegraph. These scenegraphs are a tree-based display list that de�nes
geometric primitives, colors, and other rendering parameters. Drawing the scene
involves traversing the graph and emitting OpenGL commands at each node.

12SCIRun: Application to Atmospheric Dispersion Problems Using Unstructured Meshes.

Scenegraphs can be composed stored to disc via a persistent object mechanism
and then read back for later display.

In addition for using the Salmon module for visual output we can also use
it for 3D input by allowing the user to interact with speci�c objects in a scene.
These objects, called Widgets, allow the user to augment parameters directly in
the 3D scene.

6.2 Data-structures

In implementing SCIRun's datatypes, we considered what type of operations
SCIRun modules would require. One example of such a consideration was the
implementation of the vector and scalar �eld datatypes. Each of these �elds
comes in a variety of
avors, corresponding to the internal representation of the
data - implicit, explicit, parametric - and the topology of the �eld - structured
(implicit) or unstructured (explicit). But in designing the �eld datatype, we
chose several generic operators to allow module writers to access information
from the �eld without needing to know how the �eld is internally represented. As
discussed above, these operators can query the �eld for minimum and maximum
scalar values or geometric bounds, or for the �eld's value at an arbitrary point
in space. This last operation, retrieving the value of the �eld at any location, is
widely used in SCIRun and is implemented by an interface called interpolate.

6.3 Interpolation

The SCIRun �eld interface operator interpolate takes a point as an argument
and calculates the value of the �eld at that speci�c location by linear interpo-
lation. One example of a module that calls the interpolate method is the
Streamline module. The Streamline module is used for vector �eld visual-
ization: by tracing particles advecting through the vector �eld, the user can
examine local
ow phenomena around critical points (such as vortices and tur-
bulence) while also gaining a global sense of the �eld's
ow.

7 Atmospheric Di�usion Simulation Results

Each run was been carried out over a period of 48 hours so that the diurnal
variations could be observed. We present here only a selection of the results that
illustrate the main features relating to the adaptivity and to the use of SCIRun.
The main area of mesh re�nement is along the plume edges close to the chimney,
indicating that there is a high level of structure in the plume. Using the adaptive
mesh, we can clearly see the plume edges and can easily identify areas of high
concentrations. The e�ects of the plume on ozone concentrations also provides
some interesting results. Close to the plume the concentration of O3 is much
lower than that in the background. Due to the high NOx concentrations the
inorganic chemistry is dominant in this region and the ozone is consumed by the
second reaction in Section 5. As the plume travels downwind and the NOx levels
decrease, the plume gradually picks up emissions of VOC's, as shown in Figure
2. The OVC chemistry leads to the production of NO2 which pushes the above
reaction in the reverse route. The levels of ozone can therefore rise above the

C.R. Johnson1, M. Berzins2, L. Zhukov1, and R. Co�ey1 13

Figure 2. This picture shows one component of the plume in greater detail in three

perpendicular cross-sections.

background levels at quite large distances downwind from the source of NOx.

8 Conclusions

We have presented in this work a simple example of the applicability of using
SCIRun and 3D tetrahedral mesh adaptation for solving atmospheric models.
SCIRun allowed for the easy incorporation of a 3D, adaptive, unstructured,
�nite element simulation codes (Tetrad/CSPRINT) to be easily incorporated,
connected to an existing unstructured 3D mesh generator and 3D visualization
modules. Using a case study of a power station plume we have illustrated how
the adaptive solution reveals features such as peak levels of NO2 and O3 which,
as in the two dimensional case could not be detected using a coarse mesh.

Future work will include incorporating a fully parallel version of Tetrad into
SCIRun in order to simulate much larger scale models. Furthermore, more inter-
active links will be integrated to take better advantage of the SCIRun steering
capabilities.

Acknowledgment. The authors would like to thank their many collaborators
for their help, notably A.Tomlin G.Hart, and W. Speares at Leeds and Steve
Parker and David Weinstein at Utah.

References
[1] I.Ahmad I. and M.Berzins. \An Algorithm for ODEs from Atmospheric

Dispersion Problems." Appl. Num. Math. (25) 137-149 1997

[2] G.Hart, A.Tomlin, J.Smith and M.Berzins. \ Multi-scale Atmospheric Dis-

14SCIRun: Application to Atmospheric Dispersion Problems Using Unstructured Meshes.

persion Modelling by the Use of Adaptive Grid Techniques." Environmental
Monitoring and Assessment, 1997.

[3] W.Speares and M.Berzins.\A 3D Unstructured Mesh Adaptation Algorithm
for Time Dependent Shock Dominated Problems." Int. Jour Num. Meths.
in Fluids, 1997, 25, 81-104.

[4] A.Tomlin, M.Berzins J.M.Ware, J.Smith and M.Pilling. \On the use of
adaptive gridding methods for modelling chemical transport from multi-
scale sources." Atmospheric Env. Vol. 31 (18) 2945-2959.

[5] J.G. Verwer. \Gauss Seidel Iteration for Sti� o.d.es from Chemical Kinet-
ics." SIAM J. Sci. Comp, 15:1243{1250.

[6] S.G. Parker and C.R. Johnson. \SCIRun: A scienti�c programming en-
vironment for computational steering." Supercomputing `95, IEEE Press,
1995.

[7] S.G. Parker, D.M. Beazley, and C.R. Johnson. \Computational steering
software systems and strategies." IEEE Computational Science and Engi-
neering, Vol. 4 (4), 50-59, 1997.

[8] S.G. Parker, and D.M. Weinstein, and C.R. Johnson. \The SCIRun com-
putational steering software system." Modern Software Tools in Scienti�c
Computing, Arge, E. and Bruaset, A.M. and Langtangen, H.P. editors,
Birkhauser Press, 1-44, 1997.

[9] J. Vetter, G. Eisenhauer, W. Gu, T. Kindler, K. Schwan, D. and Silva. \Op-
portunities and tools for highly interactive distributed and parallel comput-
ing." Proceedings of the Workshop On Debugging and Tuning for Parallel
Computing Systems, 139-142, 1994.

[10] W. Gu, J. Vetter, and K. Schwan. \An Annotated Bibliography of Inter-
active Program Steering." Georgia Institute of Technology, Tech. Report,
1994.

[11] SCI web page, http://www.cs.utah.edu/�sci.

