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Abstract

One of the fundamental problems in theoretical electrocardiography can be characterized by
an inverse problem. We present new methods for achieving better estimates of heart surface
potential distributions in terms of torso potentials through an inverse procedure. First, we
outline an automatic adaptive re�nement algorithm that minimizes the spatial discretization
error in the transfer matrix, increasing the accuracy of the inverse solution. Second, we introduce
a new local regularization procedure, which works by partitioning the global transfer matrix into
sub-matrices, allowing for varying amounts of smoothing. Each submatrix represents a region
within the underlying geometric model in which regularization can be speci�cally `tuned' using
an a priori scheme based on the L-curve method. This local regularization method can provide a
substantial increase in accuracy compared to global regularization schemes. Within this context
of local regularization, we show that a generalized version of the singular value decomposition
(GSVD) can further improve the accuracy of ECG inverse solutions compared to standard
SVD and Tikhonov approaches. We conclude with speci�c examples of these techniques using
geometric models of the human thorax derived from MRI data.



Introduction

The intrinsic electrical activity of the heart gives rise to electric, and thus potential, �elds within

the volume of the thorax and upon the torso surface.

The fundamental origin of these �elds arise from individual cardiac cells receiving electric cur-

rent from neighboring cells and responding with a local membrane action potential. These cells

then inject excitatory current into those neighboring cardiac cells that are not yet excited. High

conductivity junctions exist between cardiac cells and provide the intracellular pathway for excita-

tory currents from activated cells to resting neighbors. An extracellular space provides the return

pathway. Viewing a single time instant during the 50{100 ms required for the spread of excitation,

the heart can be macroscopically represented as consisting of two regions; one containing already

excited cells and the other containing cells still at rest. These two regions are separated by a com-

plex boundary layer of approximately 1 mm thickness, across which, a large (40-80 mV) potential

di�erence occurs. It is this macroscopic distribution of current sources (excited cells) and sinks

(resting cells) that forms the time-varying bioelectric source responsible for the electrocardiogram

(ECG).

The goal of solving the electrocardiographic inverse problem is to describe bioelectric cardiac

sources based on knowledge of the ECG and the volume conductor that surrounds the sources. The

necessary elements of such a solution include a quantitative description of the source, the geometry

of the volume conductor, and the equations that link source and volume conductor potentials.

While a number of di�erent source formulations are possible (see, for example 1, for more details),

the literature of the last twenty years has been dominated by two formulations that are based on

the electric potentials on the surface of the heart. The �rst represents the entire cardiac activity

by the potential distribution on a closed surface that encloses the heart; while this formulation

leads to a unique inverse solution 2, it is, itself, not a unique representation of underlying cardiac

sources. However, if the enclosing surface corresponds to the epicardial (outer) surface of the heart,

it is possible, albeit very invasive, to measure potentials on this surface and hence both validate
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and interpret the results. The second formulation arises when we represent the cardiac sources

as a uniform, isotropic layer of current dipoles; the layer corresponds, in simpli�ed form, to the

boundary between active and resting cells described above. The resulting electrocardiographic

potentials then become simple functions of the total spatial solid angle of the excited region, which,

in turn, permits a formulation of the inverse problem in terms of the boundary between excited and

resting tissue over the entire epicardial and endocardial (inner) surfaces of the heart. For details

of the latter formulation see 3�5. In this paper we will focus on the former approach and consider

the potentials on the epicardial surface of the heart as the equivalent cardiac source.

With the source determined, our speci�c inverse problem is to describe potentials on the epi-

cardial surface as a function of those on the surface of the thorax, together with knowledge of the

geometric and resistive features of the intervening volume conductor. To describe these relation-

ships mathematically, we begin with a general formulation in terms of the primary current sources

within the heart described by Poisson's equation for electrical conduction:

r � �r� = �Iv in 
 (1)

with the boundary condition:

�r� � n = 0 on �T (2)

where � are the electrostatic potentials, � is the conductivity tensor, Iv are the cardiac current

sources per unit volume, and �T and 
 represent the surface and the volume of the thorax, re-

spectively. While (1) does not have a unique solution, applying additional constraints can produce

workable strategies. For example, it is possible to breaks up the volume of the heart into subregions,

each with simplifying assumptions regarding the form of discrete sources (e.g., single and multi-

ple current dipoles, quadrupoles, etc.,) that approximate local bioelectric sources. The goal then

becomes to recover parameters such as the magnitude and direction of the simpli�ed equivalent

sources. The di�culty of this approach remains in associating these parameters with underlying

physiology so that the resulting inverse solutions are useful (see 6�8 for a discussion of these points.)

If we now take the approach outlined above and describe the cardiac sources in terms of the
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epicardial surface potentials, instead of Poisson's equation we solve a generalized Laplace's equation

with Cauchy boundary conditions:

r � �r� = 0 (3)

with boundary conditions:

� = �0 on � � �T and �r� � n = 0 on �T : (4)

Solutions to ( 3 and 4) can be unique and the physical quantities involved are all measurable.

However, they share a characteristic of all electrocardiographic inverse problems in that they are ill-

posed in the Hadamard sense; i.e., because the solution does not depend continuously on the data,

small errors in the measurement of the torso potentials or thorax geometry can yield unbounded

errors in the solution. The origins of this ill-posedness are biophysical and lie in the attenuation

of potentials as we move away from the source and the fact that the potential at any point on the

torso surface is a weighted superposition of all the individual sources within the heart. Hence, the

ECG represents an integration of many sources, the in
uence of each of which decreases sharply

with distance. To solve the inverse solution, we must perform the complementary operations of

ampli�cation and di�erentiation on the ECG, but also on the inevitable noise that accompanies it.

The result is exquisite sensitivity to any 
uctuations in the input signals or geometric models.

Dealing with the ill-posed nature of the inverse problem has become the primary goal of a

great deal of recent research in inverse problems as it remains the single largest obstacle to medical

implementation. The most common approach is to apply constraints to the inverse solution in

order to reduce its dependence on boundary conditions. The points of di�culty lie in the choice of

constraints and the corresponding weight each receives in determining the best|in whatever sense

we wish to de�ne \best"|solution. Examples of recent speci�c approaches include constraints

that change in time 9, constraints that change in space 10�12, multiple simultaneous constraints

13; 14, and methods by which to determine best constraint weighting from the available a priori

information 15; 16 (see 17 for a recent review).

In this paper, we describe some recent progress in two facets of the inverse problem. The �rst
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deals with improvements in the numerical techniques required to solve both the electrocardiographic

forward and inverse problems when using realistic geometries. By this technique, we adjust the

spatial resolution of the discrete geometry mesh in a way that re
ects the estimated local error in

the forward or inverse problem. The second aspect of the inverse problem we address is a form

of applying constraints to the ill-conditioned discrete inverse problem to \regularize" the solution

and restore continuity of the solution back onto the data. Our speci�c contribution lies in varying

the degree of regularization constraint according to the degree of local ill-posedness. We show

how application of these technique to a two-dimensional inverse problem can achieve noteworthy

improvements in solution accuracy.

A major motivation for solving the inverse problem in electrocardiography lies in its immense

clinical utility for the diagnosis and treatment of some of our most frequent and lethal health

conditions. Accurate inverse solutions would improve the non-invasive evaluation of myocardial

ischemia and infarcts 18, the localization of ventricular arrhythmias 19 and the site of accessory

pathways in Wol�-Parkinson-White (WPW) syndrome 20, and, more generally, the determination

of patterns of the spread of excitation and repolarization in the heart.

Mathematical Theory

Finite Element Approximation

In order to solve the boundary value problem in (1) or (3) in terms of the epicardial potentials,

we need to pose the problem in a computationally tractable way. This involves approximating the

boundary value problem on a �nite dimensional subspace and reformulating it in terms of a linear

matrix equation|�nding the forward solution that corresponds to the speci�c inverse problem we

wish to solve . For this study we utilized the �nite element method (FEM) to approximate the �eld

equation and construct the set of matrix equations, the solution to which is a transform matrix

that is the forward solution. Brie
y, one starts with the Galerkin formulation of (1). Note that

this includes the Dirichlet and Neumann boundary conditions,

(�r�;r�) = �(Iv;�); (5)
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where � is an arbitrary test function, which can be thought of physically as a virtual potential

�eld, and the notation (�1; �2) �
R

 �1�2 d
 denotes the inner product in L2(
). We now use

the �nite element method to turn the continuous problem into a discrete formulation. First we

discretize the solution domain, 
 =
SN
e=1
e, and de�ne a �nite dimensional subspace, Vh � V =

f� : � is continuous on 
;r� is piecewise continuous on 
g. We de�ne parameters of the function

� 2 Vh at node points, �i = �(xi); i = 1; 2; : : : ; N and de�ne the basis functions 	i 2 Vh as linear

piecewise continuous functions that take the value 1 at node points and 0 elsewhere. We can then

represent the function, � 2 Vh as:

� =
NX
i=1

�i	(xi) (6)

such that � 2 Vh can be written in a unique way as a linear combination of the basis functions

	i 2 Vh. The �nite element approximation of the original boundary value problem (1) can be

stated as:

Find �h 2 Vh such that (�r�h;r�) = �(Iv;�): (7)

Furthermore, since �h 2 Vh satis�es (7), then we have (�r�h;r	) = �(Iv;	i). Finally, since �h

itself can be expressed as the linear combination:

�h =
NX
i=1

�i	i(x) �i = �h(xi); (8)

we can then write (7) as:

NX
i=1

�i(�ijr	i;r	j) = �(Iv;	j) j = 1; : : : ; N: (9)

The �nite element approximation of (1) can equivalently be expressed as a system of N equations

with N unknowns, �1; : : : ; �N (the electrostatic potentials). In matrix form, the above system

is expressed as A� = b, where A = (aij) is the global sti�ness matrix and has elements (aij =

(�ijr	i;r	j)), while bi = �(Iv;	i) is the vector of source contributions. Background information

on �nite element methods can be found in 21�24
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Adaptive Methods

Solving either Poisson's or Laplace's equation by any of the standard methods (�nite element,

boundary element, or �nite di�erence) for realistic shapes requires the use of discrete geometric

models. Both the lack of clear relationships between level of discretization and solution accuracy

as well as the large computational and manual cost of creating geometric models has lead many

researchers to select approximately constant sized elements throughout the geometric models. The

size and con�guration of these elements also usually remain constant not only over space, but also

over time, independent of any changes in the cardiac potentials.

We have found, however, that by using a posteriori estimates from the �nite element approxima-

tion of the governing equations, along with a minimax theorem to determine the stopping criterion,

we can locally re�ne the discretization and reduce the errors in the forward solution. It has always

been assumed|and our �ndings support this notion|that improving the accuracy of the forward

solution also improves the subsequent inverse solution. The novel aspect of our approach is that

it uses local approximations of the error in the numerical solutions to drive an automatic adaptive

mesh re�nement 25; 26.

Mathematically, we can obtain an error estimator by starting from the weak formulation of the

�nite element approximation, (7). We can prove that �h 2 Vh (where �h is the �nite element

solution and related to � by (8)) is the best approximation of the exact solution � in the sense that

kr� � r�hk � kr� � r~�k 8 ~� 2 Vh (10)

where

kr~�k =

�Z


r~� � r~�

� 1
2

: (11)

In particular, we can choose ~� to be the interpolant of �

�h�(Ni) = �(Ni) i = 1; : : : ;M �h� 2 Vh: (12)

This says that the error in the �nite element approximation is bounded from above by the inter-

polation error. With certain constraints on our elements, we can prove the following, well know
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relationships:

kr� � r�h�k � Ch (13)

and

k� � �h�k � Ch2 (14)

where C is a positive constant that depends on the size of the second partial derivative of � and

the smallest angle formed by the sides of the elements in Vh. These estimates show that the error

in both � and r� tend to zero as the discretization parameter, h, tends to zero. We can use these

relationships to provide an adaptive algorithm for decreasing discretization error.

More precisely, we de�ne the semi-norm:

j~�jHr(
) =

0
@X
j�j=r

Z


jD� ~�j2 dx

1
A

1
2

(15)

where

D� ~� =
@j�j ~�

@x�11 @x�22
j�j = �1 + �2 (16)

are �-order partial derivatives and

HK(
) = f~� 2 L2(
) : D
� ~� 2 L2(
); j�j � Kg (17)

de�nes the Sobolev spaces. Given these de�nitions, we can then obtain the error estimates analogous

to those in (13) and (14) for the �nite element approximation 27; 22:

j���hjH1(
) � j�� �h�jH1(
) � C

2
4 X
K2Tn

(hkj�jH2(K))
2

3
5

1
2

(18)

or, in the L2(
) norm,

k�� �hkL2(
) � k�� �h�kL2(
) � Ch2j�jH2(
): (19)

For the potential gradients we have 28:

kr��r�hkL1(
)
� Ckr��r�h~�kL1(
)

� Cmax[hK max
�=2

kD��kL1(
)
]: (20)
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Given these previous error estimates for the �nite element approximation, we can now use the

estimates to decide where in our original �nite element mesh the approximation is not accurate and

create a recursive, adaptive algorithm to re-discretize in the appropriate areas. Suppose we want

the accuracy of our �nite element approximation to be within some given tolerance, �, of the true

solution, i.e.

j���hjH1(
) � �: (21)

Then, we rede�ne our mesh until,

X
K2Th

(hkj�hjH2(K))
2 �

�2

C2
: (22)

Here the sum is over all the K elements in the tessellated geometry, Th, and we test to see

if the error is less than the normalized tolerance. If the value of the error estimate exceeds the

tolerance, the element is `
agged' for further re�nement. The re�nement can occur either by

further subdividing the egregious element (so-called h-adaption) or by increasing the order of the

basis function of the element (p-adaption), or both (hp-adaption). One should note that the H2(
)

norm in (22) requires the second partial derivative of the �nite element approximation. As stated

in (8), we have assumed a linear basis function for our fundamental element. Thus, there is no

continuity of the second derivative and we must approximate it using a centered di�erence (or

other) formula based on �rst derivative information.

Of signi�cant practical importance is the choice of a reasonable tolerance, �. Since the general

location and bounds of the potential �eld are dictated by known physiological considerations, we

can generate an initial mesh based upon simple �eld strength-distance arguments. To estimate

an upper bound of the potential (or electric) �eld we can compute the �eld strength analytically

on a cylindrical surface that encloses the actual thorax geometry. The result is an estimate of the

potential �eld and potential gradients that we then use to produce the initial graded mesh. The goal

of this calculation is to assure that the errors far from the sources are minimal. We can then re�ne

our �nite element mesh by choosing the tolerance, �, to be some fraction of the estimated error

corresponding to the elements furthest from the sources. Thus we have used a minimax principle,
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minimizing the maximum error based upon initial (conservative) estimates of the potential �eld

and potential gradients 25. For those unfamiliar with adaptive methods, additional information

may be found in 29�32.

Regularization

Traditional schemes for solving the inverse problem, (3), have involved reformulating the linear

equation, A� = b, into �T = K�E, where �T and �E are the voltages on the body surface (torso)

and heart's surface (epicardium) respectively, and K is the T � E transfer matrix of coe�cients

relating the measured torso voltages to the voltages measured on the heart. From this statement

of the forward problem, the inverse problem can then be expressed as �E = K�1�T

Unfortunately, K is ill-conditioned, and regularization techniques are necessary to restore conti-

nuity of the solution back onto the data. Most regularization schemes treat all parts of K uniformly

and apply Tikhonov, singular value decomposition (SVD), or Twomey algorithms with a single reg-

ularization parameter. Brie
y, one wishes to �nd an approximate vector, �E", that represents a

balance between the residual error k�T � K�E"k, which is corrupted by error and the ill-posed

nature of the problem, and whatever side constraints we place on the solution based on a priori

knowledge. Rather than applying the same level of regularization to the entire matrix K, we have

found that it is possible, and advantageous, to �rst decompose K into submatrices and then apply

regularization di�erently to each component of the resulting expression.

The rationale for such a local approach is that the discontinuities in the inverse solution ap-

pear irregularly distributed throughout the solution domain. Tikhonov and other regularization

schemes are, in e�ect, �lters, which restore continuity by attenuating the high (spatial) frequency

components of the solution. Since regularization is usually applied globally, the results can leave

some regions overly damped or smoothed while others remain poorly constrained. Our idea is then

to apply regularization only to regions (represented by the sub-matrices of K) that require it and

to apply di�erent amounts of regularization to di�erent sub-matrices.
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We begin by expressing K�E = �T for the Cauchy problem in (3) as

0
B@ KTT KTV KTE

KV T KV V KV E

KET KEV KEE

1
CA
0
B@ �T

�V
�E

1
CA =

0
B@ 0

0
0

1
CA : (23)

We can then rearrange the matrix to solve directly for the epicardial voltages in terms of the

measured body surface voltages,

�E = (KTVK
�1
V VKV E �KTE)

�1(KTT �KTVK
�1
V VKV T )�T ; (24)

where the subscripts T , V , and E stand for the nodes in the regions of the torso, the internal

volume, and epicardium, respectively. Since torso and epicardial nodes are always separated by

more than one element, the KTE submatrix is zero, and we can then rewrite (24) as

�E = (K�1
V EKV VK

�1
TV )(KTT �KTVK

�1
V VKV T )�T : (25)

Note that we now have inverses of three sub-matrices, KV E ;KTV , and KV V , as well as several

other matrix operations to perform. If one estimates the condition number, �, of the three sub-

matrices using the ratio of the maximum to minimum singular values from a SVD, one �nds that

the condition number varies signi�cantly (from � � 200 for KV V to � � 1 � 1016 for KV E in

the two-dimensional model described below). Thus, one can regularize each of the sub-matrices

di�erently, even leaving some of the other sub-matrices untouched. The overall e�ect of this local

regularization is more control over the regularization process.

Since the goal of the inverse problem in electrocardiography is to accurately and noninvasively

(i.e., non-surgically) estimate the voltages on the epicardial surface, we need a method to choose

an a priori optimal regularization parameter. Traditional schemes have been based on discrepancy

principles 33, quasi-optimality criterion 33; 34, and generalized cross-validation 35. Recently, Hansen

36 has extended the observations of Lawson and Hanson 37 and proposed a new method for choosing

the regularization parameter based on an algorithm that locates the \corner" of a plot of the norm

(or semi-norm) of the side constraint, kLx�k, versus the norm of the corresponding residual vector,

kAx� � bk. In this way, one can evaluate the compromise between the residual error and the e�ect
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of the side constraint on the solution. We have utilized this L-curve algorithm along with our local

Tikhonov regularization scheme to improve the accuracy of solutions to the inverse problem.

For the global Tikhonov regularization scheme, we can estimate �E" by minimizing a generalized

form of the Tikhonov functional:

M�[�E ; ~�T ; ~K] = kK�E � ~�T k
2
�T

+ �kC(�E � �
0

E)k
2
�E

� > 0 (26)

in terms of the epicardial potentials,

��E" = [ ~KT ~K + �CTC]�1[ ~KT ~�T + �CTC�
0

E] (27)

where ~K is the approximation of the true transformation matrix, K, ~�T are the measured torso

potential values, �
0

E are a priori constraints placed on the epicardial potentials based on physio-

logical considerations, C is a constraint matrix (either the identity matrix, a gradient operator, or

a Laplacian operator), and � is the regularization parameter. For our local regularization scheme,

we replace the global matrix, K, by the two sub-matrices KV E and KTV from (25). We note that

KV V in (25) has a stable inverse and, thus, does not need regularizing.

Another traditional method for regularization the ill-conditioned nature of the transfer matrix

is to use a truncated SVD 38. The singular value decomposition of a matrix A is of the form

A = U�V T =
nX
i=1

ui�iv
T
i ; (28)

where U = (u1; : : : ; un) 2 Rm�n and V = (v1; : : : ; vn) 2 Rn�n are matrices with orthonormal

columns, and where the diagonal matrix, � = diag(�1; : : : ; �n) has non-negative diagonal elements

appearing in non-decreasing order and are called the singular values of A.

Since the condition of the matrix A can be measured (in the 2-norm) in terms of the singular

values

cond(A) � kAk2kA
�1k2 = �1=�n (29)

one strategy for regularization is to sum the rank-one products of the singular value expansion

only to a speci�ed cut-o� value k < n where the singular value become \small." For the elec-

trocardiographic inverse problem, K�E = �T , this produces a truncated summation estimate for
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�E

�E = Ky�T =
kX
i

uTi �T
�i

vi (30)

by projecting the \good" data onto the left and right singular vectors U and V . While the truncated

SVD technique provides answers comparable with Tikhonov regularization with L = I, it does not

provide optimal results 38.

A related approach that has recently been applied to regularization of ill-conditioned systems

is the generalized singular value decomposition (GSVD) in which the generalized singular values of

(A;L) are essentially the square roots of the generalized eigenvalues of the matrix pair (ATA;LTL)

16. The GSVD is a decomposition of A and L in the form

A = U

 
� 0
0 In�p

!
X�1 (31)

and

L = v(M; 0)X�1 (32)

The columns of U 2 Rm�n and V 2 Rp�p are orthonormal, X 2 Rn�n is nonsingular with

columns that are ATA-orthogonal, and � andM are p�p diagonal matrices: � = diag(�1; : : : ; �p),

M = diag(�1; : : : ; �p). The generalized singular values 
i of (A;L) are de�ned as the ratios of �i

and �i


i =
�i
�i

(33)

The pseudo-inverse of A in terms of the GSVD can be computed as

Ay = X

 
�y 0
0 In�p

!
UT (34)

such that a regularized solution can be written as

�E = X�

 
�y 0
0 In�p

!
UT �T (35)

where � are called the �lter factors and depend on the amount of regularization. In this case,

one would truncate the o�ending singular values, as well as modify the basis of the right singular

vectors with the L operator. We have found that using L operators that approximate the operator
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of the original governing partial di�erential equation (in this case the Laplacian), provide the best

results. However, constructing the \best" L operator is still a topic for further research.

Results and Discussion

To study forward and inverse problems in electrocardiography, we developed a series of two- and

three-dimensional boundary element and �nite element models based upon magnetic resonance

images from a human subject. Each of 116 MRI scans were segmented into contours de�ning torso,

fat, muscle, lung, and heart regions. Additional node points were added to digitize each layer

and pairs of layers tessellated into tetrahedra using a Delaunay triangulation algorithm 39; 40. The

resulting model of the human thorax contained approximately 675,000 volume elements, each with

a corresponding conductivity tensor 41. A single (two-dimensional) layer of this model, located

approximately 4 cm above the apex of the heart, provided a more tractable geometry for the initial

studies on the e�ects of adaptive control of errors and local regularization.

Adaptive Meshing

Test data for the adaptive algorithm consisted of a simulated dipolar source distribution placed on

the surface of the heart model. Using the procedure described above, we computed direct solutions

for di�erent levels of mesh re�nement and compared their e�ect on the potentials computed at

the outer torso boundary. Figure 1 shows the voltage at the outer boundary versus distance

around the two-dimensional contour for the original and �ve iterations of the adapted mesh. The

original mesh contained approximately 1500 elements while the �nal mesh, after �ve iterations of

the adaptive algorithm, contained approximately 7000 elements. The maximum estimated error in

the calculated potential was over 30% greater in the original mesh compared to the �nal mesh and

the maximum estimated error in the potential gradient was over 13% larger in the original mesh

compared to the re�ned mesh. Increased accuracy does not come without a price; this h-adaption

increases the number of degrees of freedom, and thus, the computational costs. In our experience,

however, this technique permits a fairly simple choice between accuracy and CPU expense because
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Figure 1: E�ects of Automatic Mesh Re�nement. The graphs shows potential value versus node
number for the sequence of nodes around the outer perimeter of the two-dimensional geometry for
a sequence of mesh re�nements.

the relative error falls o� rapidly with increasing degrees of freedom and then levels out after only

a few iterations of the adaptive algorithm.

Local Regularization

To test the local regularization, we applied epicardial potentials recorded during open chest surgery

from a cardiac arrhythmia patient as the Dirichlet boundary conditions of the two-dimensional

model described above. The tissue conductivities were assigned as follows: fat = .045 S/m, epi-

cardial fat-pad = .045 S/m, lungs = .096 S/m, skeletal muscle (in the �ber direction) = .3 S/m,

skeletal muscle (across the �ber direction) = .1 S/m, and an average thorax value = .24 S/m.

Forward solutions calculated using the adapted mesh served as torso boundary conditions, � = �0

on � � �T for the inverse solution both with and without 10% added Gaussian noise.

For the sub-matrices AV E and ATV , the L-curve algorithm determined the optimal a priori

regularization parameter. The local Tikhonov regularization technique was then applied to the two

sub-matrices and the inverse solution matrix computed. Because the size of the two-dimensional

�nite element model was relatively small, the calculations stayed in dynamic memory on an SGI
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Indigo2 workstation and completed within a few seconds. To evaluate the results, we compare the

locally regularized inverse solutions to those from a global Tikhonov regularization as well as the

known epicardial solutions.

The application of the local regularization technique with the GSVD recovered the voltages to

within 6.1% relative root-mean-squared (RMS) error of the true solution. This compares with a

previous best from our work of 12.1% relative error 42. Previous studies have reported the recovery

of epicardial potentials with errors in the range of 20{100%, 38; 43�46; 12; 11, although in these cases

investigators used three-dimensional geometric models and in some cases measured potentials on

both epicardial and torso surfaces. We used another common strategy 12; 11; 14 of applying a forward

solution to measured epicardial potentials in order to generate the torso potentials, which, with

added noise, served as the input to the inverse procedure. Figure 2 shows the inverse solution

calculated using the local regularization technique compared with the recorded heart voltages as

a function of position on the epicardium. The global solution tended to be smoother, not able to

follow the extrema as well as the local solution could. The local regularized solution also showed a

few areas of local error which suggest that a di�erent partitioning of the sub-matrices might provide

even better accuracy. In Figures 3 we show the errors between global and local regularizations and

the exact potentials.

One of the interesting e�ects of the GSVD-based local regularization method is its stability

when random noise is added to the thorax potentials. The GSVD-based local method is a�ected

very little by the addition of 10% Gaussian noise in sharp contrast to the e�ects of noise on the

Tikhonov solution as shown in Figures 4 and 5 .

There have been other approaches to local regularization reported in the literature recently.

Approaches that are local in time, i.e., that vary the regularization parameter as a function of

time step, were proposed by Iakovidis and Gulrajani 47. Oster and Rudy have proposed a method

they have named \regional regularization", in which they decomposed the body surface potential

maps|the input data to the electrocardiographic inverse problem|using either Legendre poly-

nomials or singular value decompositions for concentric and eccentric spherical geometric models
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Figure 2: Local GSVD-based regularization technique. The �gure shows the GSVD local regular-
ization solution (marked Decomp), the best Tikhonov solution, and true solution.

for which analytic solutions exist11. They then applied individual regularization to components of

the decomposition, producing improvements in the accuracy of the resulting inverse solution. This

regional regularization technique di�ers from that presented here in that the link between compo-

nents of the decomposition and actual regions of the geometry is only indirect|the decomposition

is based on signal content and not geometry. This feature is also a strength of the regional approach

in that regularization changes with the input data and their signal-to-noise ratio.

A fundamentally di�erent approach to solving the inverse problem that also permits local weight-

ing is that proposed by Brooks et al. 48; 12. Termed the \admissible solution approach", this solution

strategy does not include regularization but instead seeks to restrict the allowable solution space

iteratively based an a wide variety of constraints, all applied simultaneously. In order to apply such

constraints locally, a matrix based on the forward solution matrix (and hence the problem geome-

try) determines the weighting of each constraint on each node in the geometric model. The form of

the weighting matrix can be freely selected to re
ect a priori knowledge of the problem or made to

depend on the input data. In one example, Brooks et al. varied the local weighting of constraints
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Figure 3: Errors for local and global regularization techniques. The �gure shows the errors for the
local solution (marked Decomp) and global Tikhonov for the solutions in the previous �gures as
functions of node number.

based on an estimate of the Laplacian from the (known) epicardial distributions, emphasizing the

constraints in regions of small Laplacian and deemphasizing them in regions of larger Laplacian.

One result was an improvement in the reconstruction of epicardial potential amplitudes. While

this weighting approach is very similar to that applied here in that it is explicitly attached to the

problem geometry, the admissible solutions method is fundamentally di�erent from the Tikhonov

regularization that we have used.

Implementation of Inverse Solutions

While great progress has been made in the modeling and simulation of bioelectric inverse problems

over the last several years, there remain obstacles to the use of the modeling and simulation in

the clinic. A particular hurdle lies in the complexity and ine�ciency frequently encountered in the

process of performing computational modeling. For example, the typical algorithm for performing

electrocardiographic inverse simulations is as follows:
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Figure 4: E�ects of Noise on the GSVD and Tikhonov Solutions. Here 10% random noise has
been added to torso potentials and the GSVD-based local regularization (Decomp) and Tikhonov
solutions recomputed.

1. Create and/or modify a discretized geometric model.

2. Create and/or modify initial conditions and/or boundary conditions.

3. Compute numerical approximations to the generalized Laplace (or Poisson) equation, storing

results on disk.

4. Apply regularization methods and perform error analysis.

5. Visualize and/or analyze results using a separate visualization program.

6. Make appropriate changes to the model.

7. Go back to step 1, 2, 3 and/or 4.

8. Repeat.

Changes to the model, input parameters, or computational processes are typically made using

rudimentary tools, the most common being text editors. While the experienced scientist will incor-

porate some degree of automation into the process, usually via scripts, it remains time consuming

and ine�cient.
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Figure 5: Errors for local and global regularization techniques with 10% added Gaussian noise.
The �gure shows the error as a function of node number after local (Decomp) and global Tokhonov
regulatization.

To expedite the modeling, simulation, and visualization of computational inverse problems,

we have developed a problem solving environment called SCIRun 49�52. SCIRun supports the

interactive construction, debugging and steering of large-scale scienti�c computations through a

\computational workbench," implemented as a data
ow programming model. Key components of

SCIRun include the ability to design, visualize, and modify geometric models, interactively change

parameters and boundary conditions, adjust mesh discretization, and monitor both errors and

system performance. Instead of the typical \o�-line" simulation mode in which discrete programs

perform each step of the computation, SCIRun \closes the loop" and allows interactive steering of

all phases of the simulation. To permit the use of the data
ow programming paradigm even for large

scienti�c problems, we have identi�ed ways to avoid the excessive memory use inherent in standard

data
ow implementations and have also implemented �ne-grained data
ow in order to further

promote computational e�ciency. A sample SCIRun network to model the electrocardiographic

forward/inverse problem is shown in Figure .
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Figure 6: A sample SCIRun network showing the data
ow programming interface, user interfaces
for controlling simulation parameters, and results from an large-scale electrocardiographic forward
problem

Conclusion

We have described several new strategies|adaptive methods, generalized SVD local regularization

techniques, and admissible solution approaches|to more accurately recover epicardial potentials

from measured body surface potentials using an electrocardiographic inverse solution and discrete

geometric models based on MRI. Furthermore, we have brie
y presented a problem solving envi-

ronment, SCIRun, for developing and testing new inverse algorithms, and visualizing model and

solution results. Historically, two major challenges, one of obtaining enough accuracy in the in-

verse solution (a generally held opinion dictates that solution accuracy less than 10% RMS error

is necessary for clinical application) and the ability to compute inverse solutions in a time-e�cient

manner, have impeded clinical utility of the electrocardiographic inverse solution. Recent develop-
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ments of novel regularization methods like those described here suggest that major breakthroughs

in numerical accuracy are within our reach. Integrated implementation environments like SCIRun

provide a powerful set of tools for quickly transferring numerical solution ideas into a framework

that permits rapid testing, tuning, and practical application. This combination will, we believe,

soon lead to practical inverse solutions in medicine.

We are now pursuing the application of these methods to detailed, large-scale MRI-based thorax

models, as well as head/brain models for electroencephalographic inverse problems.
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