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Abstract

Fundamental problems in electrophysiology can be studied by computationally modeling and simulating the associated micro-
scopic and macroscopic bioelectric fields. To study such fields computationally, researchers have developed a number of numerical
and computational techniques. Advances in computer architectures have allowed researchers to model increasingly complex bio-
physical system. Modeling such systems requires a researcher to apply a wide variety of computational and numerical methods
to describe the underlying physics and physiology of the associated three-dimensional geometries. Issues naturally arise as to the
accuracy and efficiency of such methods. In this paper we review computational and numerical methods for solving bioelectric
field problems. The motivating applications represent a class of bioelectric field problems that arise in electrocardiography and
electroencephalography.
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I. INTRODUCTION

Computer modeling and simulation continue to grow more important to the field of Bioengineering. The reasons
for this growing importance are manyfold. First, mathematical modeling has been shown to be a substantial tool for
the investigation of complex biophysical phenomena. Second, since the level of complexity one can model parallels
existing hardware configurations, advances in computer architecture have made it feasible to apply the computational
paradigm to complex biophysical systems. Hence, while biological complexity continues to outstrip the capabilities of
even the largest computational systems, the computational methodology has taken hold in bioengineering and has been
used successfully to suggest physiologically and clinically important scenarios and results.
Computational electrophysiology can be loosely defined as the simulation and modeling of macroscopic and mi-

croscopic bioelectric fields. The electrical activity in the human body is induced by the flow of charged ions across
membranes of individual cells. The collective interaction of all the currents from groups of cells gives rise to electric
potentials that can be measured from, for example, the scalp (EEG) or the torso surface (ECG). The registration of nor-
mal and abnormal bioelectrical signals has been used as a diagnostic tool for many years, and extensive catalogs linking
signals to pathologies have evolved. More recently, investigators have begun to develop mathematical descriptions
of the origins of the electric signals they measure. The hope exists that these mathematical descriptions will provide
researchers in Bioengineering and Medicine with new diagnostic tools that are based on physiological function.
In the field of electrocardiography, computational models of bioelectric phenomenon from sources in the heart have

existed for over 25 years. The size and scope of these models have been limited by contemporary computational re-
sources and by the numerical algorithms utilized to approximate the continuous field equations. It has been shown that
the electric signals in the body produced by the macroscopically viewed heart can be described as a solution to a qua-
sistatic Poisson’s equation [1]. While the analytic solutions of such elliptic partial differential equations are not difficult
to achieve for simple geometries such as spheres and cylinders, difficulties arise when considering the complex geome-
tries associated with physiological structures. Realistic geometries pose significant challenges to researchers trying to
accurately approximate the bioelectric fields within them. Such challenges include the construction of the geometrical
model; the specification of the material properties, some of which are anisotropic; the numerical approximation of the
biophysical field equations; and the large-scale nature of the computations.
This paper provides an overview of computational and numerical techniques that can be applied to a class of bioelec-

tric field problems. Bioelectric field problems are found in a wide variety of biomedical applications that range from
single cells [2], to organs [3], up to models that incorporate partial to full human structures [4], [5], [6]. We describe
some general modeling techniques that will be applicable, in part, to all the aforementioned applications. We focus the
review on numerical techniques applicable to bioelectric volume conductor problems that arise in electrocardiography
and electroencephalography.
The paper is broken up into the following sections that correspond to the modeling and simulation process. We start

by giving a brief statement of the mathematical formulation for a bioelectric volume conductor, continue by describing
the model construction process, and follow with sections on numerical solutions and computational considerations,
including a section on error analysis coupled with a brief introduction to adaptive methods. We conclude with a section
on available on-line software that provide resources useful to biomedical modelers.

II. PROBLEM FORMULATION

As noted in the classic works of Barr and Plonsey [1], [7], [8], [9], and of Geselowitz [10], [11] most bioelectric
field problems can be formulated in terms of either the Poisson or the Laplace equation for electrical conduction. Since
Laplace’s equation is the homogeneous counterpart of the Poisson equation, we will develop the treatment for a general
three-dimensional Poisson problem and discuss simplifications and special cases when necessary. For our discussion,
we are interested in the properties of a volume conductor as it pertains to the evaluation of electric fields therein. A
bioelectric field is a manifestation of a current density . Bioelectric sources can arise from a variety of endogenous
(propagating action potentials, etc.) and applied (defibrillation electrodes, etc.) conditions. Our treatment assumes
that the current density is known (excellent treatments of the mathematical and numerical solution of models based on
membrane currents can be found in two earlier Critical Review in Biomedical Engineering articles [12], [13]) and we
focus our attention on numerically approximating the electric and potential fields within a three-dimensional volume
conductor. A volume conductor can be defined as a continuous passive conducting medium that surrounds the region
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occupied by the source(s) [9], [10]. The temporal behavior of bioelectric sources is found within the low-frequency
range (usually under 1 kHz). As noted by [14], [9], examination of bioelectric fields in regions with typical physiologic
conductivities and frequencies under 1 kHz show that quasi-static conditions apply. Therefore, at a given time, we can
neglect the displacement current such that Ohm’s law,

(1)

describes the source-field relationship within the volume conductor. Here, represents the total current in the system, a
sum of the conduction current , and the source currents . Noting that the scalar potential is related to the electric
field by virtue of

(2)

and noting that, due to the quasi-static nature, must be solenoidal (i.e. the divergence of the total current is zero), we
arrive at a mathematical description of a typical bioelectric volume conductor problem:

in (3)

Here is the electrostatic potential, is the electrical conductivity tensor, and is the current per unit volume defined
within the solution domain, . The associated boundary conditions depend on what type of problem one wishes to
solve.
There are generally considered to be two different types of volume conductor problems. One type of problem deals

with the interplay between the description of the bioelectric volume source currents with the resulting volume
currents as well as volume and surface voltages. Here, the problem statement would be to solve (3) for with a known
description of and the Neumann boundary condition:

on (4)

which says that the normal component of the electric field is zero on the surface interfacing with air (here denoted by
). This problem can be used to solve two well known problems in medicine, the direct (or forward) EEG (electroen-

cephalography) and ECG (electrocardiography) volume conductor problems. In the direct EEG problem, one usually
discretizes the brain and surrounding tissue and skull. One then assumes a description of the bioelectric current source
within the brain (this usually takes the form of dipoles or multipoles) and calculates the fields within the brain and on
the surface of the scalp. Similarly, in one version of the direct ECG problem, one utilizes descriptions of the current
sources in the heart (either dipoles, dipole layers, or membrane current source models such as the FitzHugh Nagumo
and Beeler Reuter, among others) and calculates the currents and voltages within the volume conductor of the chest and
voltages on the surface of the torso.
The inverse problems associated with these direct problems involve estimating the current sources within the

volume conductor from measurements of voltages on the surface of either the head or body [15], [16]. Thus, one would
solve (3) with the boundary conditions:

on (5)

and
on (6)

The first boundary condition is the Dirichlet condition, which says that one has a set of discrete measurements of
the voltage on a subset of the outer surface ( ). The second is the natural Neumann condition. While they
don’t look much different than the formulation of the direct problem, these inverse formulations are ill-posed. The
bioelectric inverse problem in terms of primary current sources does not have a unique solution, and the solution doesn’t
depend continuously on the data. Thus, to obtain useful solutions, one must restrict the solution domain (i.e. number of
physiologically plausible solutions) [17] for the former case, and apply so-called regularization techniques to attempt
to restore the continuity of the solution on the data in the latter case.
The second general type of bioelectric direct/inverse formulation poses both problems in terms of scalar values at the

surface boundaries. For this version of EEG problem, one would take the surface of the brain (cortex) as one bounded
surface and the surface of the scalp as the other surface. The direct problem would involve making measurements of
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voltage of the surface of the cortex at discrete locations and then calculating the voltages on the surface of the scalp.
Similarly, for the ECG problem, voltages could be measured on the surface of the heart and used to calculate the voltages
at the surface of the torso, as well as within the volume conductor of the thorax. To formulate the inverse problems,
one uses measurements on the surface of the scalp (torso) to calculate the voltages on the surface of the cortex (heart).
In this formulation, because we are interested in the distributions of voltages on a surface instead of current sources
within a volume, we solve Laplace’s equation rather than Poisson’s equation. This leads to the following boundary
value problem:

in (7)

subject to the boundary conditions
on (8)

and
on (9)

The approximation of defibrillation fields is another direct problem that can be characterized by Laplace’s equation
[18], [19], [20], [21], [22], [23], [24]. The defibrillation problem involves application of exogenous current/voltage
sources either externally on the body surface [25] or internally within the thorax cavity [26]. Clinically, these sources
(electrodes) are used to deliver sufficient electric energy to stop the irregular heart rhythms that signify a fibrillating
heart.
In the past, the placement of the electrodes for either external or internal defibrillators was chosen based on clinical

trial and error. Only recently has the sophistication of thorax and heart models permitted more realistic simulation of
cardiac defibrillation. The aim of such models is to assist in determining the optimum electrode placement and strength
of shock to terminate the fibrillation [27], [28], [21], [29], [30], [31], [32]. The simulations involved in this case present
similar computational challenges, since, once again, the geometry of the torso is complex, the material properties
(electrical conductivities) are imperfectly known, and the resulting computations are extensive. Defibrillation gives rise
to very large potential gradients near the edge of the electrodes. As the effectiveness of the simulations depends on
accurately calculating the amount of current that passes from the electrodes to the heart, these gradients need to be
computed accurately. Since the strength of the gradients falls off as from the source, special numerical techniques
(discussed in the Adaptive Methods section) are necessary for accurately computing the fields on and near the electrodes
while still controlling the size of the resulting computation.
Mathematically, the defibrillation problem can be posed as solving Laplace’s equation with boundary conditions

similar to those in (7), replacing a priori knowledge of voltage on the heart boundary by that on the region of the torso
under the defibrillation electrodes, that is, on . Here, the sources are due to defibrillation pulses and the
goal is to determine the resulting current density throughout the heart volume. The current density J can be calculated
according to:

(10)

Continuity conditions of the normal component of current density and potential hold at each of the conductivity inter-
faces.
For the formulation of bioelectric fields in terms of Laplace’s equation, the solution to the inverse problem is unique

[33]; however, there still exists the problem of ensuring continuity of the solution onto the data. The linear algebra
counterpart to the elliptic boundary value problem is often useful in discussing this problem of noncontinuity. The
numerical solution to all elliptic boundary value problems (such as the Poisson and Laplace problems) can be formulated
in terms of a set of linear equations, , where is the vector of voltages, is the vector of current sources and/or
contributions from the Dirichlet boundary condition, and is the matrix that contains all the information pertaining to
the model geometry and material properties. For the solution of Laplace’s equation, the system can be reformulated as
[34]:

(11)

where is the vector of data on the inner surface bounding the solution domain (the electrostatic potentials on the
scalp or heart, for example), is the vector of data that bounds the outer surface (the subset of voltage values on the
surface of the cortex or torso, for example), and is the transfer matrix between and . This transfer matrix
contains the geometry and physical properties (conductivities, dielectric constants, etc.) of the volume conductor. The
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direct problem is then simply (well) posed as solving (11) for given . Similarly, the inverse problem is to
determine given .
A characteristic of for discrete ill-posed problems1 is that it has a very large condition number. Briefly, the condition

number is defined as , or the ratio of maximum to minimum singular values as measured in the
norm [36]. If the singular values of gradually decay to zero and the ratio between the largest and smallest nonzero
singular value is large, then the problem is characterized as ill-posed. The condition of is a measure of the sensitivity
of the relative error in the solution to changes in the right-hand side of (11). The ideal problem conditioning occurs
for orthogonal matrices that have , while an ill-conditioned matrix will have . When one inverts
a matrix that has a very large condition number (i.e. solves the linear system), the solution process is unstable and is
highly susceptible to errors. For ill-conditioned problems, small relative errors in the input data can cause large relative
errors in the results. The condition of a matrix also depends on the precision level of computations and is a function of
the size of the problem. For example, if the condition number exceeds a linear growth rate with respect to the size of
the problem, the problem will become increasingly ill-conditioned. See [36], [37] for more about the condition number
of matrices.
A number of regularization techniques have arisen to deal with the ill-posed nature of many inverse problems. Formu-

lations involving integral equations have been used extensively for continuous versions of ill-posed problems [38], while
linear algebraic formulations have been used for the discrete counterpart. For bioelectric field inverse problems, most
researchers have tended to use discrete formulations; however, some have tried to tackle the problem of ill-posedness at
the onset by reformulating the original problem [17].
Although many types of regularization approaches are possible, the dominating approach is to require that the 2-

norm (or semi-norm) of the solution is small. An additional side constraint consisting of an initial estimate of the
solution may also be included in the regularization. One of the most commonly used regularization methods is known
as Tikhonov regularization. Here, the idea is to define the regularized solution of (11) as minimizing a combination
of the residual norm and the side constraint

(12)

The matrix is typically either the identity matrix or a discrete approximation of the derivative operator in the original
boundary value problem (often either the gradient or laplacian operator for bioelectric field problems). The regular-
ization parameter controls the weight given to minimization of the residual norm relative to the side constraint. The
regularization parameter controls the sensitivity of the regularized solution to perturbations in and ; thus, the
regularization parameter is an important quantity and should be chosen with care [35].
Besides Tikhonov regularization, discrete regularization techniques include truncated singular value decomposition

(TSVD), generalized singular value decomposition (GSVD), maximum entropy, and a number of generalized least
squares schemes, including Twomey and variants of Tikhonov methods [39], [40], [41], [42], [35]. All of the previously
mentioned methods share a common thread, in that these methods try to reduce the effects of solving an ill-conditioned
system by restoring continuity of the solution onto the data. Most of these methods employ operations that try to balance
the amount of smoothing with the fidelity of the data by adjustment of the regularization parameter [35]. Recent work
in inverse electrocardiography by Brooks et. al. has focused on methods to improve the a priori estimation of the
regularization parameter [43], [44], [?].
For a more in-depth treatment of ill-posed inverse problems, the reader is referred to [39], [40], [42], [35]. For specific

information on electrocardiographic inverse problems, see the review articles [45], [46]. A particularly useful reference
for discrete ill-posed problems is the Matlab [?] package developed by Per Christian Hansen, which is freely available
via netlib [47].

A. Bidomain Model

Before moving on to the section on model construction and mesh generation, we briefly discuss the case when
volume conductor models are not sufficient to describe the underlying biophysical properties. The reduced mathematical
Strictly speaking, ill-posed problems must be infinite-dimensional. However, certain finite-dimensional discrete problems exhibit similar

characteristics such as being sensitive to high-frequency perturbations. The term discrete ill-posed problem is routinely given to such problems
[35].
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formulation of the biophysical fields characterized by (3) is not sufficient to model current flow in the immediate region
of the cardiac sources. Here, the microscopic properties of the tissue must be considered [12], [13], [2], [48]. The
complex microstructure of cardiac muscle, comprised of coupled cells within an intersitium made up connective tissue,
fluid, and vessels, requires that propagation of membrane potentials be accounted for within a model. One approach that
has gained in favor in recent years views the cardiac tissue as two coupled, continuous domains: one for intercellular
space and the other for the interstitial space. The intracellular potential and extracellular potential [12], [13], [2]
obey the equations

(13)

and
(14)

where and are externally applied currents in the intracellular and the interstitial domains. While potentials and
currents are averaged in both domains, the structure is partially preserved by assigning a conductivity tensor at each
point in space, given by and , the intracellular and interstitial effective macroscopic conductivity tensors. The
treatment of cardiac tissue as two coupled continua is referred to as the bidomain model [12]. As mentioned previously,
we will restrict our treatment to bioelectric phenomena related to volume conductor problems rather than propagation
models. The reader is referred to the thorough mathematical treatment of the bidomain model recently presented by
Henriquez [12].

B. Bioelectric Field Application Areas

We end this section by summarizing the various application areas in which the numerical solutions of bioelectric field
problems play a role. We will not attempt a detailed discussion of any of the specific applications, but instead point the
interested reader to relevant review articles in each field. We note that the numerical techniques discussed henceforth
are pertinent to all the applications summarized below.
A. Electrocardiology There is rich history of the use of computer simulation to solve the forward and inverse problems
in electrocardiography [49], [50], [16], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63], [64], [65],
[66], [67], [68], [69], [70], [71], [72], [73], [74], [75], [76]. An example of a solution of the forward problem within
a large-scale thorax model is shown in Figure 1 from the author [77]. An example of the activation sequence of the
heart estimated by using the uniform double layer inverse model is shown in Figure 2 by Huiskamp et al. [49], [78]. An
example of a large-scale heart model is shown in Figure 3 by Nielsen and Hunter et al. [79], [80]. One of the largest
collections of review articles regarding electrocardiology, including numerical methods, can be found in the three-
volume “Comprehensive Electrocardiology,” edited by Macfarlane and Lawrie [81]. Also see the following articles that
appeared in the Critical Reviews in Biomedical Engineering [45], [12], [13], [46], [2].
B. Cardiac Defibrillation The use of external and implantable cardioverter defibrillators has proven to be effective in
reducing the mortality rate of those individuals afflicted with heart disease. The improvement in lead technology so far
has progressed via two distinctly different paths. Manually constructing lead systems and testing the configurations in
animals was, and still is, the development path that the majority of ICD designers use. Now, with the sophistication of
computer simulations and the increased understanding of the critical variables necessary for successful defibrillation,
ICD designers are beginning to model and test new electrode configurations on computers before verifying the results
in animal studies [24], [27], [31], [32]. Many studies have been performed demonstrating the power and sophistication
of computer simulations for defibrillation studies. References for computational cardiac defibrillation studies include
[82], [83], [84], [85], [86], [87], [88], [89], [90], [29], [30], [91], [92].
C. Electrical Impedance Tomography Electrical impedance tomography (EIT) is a procedure for mapping electrical
conductivity properties of the internal tissues by applying electrical current through electrodes attached to the surface
of the body and measuring the resulting voltages. Besides providing a map of the conductivity inside the body, which is
important for many bioelectricity modeling studies, EIT could be used to assist in monitoring pulmonary problems such
as edema, to noninvasively monitor cardiac output, or even to measure local internal temperature increases associated
with hyperthermia treatments. References to modeling studies in EIT include [93], [94], [95], [96], [97].
D. Therapeutic and Functional Electrical Stimulation Electrical stimulation of the nervous system by external
and/or implantable electrodes has been used to treat symptoms of epilepsy, psychiatric disorders, and spinal cord injury,
among many other disorders. Most bioelectric models for therapeutic and functional electrical stimulation are concerned
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Fig. 1. A visualization of the geometry and electrical current flow in a model of the human thorax for a single time step in the
cardiac cycle. From Johnson.

with delivering a therapeutic dose of electricity to the desired region(s) while minimizing the stimulation effects to
surrounding regions. References pertaining to electrical stimulation include [98], [99], [100], [2], [101], [102].
E. Electromyography Electromyography was defined by Buchthal [103] as “. . . the registration of muscle action po-
tentials.” According to Buchthal, these potentials “give information as to the state of the muscle and indicate the activity
of the motor neurons in reflex and voluntary contraction. Deviation from the normal electromyogram can contribute to
the differential diagnosis of disorders of the motor system. Of diagnostic importance are the spontaneous electrical ac-
tivity in an apparently relaxed muscle as well as the electrical activity which accompanies voluntary or reflex contraction
and the action potentials evoked by electrical stimulation of muscle and nerve.” Until recently, EMGs were recorded
primarily for diagnostic purposes. From biotechnology advancements during the past decade, electromyograms have
also become a tool in monitoring and controlling movement in artificial limbs and are used in conjunction with func-
tional electrical stimulation [104]. Modeling work of EMG electrodes can be found in [105]. Additional references
pertaining to electromyography include [106], [103], [104].
F. Electroencephalography One of the fundamental problems in computational electroencephalography is the inverse
EEG problem. Examples of large-scale head models are shown in Figures 4 fromWeinstein [107] and 5 by Oostendorp.
If accurate solutions to the inverse EEG problem could be obtained, neurologists would be able to noninvasively view
and interpret patient-specific cortical activity, gaining data important to surgeons and researchers. For example, accurate
focal source localization is of paramount importance for surgically treating epileptic patients. An accurate inverse EEG
solution would allow surgeons to dramatically reduce the amount of brain tissue removed during neurosurgery, as the
anomalous regions responsible for the electric discharges triggering the seizures could be pin-pointed rather than merely
estimated. A rapid, accurate inverse solution could also be used to guide time-critical functional imaging techniques
such as fMRI. Such a tool would be useful for observing patients over extended periods, as is often necessary for patients
with sleep disorders and multiple sclerosis. Finally, theories and correlation data suggest that left temporal lobe volume
reduction in schizophrenic patients is responsible for their measured P300 topographic asymmetries. This asymmetry
is the most robust and consistently replicated electrophysiological abnormality observed in schizophrenic patients, and
has to do with the ERP (event-related potential) measured on the patient’s scalp approximately 300 milliseconds after
an auditory stimulus. These are only a few of the potential benefits that could be provided by solutions to the inverse
EEG problem. References on computational electroencephalography include [108], [109], [110], [111], [107], [112],
[113], [114], [115], [116], [117], [118].
Beyond the challenges associated with complicated geometries and ill-conditioned inverse problems, bioelectric field

problems often present substantial computational difficulties because of the large number of variables needed to ad-
equately describe the underlying physics and physiology. We will address these challenges in section IV. Once we
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Fig. 2. The activation sequence of the heart estimed by using the uniform double layer model. Isochrones are drawn at 5 ms
intervals. The upper panels show from left to right the anterior epicardium, the right ventricular endocardium, and the right
ventricular septum (all in frontal view). The lowers panels show the left ventricular septum, the left ventricular endocardium
and the posterior epicardium. From Huiskamp et al.

Fig. 3. A large-scale heart model. Coronary arteries and veins shown on the epicardial surface of complete heart model. From
Nielsen and Hunter et al.

have stated or derived the mathematical equations that define the physics and physiology of the system, we need to
create a discrete version of the geometry describing the volume conductor. This leads us to the next section on model
construction and mesh generation.
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Fig. 4. A visualization of electrical current densities on the scalp, skull, and brain from a finite element simulation of temporal
lobe epilepsy. From Weinstein.

III. MODEL CONSTRUCTION AND MESH GENERATION

In this section, we describe many aspects of the geometrical modeling process. Most realistic bioelectric volume
conductor models are based upon MRI and/or CT images of patient anatomy. As such, procedures such as segmenting
the images and automatically generating a discrete polygonal mesh are essential components in modeling and simulation
of bioelectric fields. Figure 6 depicts a cut-away of the Utah Torso, a large-scale thorax model highlighting the different
anatomical regions. The model was defined by over 20,000 surface points and 1.5 million tetrahedral elements [4], [77].

A. Segmentation

Image segmentation can be defined as the process of defining boundary domains in 2D and 3D images. Before surface
reconstruction, mesh generation, and other modeling operations begin, the researcher must define the boundaries of
interesting (relevant) regions within the images. In spite of extensive research in the field, there is still no algorithm that
can automatically find region boundaries unfailingly from clinically obtained medical images. There are two reasons
for this. One is that most of the image segmentation algorithms are still noise sensitive. The second reason is that
most segmentation tasks require certain specialized background knowledge about the region(s) of interest, as modelers
do not want to include (or cannot include because of size restrictions) the details that are yielded from many image
segmentation algorithms.
Generally image segmentation involves classifying an image into individual objects based on object/image properties.

A digital image is a discrete sampled representation of a continuous function (intensity and/or chromaticity). Medical
images are obtained from MRI, CT, or other medical scanners with discrete sensors that permit each image to be
represented as set of pixels indicating the value of the intensity function at every location within the image, usually as a
two-dimensional array of intensity values. Digital image segmentation is the process of applying one or more operations
to this two-dimensional array to classify the image into regions of similar properties like color, texture or intensity.
An example of the result of segmenting a 2D MRI scan of the thorax is shown in Figure 7.
To ensure the accuracy of the segmentation, many researchers still manually segment images by inserting control

points on the images by hand and then invoke data fitting algorithms to fit curves through the control points. However,
because a “typical” large-scale model has complex geometry, model construction requires the processing of a large
number of images. Furthermore, as suggested by the recent work of Kikinis et al. [119], physicians are interested in
near real-time segmentation for use in time-critical (such as surgery) healthcare applications.
These last two points underscore the significant challenge image segmentation and related model construction pose

for biomedical modelers. For these reasons, creating new algorithms to permit a computer to recognize objects and take
appropriate actions is one of the major research areas in computer vision [120], [121], [122], [123].
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Fig. 5. In the study of evoked potentials, the regions in the brain that are active in repsonse to some kind of external stimulus are
modeled as current dipoles. In order to find the positions of the dipoles (i.e. determine which regions of the brain are active)
from measured EEG signals, one needs a model of the medium trough which the currents are conducted. The above volume
conductor model, which includes the head, the skull and the brain, was constructed from MRI images. On the head the electric
potential distrution generated by activity in a small region of the cortex is depicted.

B. Image Preprocessing

The segmentation of a digital image into the component objects may be carried out using one or more operations
such as thresholding, edge detection, region growing, etc. Medical scanning devices add noise to the image, and thus
decrease the discriminative ability of the algorithms based upon the above operations. To minimize the effects of noise,
images usually need to be preprocessed using linear/nonlinear filters. A sample of preprocessing methods that may be
applied to an image to make it a more suitable input for the segmentation process are discussed below.

B.1 Gray Scale Transformation

A gray-scale transformation operates on the range of pixel values to convert them into a range . Most
gray-scale images have approximately 256 distinct gray-scale values. Thus, lookup tables are employed to achieve the
transformation. The transformation may involve a brightness thresholding, in which case all pixels above a certain
threshold are colored white and those below black. Another common type of the transformation uses contrast enhance-
ment, which is usually achieved using histogram equalization. Histogram equalization attempts to obtain an image with
equally distributed brightness across the entire brightness level by enhancing the contrast for values close to the maxima
and decreasing the contrast for brightness values close to the histogram minima.
A direct application of the gray-scale transformation to multi-spectral images involves using pseudo color palettes.

Here, an indexed palette is used to represent different intensities as colors. The colors in the palette may be assigned so
that regions of interest are more brightly or contrastingly colored as compared to the regions of little or no interest, thus
causing the interesting regions to stand out in an image.

B.2 Averaging & Local Filtering

Averaging and local filtering methods attempt to minimize the error in the image. Averaging consists of obtaining
static images of the same scene and averaging the corresponding pixels. The effect is to reduce the standard deviation
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Fig. 6. A cut-away of the Utah Torso Model showing the different anatomical regions included in the model. The Utah Torso
Model was derived from MRI scans and segmented to provide the boundary points defining the major electrically relevant
anatomical regions, including subcutaneous fat, skeletal muscle, lungs, ribs (clavicle and sternum), epicardium, epicardial fat
pads, blood cavities (atria and ventricles), and the major blood vessels (pulmonary artery and vein, aorta, superior and inferior
vena cava, and subclavian, innominate and azygous veins).

between pixels by a factor of . The advantage of image averaging is that smoothing is achieved without blurring
the original image. However, it is not always possible to obtain a sequence of static images. If only a single image is
available then the averaging is performed in a local neighborhood of the pixel. A or local neighboring region
is first defined and then the value pixels are convolved with a filter kernel centered around the pixel of interest. The size
of the filter used depends on the smallest object that needs to be resolved from the image. Examples of different filter
kernels include the box, triangle, Gaussian, and sinc filters. Filtering the image usually decreases the noise but at the
cost of blurring the image. Another disadvantage of filtering is that a recursive application of the filter leads to severe
image degradation within a few passes of the filtering algorithm. However, if the averaging process is limited to pixels
that form part of a particular feature, the effects of blurring can often be minimized, thus application of a local filtering
algorithm can often enhance the boundary domains and thus increase the success of segmentation algorithms.

B.3 Median Filtering

Median filtering is a smoothing method that reduces the blurring of edges [124] and eliminates impulse noise that
can be added during imaging. Impulse noise appears in an image that has a number of pixels that have the obviously
incorrect intensities, such as 0 or 255. The idea is to replace the current point in the image by the median of the
brightness in its neighborhood, such that is forces points with very distinct intensities to be more like their neighbors.
The median is not affected by impulse noise; hence, any impulse noise is eliminated. In addition, median smoothing
does not blur the image and can be recursively applied. However, median filtering damages the sharp contours formed
from thin lines. Horizontal/Vertical lines may be preserved by defining special neighborhood relationships for the pixels.

C. Segmentation Methods

In this section we discuss the methods that are commonly applied to digital images to segment them into regions.
Most of the methods discussed are general and can be applied to images obtained from different medical imaging
modalities.

C.1 Edge Detection

Edge detection uses a collection of local image processing methods to locate sharp changes in the intensity function
of the image and if often used as a first step to image segmentation after filtering. An edge is a vector variable that is
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Fig. 7. A 2D MRI scan of the thorax after segmentation. The polylines define the major electrically relevant anatomical regions
including the torso surface, subcutaneous fat, skeletal muscle, lungs, ribs, epicardial surface, and electrodes from a body surface
potential map.

a property of an individual pixel. The magnitude of the edge is the magnitude of the gradient and the corresponding
direction of the edge such that it is rotated -90 degrees with respect to the direction of the gradient. The edge profile is a
plot of the intensity function along the edge direction. The edges, then, correspond to pixels where the image intensity
changes abruptly. This change in image function can be expressed by a gradient that points in the direction of the largest
change. Typical profiles of edges include step, triangle, line, and noisy functions. Many edge detection algorithms are
specialized to detect certain kinds of edges. Edge detection operators can be roughly classified into the following types
(see [123] and the references therein for further information)
Operators that determine the maximum value from a series of pixel subtractions (e.g. Homogeneity operator and

difference edge detector).
Operators approximating derivatives of the image function using differences (e.g. Laplacian, Roberts, Prewitt, Sobel,

Robinson, and Kirsch).
Operators based on zero crossings of the second derivative of the image function (e.g. Marr-Hildreth and the Canny

edge detector).
Operators that match an image function to a parametric model of the edges (e.g. Hough transforms).

C.2 Thresholding

Thresholding is the simplest and most intuitive of the segmentation methods. Image thresholding tries to emphasize
the strong edges and deemphasize the weak edges. Most regions in an image have a constant reflectivity/transmitivity
and hence show up in the image as regions of constant/near constant brightness. This brightness value can be used as a
threshold to segment the regions from the image. A simple algorithm to do the thresholding would work as follows:
1. Select an appropriate threshold value.
2. Scan all the pixels in the image.
3. Set all pixels greater than or equal to the threshold to 1.
4. Set all other pixels to 0.
If the regions do not touch each other and have gray-scale values distinct from the background, then thresholding is

suitable as a segmentation method. Since thresholding is a simple tool with a reasonable efficacy, many variations have
been made to improve upon the original algorithm. For example, most objects within an image may have different gray-
scale properties and the gray-scale values may vary depending on the location of the object in the region. A variation on
the original algorithm splits the image into multiple sub-images and uses a threshold value that is appropriate within the
particular sub-image. Another variation sets the region pixels to if the values are within a certain gray-scale domain
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and the background is set to zero.
Selection of an appropriate threshold for segmentation is dependent on the gray-scale of the regions interest. Certain

algorithms assist the selection of an appropriate threshold value. For example, P–Tile thresholding assumes a certain
prior knowledge about the nature of the image. If the percentage of the pixel occupancy of regions of interest within the
image is known, then the threshold is easily calculated by scanning the pixels and finding a gray-scale value at which
the percentage of pixels above the value is equal to the percentage of pixel occupancy of interesting regions.
A more general approach than the P–Tile approach is to examine the peaks and valleys in the image histogram.

Regions of similar gray-scale values will show up as peaks in the histogram. If there is only one region then, the
histogram has two peaks, one for the gray-scale values representing the region and one for the background. Such a
histogram is called a bimodal histogram. Most images with multiple gray-scale regions will have many peaks and are
therefore called multi-modal. An appropriate threshold value is often selected by taking the midpoint gray-scale value
between a set of peaks.
A semi-automatic image segmentation tool specifically for use in model construction for bioelectric field problems

has been described by Shen [125]. Shen’s software tool combines interactive manual segmentation utilities with an
automatic image segmentation algorithm. By combining these two segmentation methods, manual and automatic, a user
can obtain accurate boundary descriptions with a minimum of effort. To achieve manual segmentation, the researcher
“drops” control points onto the image. Given a 2D image slice, the user places these points on a visible region boundary,
then invokes a data fitting algorithm, via a selection from a pull-down menu, to interpolate between these control points
to generate a region contour. The program then automatically fits cubic splines to the selected points. Several different
data fitting methods can be used. The methods differ based either on the degree of interpolation function used – i.e.
linear or quadratic or on the basis function used – B-spline, Bezier spline, etc. In automatic segmentation mode,
the researcher selects a particular boundary; then, the program uses a bimodal thresholding algorithm within a local
window of the target image, to produce boundary pieces. The individual pieces are then connected to yield the entire
region boundary. In the automatic segmentation procedure, users interactively steer the segmentation process. The
program begins by prompting the user to select an initial starting point on the region boundary. From that point, local
edge detection and contour following programs are used to find the region boundaries. The contour algorithm gives
only a small contour segment piece at a time. The program then waits for feedback from the user. The user may inspect
and if necessary, correct the identified contour segment. If no corrections are needed, the program continues to find the
next contour piece.
Hierarchical thresholding is the method that aims to detect regions in lower resolution images and to improve the

precision of the region in higher and full resolution images. A major advantage of this method is that there is less
influence of noise on the segmentation, since the lower resolution images are smoothed. Also, because the segmentation
proceeds on to higher resolutions, the imprecise borders that result from segmenting smoothed images are refined in the
re-segmentation process.

C.3 Edge-based Segmentation

The application to an image of the edge detection operators described earlier results in an edge image. Edge-based
segmentation is the process of merging the individual edges into edge chains that represent the borders of existing
objects in the image. Edge-based segmentation is more successful if prior knowledge about the shapes of the regions
being segmented is known. It is also sensitive to the amount of noise in the image. Noise can affect the segmentation
operators by causing the operators to detect edges where none exist, and also by causing the operators to miss existing
edges.
The simplest method of segmenting an edge image is to apply a thresholding operator. The edges may be classified

based on the fact that the stronger the edge the higher the threshold [126]. By choosing an appropriate threshold, a
researcher can ensure that only the significant edges will be chosen to appear in the segmented image. If there is prior
knowledge about the nature of the edge, then P–Tile thresholding may be used. However, this method is still limited by
the fact that noise is a major disadvantage of both edge detection and thresholding methods.
Edge relaxation is a method of segmenting an edge image that classifies the edges based on their neighbors, on edge

confidence, and on appropriately growing the stronger edges to form borders [127], [128], [129], [130]. A crack edge
is the edge formed in the gap between two pixels [131], [132]. Each crack edge has 6 neighboring crack edges. The
strength of the edge is defined in terms of a tuple where is the number of strong edges at one end of the edge
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and is the number of strong edges at the other end. A confidence rating of indicates an isolated edge, probably
caused by impulse noise in the image, and has a negative influence on the overall edge confidence. A confidence rating

indicates an edge that is probably a continuation of a border and that has a strong positive influence on overall
edge confidence. Edges with confidence ratings and represent border confluences and have a medium
positive effect on overall edge confidence. Edge ratings or represent dead ends, whereas a rating of
indicates an uncertainty and has a weak positive or no influence on overall edge confidence. Edges rated , or

represent bridges between borders [133]. Edge relaxation is an iterative process, with each edge confidence being
updated as its neighboring edge strengths are calculated. Each edge is then set to a 1 or 0 based on its confidence value
and a threshold for edge selection. Edge relaxation usually works well in the first few iterations and then slowly drifts,
giving increasingly worse results.
Other methods for edge segmentation include heuristic graph searching [134], [135], edge following using dynamic

programming, and region construction from partial borders.
A method for detecting geometric shapes/borders in images is know as the Hough transform [136]. To detect straight

lines in a image, an algorithm transforms all the edge pixels into the parameter space for the line via the slope (m) and
the intercept (c). A single point in the parameter space thus represents a line through the image. Each border in the
image is transformed into the parameter space and a counter is incremented for each (m, c) pair. The (m, c) pairs with
the most occurrences represent the significant lines in the image. Similar inverse transforms can be applied to detect
other geometrical/parametric shapes in the image. Fuzzy Hough transforms [137] allow detection of regions whose
exact shape is unknown, but in which there is enough a priori information to form an approximate representation of
the object. After the general Hough transform is applied to the approximate model of the object, the algorithm recovers
the true border by locating points with maximum weighted edge strength along a line radial to the detected border. The
advantages of the Hough transform are that it allows recovery of partial, obscured or deformed edges and is insensitive
to noise. Another advantage is that it can find all occurrences of the same shape in the image in one pass.

C.4 Region Growing

Region growing methods have become popular techniques for extracting surfaces within volumes of medical imaging
data. The basic idea of region growing is to divide an image into zones of maximum homogeneity. A region is defined
as a set of pixels in which all the pixels forming a path between any pair of pixels belong in the same set. Region
growing techniques tend to do well with noisy images where edges are otherwise difficult to detect. The region can
be broken into different homogeneous regions according to gray-scale level, texture and/or other criteria [138], [139],
[140], [141].
Region growing methods are usually further classified as region merging, region splitting and region splitting and

merging. Region merging is a bottom-up approach to image segmentation. At the beginning of the process, each pixel
represents one region. A criterion is defined for merging adjacent similar regions. The criterion is then applied to the
image, and adjacent regions are merged until there are no two adjacent regions that can satisfy the merging criterion.
The most commonly used merging criterion is based on edge strength: regions whose common border consists of weak
edges are candidates for merging.
Region splitting is a top down approach and is the opposite of region merging. At the beginning of the process, the

entire image is considered as one region. This region obviously will not satisfy the homogeneity criteria. The process
will split the image into increasingly more homogeneous regions until all the sub regions satisfy the homogeneity
criteria. Although the approaches to region merging and splitting appear opposite, they are not duals of each other, and
different segmentations may be created by the two processes.
Splitting and merging uses a pyramid scheme to represent images. The top level images are low resolution filtered

versions of the images lower down in the pyramid. If the top level image does not satisfy the homogeneity criteria,
it is split into 4 square subregions. Each subregion is derived from the higher resolution image lower in the pyramid.
Adjacent regions that satisfy the homogeneity criteria are merged and the merging is propagated back up the pyramid.
The process can be represented as a segmentation quad-tree; at the end of the process, each leaf node of the tree
represents an individual segmented region.
Lately, segmentation techniques have focused on extending previous segmentation techniques to include an n-dimensional

vector for each voxel rather than a scalar value. Such techniques require as input multiple volume data sets, all with
identical spatial domains. Ideally, each volume would show different properties of the material and the resultant vectors
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could be easily segmented into the correct material types.
One implementation, VecSeg, uses MRI scans with different “weightings” [142]. An MRI weighting specifies the

frequency of the magnetic pulse, the duration of the pulse, and the relaxation time between pulses. These parameters
determine the “material to intensity mapping” that will result from the scan. In a recent use of VecSeg, a patient
underwent two different weighted scans, which resulted in two volumes, each containing 81 MRI slices from
the same patient. Scans from the two different weightings are shown in Figure 8.

Fig. 8. Two MRI images showing the different data obtained for two different weightings. The left image is a T1 weighting, and
the right image is a T2 weighting.

Initially, VecSeg reads in the data files and passes the volume data to clipping modules. The clipping modules are
linked so that they will always define the same volume. These modules enable the researcher to segment the volume
quickly and help to determine the best material ranges with a high degree of interactivity. They enable the user to
interact with a small subset of the domain initially, and then, once the desired ranges have been determined, to pass the
entire volume in to be segmented. The set of modules used for VecSeg are shown in Figure 9

Fig. 9. The network VecSeg uses for vector based automatic segmentation.

The next stage in the VecSeg pipeline is the segmenting module, which accepts the clipped volume fields as input.
The interface for this module is a 2D array of range sliders for specifying grey-scale values of materials from each
input volume. In the example case of VecSeg, the module accepts two fields as input and segments for several distinct
materials. If a voxel’s vector is contained within the space spanned by the ranges of that material, that voxel is set to be
“on” for that material.
Finally, VecSeg’s vector segmentation module creates a field of n-bit numbers, with one bit corresponding to each

material. This field is passed on to a final module that extracts surfaces for each material volume, as well as for a
volume of colored points corresponding to each voxel’s identified material. The volume of points is a “quick-and-dirty”
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method of volume-rendering the segmented data, and is a fast way to look at the segmentation results. The module can
also output boundary surfaces for each material. An example of the output from VecSeg is shown in Figure 10

Fig. 10. Automatic segmentation of a portion of a brain using the VecSeg dataflow system.

There are a number of excellent general references in image processing and computer vision that contain extensive
sections on filtering and segmentation such as [122], [123], [143], [144], [145]. A particularly useful reference is [120],
which includes C code for all of the image processing algorithms discussed throughout the book.

D. Surface Construction

Before applying a particular solution method to realistic models, one needs to create a computational mesh. For the
boundary element method, the computational mesh is a three-dimensional surface usually made up triangles. For the
finite element method, one needs to construct a volumetric computational mesh. If one uses unstructured elements, then
one usually creates a volume tetrahedralization. To utilize certain automatic tetrahedral mesh generators in creating
volume representations of these models [146], it is necessary to connect the segmented points/lines into polygonal
surface descriptions. Thus surface modeling plays an important role in constructing realistic models for computational
bioelectric field problems. Triangular elements are a good choice for irregular surfaces such as those found in the human
body, and their use is supported by criteria by which “optimal” triangles can be constructed from given point sets [147],
[148], [149].
While the general problem of creating an optimal triangulation from points in three dimensions is quite complex,

significantly simpler approaches can be used if the points are constrained to lie in planes, as they almost always do
in data collected from imaging systems. If the surfaces to be constructed lie more or less perpendicular to the image
planes, then the job is reduced to one of “lacing” the points in adjacent layers into optimal triangles. Algorithms for
performing the lacing operations have been described [150], [151], [152] and shown to work, even in situations in
which the surface bifurcates, as in, for example, the structure of blood vessels [151], [152]. In [153], MacLeod and I
described a triangulation strategy for connecting data from segmented MRI scans into triangulated surfaces. The results
are discussed below.
In order to apply triangulation techniques to the construction of a model of the human torso (or head), we combined

the points from adjacent layers into three-dimensional “slices”, which were the input for our lacing programs. Triangu-
lation of each slice involved the following steps:
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Fig. 11. Example of lacing two layers to triangulate the surface enclosing the resulting slice. Points form the upper layer are shown
as empty circles, those from the lower as filled circles.

1. Determine an anatomically based starting point and locate the nearest node from each layer of the slice to that starting
point. The anterior midline of the body is a typical starting location.
2. Order the points for each surface in each layer in such a way that they form a continuous sequence, commencing at
the starting point and proceeding in a common direction around the surface. This is typically performed during fitting
of the sampled points (using a cubic spline, for example).
3. Determine a starting point on one of the layers, and find the nearest point in the second layer; join these to define the
first connective segment.
4. Proceeding to the next point in each layer, determine which of the two possible pairs of triangles that can be formed by
joining them with the endpoints of the first segment yield the shortest diagonal (and hence the most optimal triangulation
in terms of maximizing the size of the smallest angle in each triangle [148]).
5. Once this pair of triangles is defined, and a new connective segment is formed, repeat the previous step until all
points have been included, and the surface completely triangulated.
Figure 11 shows this process in a simple case with 10 points in each layer of a slice. The starting point is at point 1,

which is connected to point 11. Testing of the two possible diagonals (from points 1 to 12 or points 2 to 11), shows that
the latter produces triangles with larger minimum angles and hence is the proper choice. A second triangle, consisting
of points 2, 11, and 12 is also immediately constructed and the segment between points 2 and 12 becomes the new
starting point for further lacing.
While this basic algorithm will work most of the time, there are a number of situations in which additional mech-

anisms are required. In some cases of extremely irregular surfaces the lacing scheme must be augmented with some
checks for triangles which are too large, or must be formed, not between nodes on different layers, but in the plane of
one of the layers. Errors frequently occur in regions of significant concavity, in which triangle segments run outside the
hull of the body, as, for example, in the crescent-shaped regions of the lower lungs. Simple examples of these situations
are given in Figure 12. In panel A the upper layer describes a smaller surface than the lower layer, and a single point
(point in the figure) is shared by seven triangles, instead of two or three, as for all the other points. Panel B shows a
situation in which erroneous triangles (shown in thicker, dashed lines) are constructed across a region which is outside
the actual surface. Such triangles must be detected and removed, ideally without user input.
Determining when a triangle lay outside the surface was one of several related problems that arose during the model

construction (and which will be described in more detail below). The basic question was whether a point was inside or
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Fig. 12. Two examples of special cases in lacing triangles. InA, the two layers join to form a very flat surface since one layer does
not lie directly over its neighbor. In panel B, a sharply curved surface can result in erroneous triangles which lie outside the
actual surface (shown as dashed lines.)

outside a surface. To solve this, we again made use of the fact that all the points in the tomographic data lay in discrete
planes. If a point lies inside the curve defining the intersection of a surface and a plane (the “surface curve”), then the
algebraic sum of all the angles about the point that are formed between adjacent points on the curve should be equal to
. For a point outside the curve (and hence the surface partially defined by the curve), the sum of the angles is zero.

Using this fact, and provided that the points have already been ordered in a strict sequence of first-order neighbors,
one can construct a set of tests with which the location of a point, relative to a surface, can be determined. This same
concept can be extended directly to three dimensions if, instead of planar angles, the sum of the solid angles about a
point is computed. However, this calculation requires knowledge of the outward normals on an already complete surface
tessellation and is therefore unsuited to this application. Once completed, however, a computation of the sum of the
solid angles is an excellent means of checking for complete closure and consistency of the outward normals.
In the particular application of triangulation, in which one wishes to detect and remove triangles that lie outside the

concave surface, there is, however, potential for error. Since any point that is tested, say, the midpoint of each side of
the triangle under examination, actually lies between the two planes of the data points, one must project it onto one or
the other of the planes and test the projection of the point relative to the surface curve. Sufficient practical accuracy can
be achieved, however, by testing each such point, and perhaps several others in the triangle, projected onto both planes.
We have found that checking the location of the projected centroid of the triangle against surface curves on both layers
(and eliminating the triangle if the centroid lies outside either) is adequate for most purposes.
Once laced into multiple slices, the points and triangle connectivities must be concatenated to make a complete

surface description. We usually perform this operation on a surface-by-surface basis so that the end result is a set of
points and connectivities for each of the surfaces in the complete model. This allows for easy selection of the surfaces
that are to be included in a computation and/or visualization. Before they are ready to use, however, there are two final
steps in the model construction process.
The first involves connecting the points which form the ‘ends’ or ‘caps’ of the model, that is, the first and last layer

of each surface. This can be performed in one of two ways, either by triangulating the points in the layer, or by adding a
grid of points to fill in the region defined by the points in the end layers, and then triangulating the resulting augmented
layer in two dimensions. We employ both approaches, depending on the size of the opening at each end and the desired
density and spatial resolution of the model we are constructing. If a grid is added, its density is, likewise, dependent
on the desired resolution of the model. The triangulation of the resulting two-dimensional point set is a straightforward
problem and numerous programs exist for this purpose, some even in the public domain (e.g., voronoi from the netlib
collection). What is usually missing from these algorithms, however, is a provision for concave curves, in which case
triangles are constructed which lie outside the curve. Hence we have implemented a check of all the triangles formed by
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the two-dimensional triangulation using the inside/outside test described above, applied to the centroid of each triangle.
The final step in constructing a surface model of the geometry involves setting the direction of the outward normal

vectors to each of the triangular elements. Finding a normal vector is easily done by computing the cross product of
any two sides of the triangle. Ambiguity remains, however, in the final choice of which of two opposite directions is
outward and which inward. This can be resolved in most cases by applying, once again, a test to the endpoints of both
candidate normal vectors to determine which lies inside and which outside the surface. We add both normal vectors to
each of the three vertices of the triangle, then test the endpoints relative to the surface to which the vertex belongs, until
we achieve an unambiguous result of one endpoint found inside and the other outside the surface. The coding of this
information into the model itself occurs in the order in which the points of each triangle are recorded: the points are
always taken in counterclockwise order when viewed from the outside of the surface. As a final, complete check of the
integrity of the model, we select a point inside each surface and compute the total solid angle about that point. If the
surface description is complete (no holes), and all the outward normals are correct, the result must be .
A recent series or papers by Hoppe et al. [154], [155], [156] presents a method for triangulating 3D surfaces from a

set of discrete points. Postprocessing of triangulated surfaces can be accomplished by applying the Laplacian smoothing
algorithm of Oostendorp et al. [157].

E. Mesh Generation

Once we have stated or derived the mathematical equations that define the physics of the system, we must figure
out how to solve these equations for the particular domain we are interested in. Most numerical methods for solving
boundary value problems require that the continuous domain be broken up into discrete elements, the so-called mesh
or grid, which can be used to approximate the governing equation(s) using the particular numerical technique (finite
element, boundary element, finite difference, or multigrid) best suited to the problem.
Because of the complex geometries and the enormous number of degrees of freedom (upwards to tens of millions

elements) associated with many problems in computational medicine (and specifically the bioelectric field problems
considered here), construction of the mesh can become one of the most time consuming aspects of the modeling process.
After classifying the relevant regions of interest by segmenting the medical images and deciding upon the particular
approximation method to use (and the most appropriate type of element), we need to construct a mesh of the solution
domain that conforms to the segmented boundaries and matches the number of degrees of freedom of the fundamental
element we’ve chosen.
There are several different strategies for discretizing geometry into fundamental elements. Bioelectric field simu-

lations require the modeling of complex geometric domains such as those found in the human thorax and head (eg.,
heart, lungs, skeletal muscle, vascularture, body surface, brain, and skull). These different anatomical structures are
extremely irregular and do not permit the efficient use of standard CAD/CAM descriptors commonly used to describe
synthetic structures. Instead, the geometric objects that comprise the geometric model are described by segmented sets
of 2D or 3D MRI or CT images consisting of contours or surfaces at the boundaries between organs and/or regions
of different conductivity. The resulting contour or surface data is then used to construct a polyhedral representation
of the solution domain. For bioelectric field problems, two approaches to mesh generation have become standard: the
structured partitioning (or subsequent subdivision) strategy [158], [159]; and those based upon a Delaunay triangula-
tion strategy [158], [160]. Other mesh generation techniques that could be used for bioelectric field problems include
mapping methods, paving (advancing front methods) [158], [161], and octree methods [162], [163]. Most researchers
have chosen to discretize the solution domain with either tetrahedra for volumes and triangles for surfaces, which are
usually used for modeling irregular three-dimensional domains, or hexahedrons (rectangles) used for modeling regular,
uniform domains.
In using the structured partitioning strategy, one starts with a set of points that define the bounding surface(s) in

three dimensions (contours in two dimensions). The volume (surface) is repeatedly divided into smaller regions until
a satisfactory discretization level has been achieved. Usually, the domain is broken up into eight-node hexahedral
elements, which can then be subdivided into five (minimally) or six tetrahedral elements if so desired. This methodology
has the advantage of being fairly easy to program; furthermore, commercial mesh generators exist for the divide and
conquer method. For use in solving bioelectric field problems, its main disadvantage is that it allows elements to overlap
interior boundaries. A single element may span two (or more) different conductive regions, for example, when part of
an element represents muscle tissue (that could be anisotropic) and the other part of the element falls into a region
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representing fat tissue. It then becomes very difficult to assign unique conductivity parameters to each element and at
the same time accurately represent the geometry. While this technique works for domains of arbitrary shape, in the case
of a complex geometry one must use a large number of elements to adequately define the shape [158].
A second method of mesh generation is the Delaunay triangulation strategy. Given a three-dimensional set of points

that define the boundaries and interior regions of the domain to be modeled, one tessellates the point cloud into an
optimal mesh of tetrahedra. For bioelectric field problems, the advantages and disadvantages tend to be exactly contrary
to those arising from the divide and conquer strategy. The primary advantage is that one can create the mesh to fit
any predefined geometry, including subsurfaces, by starting with points which define all the necessary surfaces and
subsurfaces and then adding additional interior points to minimize the aspect ratio. For tetrahedra, the aspect ratio can
be defined as [164], [165], where denotes the diameter of the sphere circumscribed about the tetrahedron, and
is the maximum distance between two vertices. These formulations yield a value of for an equilateral tetrahedron

and a value of for a degenerate (flat) element [166]. The closer to the value of 1, the better. The Delaunay criterion is
a method for minimizing the occurrence of obtuse angles in the mesh, yielding elements that have aspect ratios as close
to 1 as possible given the available point set. While the ideas behind Delaunay triangulation are straightforward, the
programming is nontrivial and is the primary drawback to this method. Fortunately, there exist several public domain,
two-dimensional programs, including one from Netlib called sweep2.c from the directory Voronoi (see section VII for
the URL), as well as several newly available three-dimensional package [167] (see section VII for the URLs).
We now proceed to discuss the Delaunay mesh generation method used by Johnson and Schmidt [146], [82], [168]

to create large-scale tetrahedral meshes of the thorax and skull. The method used to create meshes is based upon the
Delaunay tessellation algorithm originally proposed by Watson [169] and later extended by Weatherhill [160]. The
Delaunay criterion states that the circumsphere of any tetrahedron (triangle)2 contains no other mesh points. The thrust
of the Watson/Weatherhill algorithm is to efficiently insert a point into an existing grid (bounding simplex) in such a way
that the Delaunay criterion is met. Certain tesselations are then deleted and new ones are subsequently created using the
new point and a subset of the the old points. The general method is applicable to -dimensions, although engineering
applications usually require implementations in two or three dimensions [168], [82]. A more detailed description of the
mesh generation algorithm can be found in [82].
The mesh generation procedure consists of five steps as outlined in the following algorithm:

Mesh Generation Algorithm
Inputs: Boundary point representation (in contours)

Begin
Triangulate surfaces
Construct coarse mesh - Delaunay tessellation
Determine interior tetrahedra
Repeat:
Generate interior point
Tessellate interior point
Until (point fails spacing and degree tests)

Classify regions
End

Starting with the boundary points extracted during the segmentation, one then proceeds to adequately represent the
surface mesh (line segments in two-dimensions and triangles in three-dimensions). The next step is to construct a coarse
mesh of tetrahedra from the boundary points and then to determine tetrahedra within the surface of interest. These
interior tetrahedra are used in the fourth step, which iterates between the generation of a new point and subsequent
tessellation until certain spacing criteria are satisfied. The spacing criteria are what ultimately determines the size of the
mesh.
The final step is to classify the tetrahedra by their material properties, which vary depending on whether the tetrahedra

are considered to be in the heart, lungs, etc. Since the material property of interest in bioelectric problems, electric
In describing the algorithm, we use triangle or tetrahedron interchangeably.
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Fig. 13. A view of the model construction process. Starting from MRI scans, the geometric model is constructed through image
segmentation, triangulation of the surfaces (such as the lung), and automatic tetrahedral mesh generation.

conductivity, can be anisotropic, each tetrahedron can be assigned a tensor describing local conductivity. To classify a
tetrahedron, the position of its centroid relative to the surfaces separating regions of different conductivity is localized.
To localize the element, a ray tracing approach [82] is used. This technique projects a ray from the centroid of an
element to a point at infinity and counts the instances the ray intersects with a triangulated surface. If the ray crosses
through one triangulated surface an odd number of times, the point is considered to be interior to the surface; conversely,
if it crosses the surface an even number of times, the tetrahedron is considered to be exterior to the surface. A composite
of the segmentation and mesh generation processes are shown in Figure 13.
As previously noted, the construction of large-scale models for solving computational bioelectric field problems can

be the most time consuming aspect of the modeling and simulation procedure. As such, recent work by Christensen et
al. [170], [171], [172] has focused on developing a technique to automatically map (i.e. warp) a computational mesh
generated for an already exiting template geometry into alignment with a new subject-specific case based on differences
between CT and/or MR data sets for the two. The warping is accomplished by solving for the deformation field that
aligns the existing template with the new anatomy. In this approach, image data are used to drive the deformation of
the template. These data are treated as probabilistic measures of inhomogeneous physical properties queried from the
underlying material continuum. As the template material deforms, the inhomogeneity moves with it, so the template
image deforms with the underlying continua. The model-mapping algorithm produces a transformation that minimizes
the difference between the image(s) queried from the deformed template and the individual. This same transformation
can subsequently be applied to any other spatially distributed information associated with the template to map the
information to the specific case. This and similar research hold promise for reducing the overall time spent in model
generation as well as for helping to solve the problem of automatically registering images recorded from different
imaging modalities. Figure 14 illustrates the application of the mesh generation algorithm for the Utah Torso Model
[82], [165].
For more information on mesh generation and various aspects of biomedical modeling, see [173], [174], [175], [176],

[177], [160], [158], [178], [82].
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Fig. 14. Visualization of the tetrahedral structure of the Utah Torso Model.

IV. NUMERICAL METHODS

Because of the geometrical complexity of, and numerous inhomogeneities inherent in, anatomical structures in phys-
iological models, solutions of bioelectric field problems are usually tractable (except in the most simplified of models)
only when one employs a numerical approximation method such as the Finite Difference (FD), the Finite Element (FE),
Boundary Element (BE), or the Multigrid (MG) Method to solve the governing field equation(s).

A. Approximation Techniques - The Galerkin Method

The problem posed in (3) can be solved using any of the aforementioned approximation schemes. One technique
that addresses three of the previously mentioned techniques (FD, FE, and BE) can be derived by the Galerkin method.
The Galerkin method is one of the most widely used methods for discretizing elliptic boundary value problems such as
(3) and for treating the spatial portion of time-dependent parabolic problems, which are common in models of cardiac
wave propagation. While the Galerkin technique is not essential to the application of any of the techniques, it provides
for a unifying bridge between the various numerical methods. To express our problem in a Galerkin form, we begin by
rewriting (3) as:

(15)

where A is the differential operator, . An equivalent statement of (15) is, find such that .
Here, is an arbitrary test function, which can be thought of physically as a virtual potential field, and the notation

denotes the inner product in . Applying Green’s theorem, we can equivalently write,

(16)

where the notation denotes the inner product on the boundary . When the Dirichlet, ,
and Neumann, , boundary conditions are specified on , we obtain the weak form of (3):

(17)

It is understood that this equation must hold for all test functions, , which must vanish at the boundaries where .
The Galerkin approximation to the weak form solution in (17) can be expressed as:

(18)
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The trial functions form a basis for an N+1 dimensional space . We define the Galerkin approxi-
mation to be that element which satisfies

(19)

Since our differential operator A is positive definite and self adjoint (i.e., for some non-zero
positive constant and , respectively), then we can define a space with an inner product defined
as and norm (the so-called energy norm) equal to:

(20)

The solution of (15) satisfies
(21)

and the approximate Galerkin solution obtained by solving (19) satisfies

(22)

Subtracting (21) from (22) yields

(23)

The difference denotes the error between the solution in the infinite dimensional space and the dimen-
sional space . Equation (23) states that the error is orthogonal to all basis functions spanning the space of possible
Galerkin solutions. Consequently, the error is orthogonal to all elements in and must therefore be the minimum error.
Thus, the Galerkin approximation is an orthogonal projection of the true solution onto the given finite dimensional
space of possible approximate solutions. Therefore, the Galerkin approximation is the best approximation in the energy
space . Since the operator is positive definite, the approximate solution is unique. Assume for a moment there are two
solutions, and , satisfying

(24)

respectively. Then, the difference yields

(25)

The function arising from subtracting one member from another member in also belongs in ; hence, the difference
function can be expressed by the set of orthogonal basis functions spanning :

)̧ (26)

When , the terms vanish due to the basis functions being orthogonal with respect to . Since is positive definite,

(27)

Thus, , and by virtue of (26), , such that . The identity contradicts the
assumption of two distinct Galerkin solutions. This proves the solution is unique [179], [180].

B. The Finite Difference Method

Perhaps the most traditional way to solve (3) utilizes the finite difference approach. Finite differences usually dis-
cretize the solution domain using a grid of uniform hexahedral elements (we note that there are several special
techniques to handle curved boundaries) [181]. The coordinates of a typical grid point are
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(l,m,n=integers), and the value of at a grid point is denoted by . Taylor’s theorem can then be utilized
to provide the difference equations. For example:

(28)

with similar equations for . The finite difference representation of (3) is

(29)

or, equivalently,

(30)

If we define the vector to be to designate the un-
known grid values, and pull out all the known information from (30), we can reformulate (3) by its finite difference
approximation in the form of the matrix equation , where is a vector containing the sources and modifica-
tions due to the Dirichlet boundary condition.
Unlike the traditional Taylor’s series expansion method, the Galerkin approach utilizes basis functions, such as linear

piecewise polynomials, to approximate the true solution. For example, the Galerkin approximation to the sample
problem (3) would require evaluating (19) for the specific grid formation and specific choice of basis function:

(31)

Difference quotients are then used to approximate the derivatives in (31). We note that if linear basis functions are
utilized in (31), one obtains a formulation which corresponds exactly with the standard finite difference operator. Re-
gardless of the difference scheme or order of basis function, the approximation results in a linear system of equations
of the form , subject to the appropriate boundary conditions.
Before going on, let’s briefly give a simple two-dimensional example of the finite difference formulation for solving

the bioelectric field problems governed by equation (3),

(32)

The discretization of the two-dimensional (assumed regular with spacing ) is given by

(33)

Therefore, our solution can be written as,

(34)

where we have multiplied through by minus one. As an illustration of the kind of system this produces, we order the
points in natural or row wise ordering and look at the system for :

(35)

Where, for the case with Dirichlet boundary conditions, the boundary data is given as

(36)
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Fig. 15. An illustration of natural ordering for the interior grid points.

we can then generalize the bioelectric field problem with Dirichlet boundary conditions as the linear system,

. . . . . .

. . .
...

...
(37)

where
(38)

(39)

(40)

(41)

Here, is the identity matrix and is the tridiagonal matrix,

. . .

. . .

. . .

(42)

The vector consists of the unknown values at the nodes and is of dimension , while is the vector
consisting of boundary data (with non-zero elements).
Thus the solution to our problem can be found by solving for the vector ,

(43)

B.1 Error Estimates for Finite Differences

Thus far in our application of the finite difference method to bioelectric field problems, we have concentrated on
implementational details. In an intuitive manner, we know that one might decrease the error in a finite difference
approximation by reducing the size of the elements. We also know that the discretization error when using the five-
point formula for the finite difference approximation is of . What we have yet to do is discuss error estimates in
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a more formal way. In general, analyzing errors is somewhat involved. Here, we just touch the surface of error analysis
for finite difference methods. For a more in-depth analysis, look at the references, [182], [183], [181], [184].
We analyze the global error for the one-dimensional model problem along the lines of [182], [181], [185]:

(44)

with
(45)

with boundary conditions
(46)

We will approximate the solution to this equation using second-order accurate difference equations with mesh size .
We will denote the true solution as and the approximate solution as . Thus, we have

(47)

We define the solution error as , where denotes the exact solution at node . If we
substitute in for in the previous equation, we obtain

(48)

Subtracting and noting that , we have

(49)

Our boundary data are the Dirichlet conditions at and . We can then represent this last equation in terms of the matrix
formula,

. . . . . . . . . ...
...

(50)

where
(51)

and
(52)

We can rewrite this set of equations as
(53)

and call the vector the discretization or global error of the difference approximation. Or, assuming that exists,
our error is

(54)

This is the basic relationship between the global and local discretization errors.
Now what we want to determine is the behavior of as . One difficulty here is that as , tends to
. However, Golub [185] has given a simple analysis for a specific case in which and

(55)
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We set our global error and our local error . From our error matrix equation and
the condition on , we have

(56)
Since this equation must hold for all , we obtain

(57)

Since , we conclude that

(58)

This says that the global discretization error is , provided that the local discretization error is . It can be
shown that this result holds for the more general case, as well as for the important case when . The analysis,
however, gets somewhat involved.
As noted in [185], another way to look at the error is to use the eigenvalue of having the smallest

magnitude to bound the global discretization error. Using the Euclidean norm, we find that

(59)

Since , we can obtain

(60)

Whenever is nonsingular, , then we have the following bound on the global error [182]:

(61)

If approaches a nonzero value as , then the norm of the global error at least as fast as the
truncation error .
For more information on the finite difference method and corresponding error analysis and implementational details

see [181], [185], [182], [186], [187], [188], [189]

C. The Finite Element Method

As we have seen above, in the classical numerical treatment for partial differential equations - the finite difference
method - the solution domain is approximated by a grid of uniformly spaced nodes. At each node, the governing
differential equation is approximated by an algebraic expression that references adjacent grid points. A system of
equations is obtained by evaluating the previous algebraic approximations for each node in the domain. Finally, the
system is solved for each value of the dependent variable at each node. In the finite element method, the solution
domain can be discretized into a number of uniform or non-uniform finite elements that are connected via nodes. The
change of the dependent variable with regard to location is approximated within each element by an interpolation
function. The interpolation function is defined relative to the values of the variable at the nodes associated with each
element. The original boundary value problem is then replaced with an equivalent integral formulation (such as (19)).
The interpolation functions are then substituted into the integral equation, integrated, and combined with the results
from all other elements in the solution domain. The results of this procedure can be reformulated into a matrix equation
of the form , which is subsequently solved for the unknown variable [190], [174].
The formulation of the finite element approximation starts with the Galerkin approximation, ,

where is our test function. We now use the finite element method to turn the continuous problems into a discrete
formulation. First we discretize the solution domain, , and define a finite dimensional subspace,

is continuous on is piecewise continuous on . One usually defines parameters of the function
at node points . If we now define the basis functions, , as linear continuous

piecewise functions that take the value 1 at node points and zero at other node points, then we can represent the function
as

(62)
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such that each can be written in a unique way as a linear combination of the basis functions . Now the
finite element approximation of the original boundary value problem can be stated as,

Find such that (63)

Furthermore, if satisfies (63), then we have [191]. Finally, since itself can be
expressed as the linear combination

(64)

we can then write (63) as

(65)

subject to the Dirichlet boundary condition. Then, the finite element approximation of (3) can equivalently be expressed
as a system of equations with unknowns (the electrostatic potentials, for example). In matrix form,
the above system can be written as , where is called the global stiffness matrix and has elements

, while and is usually termed the load vector.
For volume conductor problems, contains all of the geometry and electrical conductivity information of the model.

The matrix is symmetric and positive definite; thus, it is nonsingular and has a unique solution. Because the basis
function differs from zero for only a few intervals, is sparse - (only a few of its entries are nonzero). For large-scale
models, the matrix is very sparse, such that only a small percentage of each row is non-zero. This fact is exploited
when storing and manipulating as detailed in section V.

C.1 Application of the FE Method for 3-D Domains

We now illustrate the concepts of the finite element method by considering the solution of (3) using linear three-
dimensional elements. We start with a 3D domain , which represents the geometry of our volume conductor, and
break it up into discrete elements to form a finite dimensional subspace, . For 3D domains we have the choice of
representing our function as either tetrahedra,

(66)

or hexahedral,
(67)

For this example, we restrict our development to linear tetrahedra, knowing that it is easy to modify our formulae for
hexahedra or to higher order basis functions. We take out a specific tetrahedra from our finite dimensional subspace and
apply the previous formulations for the four vertices,

(68)

or
(69)

which define the coordinate vertices, and
(70)

which defines the coefficients. From equations (66) and (70) we can express at any point within the tetrahedra,

(71)

or, most succinctly,
(72)
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is the solution value at node , and is the local shape function or basis function. This can be expressed
in a variety of ways in the literature (depending, usually, on whether you are reading engineering or mathematical
treatments of finite element analysis):

(73)

where

(74)

defines the volume of the tetrahedra, .
Now that we have a suitable set of basis functions, we can find the finite element approximation to our 3D problem.

Our original problem can be formulated as

(75)

where
(76)

and
(77)

The finite element approximation to the original boundary value problem is

(78)

which has the equivalent form

(79)

where
(80)

which can be expressed by the matrix and vector elements

(81)

and
(82)

Fortunately, the above quantities are easy to evaluate for linear tetrahedra. As a matter of fact, there are closed form
solutions for the matrix elements :

(83)

Therefore,
(84)

and, for the right hand side, we have, assuming constant sources,

(85)
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which have the compact forms
(86)

and
for constant sources. (87)

Now we add up all the contributions from each element into a global matrix and global vector:

(88)

where is equal to the total number of elements in the discretized solution domain and represents the node numbers
(vertices). This yields a linear system of equations of the form , where is our solution vector of voltages,
represents the geometry and conductivity of our volume conductor, and represents the contributions from the current
sources and boundary conditions.
For the finite difference method, it turns out that the Dirichlet boundary condition is easy to apply, while the Neumann

condition takes a little extra effort. For the finite element method, it is just the opposite. The Neumann boundary
condition

(89)

is satisfied automatically within the Galerkin and variational formulations. This can be seen by using Green’s divergence
theorem,

(90)

and applying it to the left hand side of the Galerkin finite element formulation:

(91)

If we multiply our original differential equation, , by an arbitrary test function and integrate, we obtain

(92)

where the boundary integral term, vanishes and we obtain the standard Galerkin finite element formulation.
To apply the Dirichlet condition, we have to work a bit harder. To apply the Dirichlet boundary condition directly, one

usually modifies the matrix and vector such that one can use standard linear system solvers. This is accomplished
by implementing the following steps:
Assuming we know the value of ,

1. Subtract from the member of the r.h.s. the product of and the known value of (call it ); this yields the
new right hand side, .
2. Zero the row and column of : .
3. Assign .
4. Set the member of the r.h.s. equal to .
5. Continue for each Dirichlet condition.
6. Solve the augmented system, .
As one might imagine, the process of preparing the augmented system is somewhat time consuming if one has a large

number of Dirichlet boundary conditions. Another, simpler, way of applying the Dirichlet boundary condition is to use
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a penalty method. To explain this method, let’s assume that node of our finite element mesh is known to be on the
boundary, . From the system of linear equations, we have,

(93)

To enforce the boundary condition at node using the penalty method, we would add the term on the left side and
the term on the right side,

(94)

Then, if the number is considerably larger than the terms, and , the Dirichlet boundary condition
is approximately satisfied. For example, if is chosen to be

(95)

then the node has the value
(96)

Thus, is satisfied to within an error . A word of caution at this point. While this method usually works
well when using direct solvers, it can lead to disastrous results when using some iterative methods, such as the penalty
method, which can cause the system to become ill-conditioned.
For more information on the finite element method, consult [192], [193], [191], [194], [195], [196]

D. The Boundary Element Method

For bioelectric field problems with isotropic domains (and few inhomogeneities), another technique, called the bound-
ary element method, may be utilized. This technique utilizes information only upon the boundaries of interest, and thus
reduces the dimension of any field problem by one. For differential operators, the response at any given point to sources
and boundary conditions depends only on the response at neighboring points. The FD and FE methods approximate dif-
ferential operators defined on subregions (volume elements) in the domain; hence, direct mutual influence (connectivity)
exists only between neighboring elements, and the coefficient matrices generated by these methods have relatively few
non-zero coefficients in any given matrix row. As is demonstrated by Maxwell’s laws [197], equations in differential
forms can often be replaced by equations in integral forms; e.g. the potential distribution in a domain is uniquely defined
by the volume sources and the potential and current density on the boundary. The boundary element method utilizes
this fact by transforming the differential operator defined in the domain to integral operators defined on the boundary.
In the boundary element method [198], [199], [200], only the boundary is discretized; hence, the mesh generation is
considerably simpler for this method than for the volume methods. Boundary solutions are obtained directly by solving
the set of linear equations; however, potentials and gradients in the domain can be evaluated only after the boundary
solutions have been obtained. The boundary element method has a rich history in bioelectric field problems, [201],
[202], [45], [203], [204]. We follow the BE formulations given in [179], [180] by Henneberg.
The boundary element formulation of (3) is obtained by choosing the anisotropic Green’s function as the test function

, where is the distance function between the field point and the source point :

(97)

and
(98)

Integration of by parts twice yields Green’s third identity:

(99)

where
(100)
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and and are the single and double layer operators

(101)

and
(102)

The Galerkin approximations to the weak form solutions and in (99) are expressed as:

(103)

where denotes a parameterization of the surface. The functions and are members of the finite dimensional
space , and their coefficients and are determined by the set of linear equations

(104)

where is the Kronecker delta function. The operator is symmetric and positive definite; hence, if the potential is
known on the boundary, (104) yields a symmetric coefficient matrix. The operator is non-symmetric; hence, for the
Neumann problem and problems with mixed boundary conditions, the coefficient matrix is non-symmetric. In general,
the Galerkin formulation presented here does not satisfy (63) and only for the Dirichlet problem does the method classify
as an orthogonal projection method [205].
The matrix coefficients in the Galerkin BEM requires the evaluation of double surface integrals, and the method is

therefore more demanding on computing resources than the collocation method, which includes only single surface
integrals. In the latter method, the basis function is replaced by the Dirac delta function , and the inner
product is replaced by the bilinear form . The latter is required since the Dirac delta
function is not square integrable and consequently does not belong in the space [205]. The collocation formulation
equivalent to the Galerkin formulation in (104) is obtained:

(105)

hence, carrying out the outer integrations yields:

(106)

where denotes the th field point. The collocation method in (106) is a non-orthogonal projection method [205];
hence, in general, the collocation method is less accurate than the Galerkin method. Since the latter method requires the
evaluation of double surface integrals, it is used only if the increased accuracy is essential. We will therefore discuss
only the implementation of the collocation method.
Good introductory general treatments of the boundary element technique include [206], [198], [207], [200]. A

wealth of information regarding texts on boundary element methods can be obtained from Computational Mechanics
Publications Inc. [208].

E. Comparison of Methods

We now give an abbreviated summary of the applicability of each method in solving different types of bioelectric field
problems. As outlined above, the FD, FE, and BE methods can all be used to approximate the boundary value problems
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that arise in biomedical research problems. The choice depends on the nature of the problem. The FE and FD methods
are similar in that the entire solution domain must be discretized, while with the BE method only the bounding surfaces
must be discretized. For regular domains, the FD method is generally the easiest method to code and implement, but the
FD method usually requires special modifications to define irregular boundaries, abrupt changes in material properties,
and complex boundary conditions. While typically more difficult to implement, the BE and FE methods are preferred
for problems with irregular, inhomogeneous domains and mixed boundary conditions. The FE method is superior to
the BE method for representing nonlinearity and true anisotropy, while the BE method is superior to FE method for
problems where only the boundary solution is of interest or where solutions are wanted in a set of highly irregularly
spaced points in the domain. Because the computational mesh is simpler for the BE method than for the FE method,
the BE program requires less bookkeeping than a FE program. For this reason BE programs are often considered easier
to develop than FE programs; however, the difficulties associated with singular integrals in the BE method are often
highly underestimated. In general, the FE method is preferred for problems where the domain is highly heterogeneous,
whereas the BE method is preferred for highly homogeneous domains.
Recent work by Bradley and Pullan has focused on using combining finite element and boundary element techniques

to model the human thorax [209], [210], [211]. In their model, the finite element technique is used for modeling the
anisotropic skeletal muscle while the boundary element method is used to model the isotropic tissues. It should also
be noted that Hunter and Pullan have developed finite element method based upon using cubic Hermite polynomials
as basis functions. This technique allows one to model complicated geometries with many fewer elements [79], [80],
[212], [213].
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V. SOLUTION METHODS AND COMPUTATIONAL CONSIDERATIONS

A. Renumbering and Storage Schemes

As we’ve just discussed, the finite element approximation of an elliptic bioelectric field problem governed by Pois-
son’s equation yields a matrix , which is symmetric, positive definite, and sparse. Now, let’s look at the effects of these
properties when we try to solve the resulting global linear system, . Before doing any optimization whatsoever,
we have an linear system to solve, where represents the number of unknowns (the values at the nodes we
are trying to determine). Let’s say we have a system of 10,000 unknowns (which is fairly moderate for a 3D finite
element calculation). To store the entire system, we will need or for single or double precision reals

or . If we note that the system is symmetric so that we need store only its upper or lower triangular section,
we reduce our storage needs significantly. However, our storage requirements for the matrix are still on the order
of , namely, or . We can still gain significant storage savings, though,
by exploiting the sparseness of . In general, there are two basic ways to reduce the necessary storage requirements:
renumbering techniques and sparse storage methods.
Renumbering techniques are aimed primarily at direct methods. They work by minimizing the bandwidth of the

matrix so that it can be stored in an rectangular matrix, where is the size of the bandwidth. The basic idea
of minimizing the bandwidth is a simple one. Defining as the bandwidth and as the largest distance between the
diagonal term of row and any other term on that same row, to minimize the storage we would minimize

where (107)

One of the most popular ways of minimizing the bandwidth was put forth in the form of a simple and effective
algorithm in a paper by Cuthill and McKee [214]. The algorithm is outlined in four steps:
1. Search for the connectivities between variables (nodes). This requires the creation of a “table” that includes the
number of connections each node has to its neighbors and also lists the connections to other variables (nodes).
2. Start with the least connected variable and call it . The least connected of those variables connected to what you’ve
called are given the next value, . The other variables connected to what you’ve changed to are called and so on.
3. Continue this process for any new node called and its connections.
4. Continue this process until all the nodes are renumbered.
In the Cuthill-McKee algorithm, one can recognize level sets within the renumbering. The first set is the starting

node. The second set comprises those nodes connected directly to the starting node. The third set consists of all nodes
whose shortest route to the starting node involves just two links, etc. The resulting matrix can be specified as block
tridiagonal because the nodes at any level are connected to nodes in no more than three adjacent levels. An optimal
renumbering scheme will keep the blocks as small as possible (in graph theory, such a scheme is called a breadth first
search).
The block structure of the Cuthill-McKee coefficient matrix is fixed by the choice of the starting node, so it is

important to select a good one. While no one has discovered a sure way to find the optimal choice, nodes in the highest
level of a Cuthill-Mckee ordering generally make good choices for the starting node for a second renumbering. This
implies that the algorithm should always be run twice, each time restarting with one of the last numbered nodes to
achieve the best ordering.
It was recognized by George [215] that if the Cuthill-McKee numbering is reversed, the bandwidth is often reduced

beyond the savings achieved by the direct Cuthill-McKee algorithm. Here, reverse is used in the sense that element
moves to . Lui and Sherman [216] proved that the reverse Cuthill-McKee algorithm could

not give a less efficient numbering and often gave a more efficient renumbering than the direct version.
To estimate the effects of applying the Cuthill-McKee algorithm, one should calculate the cost of renumbering the

nodes and balance this cost against the savings in terms of storage space. It is interesting to note that while there isn’t
a favorable balance when using Cuthill-McKee with many iterative solvers, it can be proven that renumbering can save
a significant amount of CPU time when using certain preconditioned conjugate gradient algorithms. This is especially
true when the preconditioning methods are employed using approximate inverses having similar profiles to the original
matrix [193]. For other bandwidth reduction schemes, see [217].
In sparse storage schemes, the bandwidth remains the same, but an algorithm is implemented that stores only nonzero

elements along with pointers back to the positions of the elements. As we saw before, using the fact that the matrix is
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symmetric still leads to a storage requirement that is proportional to . With sparse storage techniques, we can reduce
storage requirements until they are proportional to (at least for first order finite element meshes). One of the first,
and still widely used, techniques for efficiently storing global finite element matrices is called the Compressed Sparse
Row (CSR) storage, after the method first put forth as the Yale Sparse Storage Scheme [218]. This is one of many row-
or column-based storage techniques (others include Modified Compressed Sparse Row format (MSR), the Symmetric
Sparse Skyline (SSS) format, Block Sparse Row format (BSR), etc.) [219], [220]. Basically, the idea is never to store
a zero and always to efficiently point to the non-zero entries. The CSR sparse storage scheme breaks the global matrix
into three vector arrays:

a real valued array of non-zero elements. The array is in length, where is the number of non-zero
elements.

an integer valued array of column numbers. is the column number of . The vector is an integer
array of length .

a mapping vector to denote the starting locations of each of the blocks. tells how many non-zero
elements there are in each row. The vector is an integer array of length .
As an example of how much disk space such methods can save, let’s store the values from our earlier 3D finite element
example. We used first order linear tetrahedra in which the unknowns were at the vertices of the tetrahedra. For
numerical reasons, we wish these elements to be as equilateral as possible; thus, we could reasonably say there were
six elements connected to each node (omitting the boundary points for now). Probabilistically, of these six, three
will have smaller numbers of connections than that node and therefore the corresponding coefficients will be three in
number. Therefore, including the diagonal, we would probably average about four numbers per row to store. This
yields a total of numbers that need to be stored, in addition to numbers that correspond to their location. This would
yield approximately real numbers corresponding to the non-zero elements, integers corresponding to their row
location, and integers corresponding to their column location. Therefore, if we had, say, unknowns,
we would need real numbers and integers for a total of . To store the entire matrix of
reals, we would need . Even if we took advantage of the symmetry of the matrix, we would still need .
Thus, when applying a CSR type method, we realize an order of magnitude reduction in storage requirements over
simply storing the entire matrix [174], [219], [220].

B. Solution Techniques

B.1 Sparse Matrix Methods

Now that we have reduced the bandwidth of our matrix and stored the data, we still need to solve the linear
equations to obtain the final solution. To solve these (often very large) set of equations, we need to consider
both the numerical and computational aspects of the solution technique(s) we choose. To get some insight into the
problem, let’s look at solving a system that was created by a finite difference approximation of (3). As we noted
before, the structure of the matrix is symmetric, positive definite, and sparse. Let’s assume we used a five point
method, in which there will not be any more than five non-zero elements in any given row (some will have three or
four near the top and bottom). To give an idea of how size affects our problem, let’s consider that is of moderate
size, , so that there are unknowns and the resulting system of equations is .
Let’s say we decide to use a brute-force Gaussian elimination method to solve the system of equations (and to show
why this is not a good idea). Gaussian elimination requires on the order of operations to solve an system of
equations. Therefore, if we have a linear system, we must perform on the order of operations
to solve the system. At a rate of operations per second (100 MFLOPs, the speed of an average workstation),
it would take almost nine hours to solve such a problem. Furthermore, if we were to extend this into a larger system
of, say, size , the solution would require operations. Solving this system would take several months on even
the fastest existing supercomputer (currently a 140 processor Fujitsu with a peak performance of 170 GFLOPs on the
Linpack benchmarks). This is why one wouldn’t use a sequential version of Gaussian elimination on a full version of
the problem. Recent work by Saad [221], [219], [222] on the incomplete LU method with thresholding (ILUT) has
shown promise for efficiently solving large sparse linear systems. A ILUT preconditioning algorithm coupled with a
parallel GMRES solver computed a solution to a system of equations in less than ten minutes on a CRAY
2 computer. Being mindful of numerical algorithms and computational considerations is of the utmost importance when
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solving large-scale bioelectric field problems.
There are a plethora of available techniques for the solutions of systems of linear equations. The solution techniques

can be broadly categorized as direct and iterative solvers. Direct solvers include Gaussian Elimination and LU Decom-
position, while iterative methods include Jacobi, Gauss-Seidel, Successive Overrelaxation (SOR), and Krylov Subspace
(which includes Conjugate Gradients) methods, among others. The choice of the particular solution method is highly
dependent upon the approximation technique employed to obtain the linear system, upon the size of the resulting sys-
tem, and upon accessible computational resources. For example, the linear system resulting from the application of the
FD or FE method will yield a matrix that is symmetric, positive definite, and sparse. The matrix resulting from the
FD method will have a specific band-diagonal structure that is dependent on the order of difference equations one used
to approximate the governing equation. The matrix resulting from the FE method will be exceedingly sparse, so that
only a few of the off diagonal elements will be non-zero. The application of the BE method, on the other hand, will
yield a matrix that is dense and non-symmetric and thus requires a different choice of solver.
The choice of the optimal solver is further complicated by the size of the system versus access to computational

resources. Sequential direct methods are usually confined to single workstations; thus, the size of the system should
fit into memory for optimal performance. Sequential iterative methods can be employed when the size of the system
exceeds the available memory of the machine; however, one pays a price in terms of performance, as direct methods are
usually much faster than iterative methods. In many cases, the size of the system exceeds the computational capability
of a single workstation and one must resort to the use of clusters of workstations and/or parallel computers.
When using parallel algorithms, one much be cognizant that the standard algorithms/packages that one may have used

to perform numerical linear algebra operations, such as Linpack, may not scale well on parallel systems. For example,
if one runs the Linpack Cholesky decomposition routine on a distributed memory parallel computer, one will not see
much in the way of an increase in performance as the Linpack Cholesky algorithm uses vector-vector operations, which
require floating point operations (flops) and memory references. Therefore the ratio of flops to memory
references will remain constant no matter now many processors are used. On the other hand, if one were to use the
Cholesky decomposition routine in Lapack, one find that the algorithm scales proportional to the number of available
processors. This is because Lapack uses matrix-matrix operations in the Cholesky routine. Matrix-matrix operations
require flops and memory references. The ratio of the flops to memory references is thus proportional
to the size of the system (and to the amount of available memory). Public domain software that takes advantage of
parallel architectures include the PETSc, Aztec, and Lapack packages (URLs can be found in the section on Software).
A particularly useful reference that covers both the theoretical and practical aspects of parallel numerical linear algebra
is the text by Demmel [223].
While new and improved methods continue to appear in the numerical analysis literature, the author’s studies com-

paring various solution techniques for direct and inverse bioelectric field problems have resulted in the conclusion that
the Krylov Subspace methods (specifically, the preconditioned conjugate gradient methods) and Multigrid methods are
among the best overall performers for volume conductor problems computed on single workstations. Specifically, the
Krylov subspace methods work best when coupled with incomplete factorization preconditioning methods such as the
Incomplete LU factorization with thresholding (ILUT) [222] or the Incomplete Cholesky Conjugate Gradient (ICCG).
These methods work well for equations that are the result of a FE approximation.3 When clusters of workstations and/or
parallel architectures are considered, the choice is often less clear. For use with some high performance architectures
that contain large amounts of memory, parallel direct methods such as LU decomposition become attractive; however,
preconditioned conjugate gradient methods still perform well. To date, a small number of researchers solving bioelectric
field problems have targeted high-performance architectures [177], [180], [12], [77], [224], [13]. A specific exception,
however, are the papers describing large-scale solutions of defibrillation field problems on parallel architectures by the
group at New Mexico [225], [29], [91], [226], [92]

B.2 Dense Matrix Methods

As noted previously, approximation of (3) by the boundary element method yields a matrix that is dense and non-
symmetric. Because the BE method generates these often large and dense matrices, the storage and solution techniques
This is specifically for the FE method applied to elliptic problems. Such problems yield a matrix that is symmetric and positive definite. The

Cholesky decomposition only exists for symmetric, positive definite matrices.
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should be designed before designing the algorithm for computing the matrix coefficients. One reason for this is that for
large-scale systems, it is usually not possible to store the coefficient matrices in memory for subsequent assemblage of
the system matrix.
By approximating the surface with quadratic quadrilateral Lagrange elements containing nine interpolation nodes

[206], [198], the surface integrals in (106) can be approximated as follows:

(108)

(109)

and

(110)

(111)

where denotes the number of elements and denotes the Jacobian associated with the transformation from the
Cartesian coordinate system to the curvilinear ( ) coordinate system. In (109) and (111), further approximation is
introduced by employing the Gaussian Quadrature integration scheme [227]. The number of Gauss points in the and
directions are denoted and , respectively, and the Gauss points are denoted by and , respectively.
The mathematical expressions in (109) and (111) for the matrix coefficients contain five indices ( ). The

index divides the matrix into slabs each containing 9 columns associated with the same element. Index enumerates the
columns in a single slab and index enumerates the elements in each column. Hence and are partitioned whereas
is sequential from 0 to . Each matrix element is the result of a double summation (indices and ) of terms in the
Gaussian Quadrature scheme. The Gaussian double summation can be reduced to a single summation by merging the
matrices of Gauss point and weights into sequential arrays.
If the summations are performed in the order written in (109) and (111) (do loops nested in the order )

each matrix coefficient is finished before the next one is computed. This order of nested summations corresponds to
computing the matrix coefficients in a row-wise order. A more efficient nesting of the do loops would be with
the loop unrolled (written out as 9 separate statements) inside the loop. The loop is chosen as the outer loop so that
the Jacobian needs to be computed only once for an entire matrix slab. The loop is chosen as the inner loop in order to
obtain a long range of the index of the inner do loop.
Because the BEM employs integral operators, the method results in a full, nonsymmetric matrix . Although the

dimension of a BEMmatrix is smaller than that of the FD and FEmethods, the number of non-zeroes to be stored is often
of equivalent orders of magnitude. For small scale problems, the two coefficient matrices and the assembled system
matrix are stored in memory (or on disk). If the boundary conditions change, the program has only to go back and
reassemble the system matrix from the two coefficient matrices. For large-scale problems, storage of both coefficient
matrices and the assembled system matrix may exceed both memory and disk capacity. Considerable savings on storage
is obtained by assembling the system matrix ad hoc without saving the coefficient matrices; unfortunately the matrix
coefficients must be recomputed if the boundary conditions are changed.
Solution techniques based on Preconditioned Bi-Conjugate Gradient (BCG) methods are often utilized for the dense

systems generated by BE methods.
A discussion of solution methods, storage methods, and parallel computing methods for the solution of biomedical

field problems could fill several texts. Thus, the reader is directed to the following references on scientific computing,
[185], [228], [229], [230], [231], [225], [232], [233], [234], [235], [236], [237].
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VI. ADAPTIVE METHODS

Thus far we have discussed how one formulates a bioelectric field problem, discretizes a volume conductor geometry,
and finds an approximate solution. We are now faced with answering the difficult question pertaining to the accuracy
of our solution. Without reference to experimental data, how can we judge the validity of our solutions? To give
yourself an intuitive feel for the problem (and possible solution), consider the approximation of a two-dimensional
region discretized into triangular elements. We’ll apply the finite element method to solve Laplace’s equation in the
region.
First, consider the approximation of the potential field by a two dimensional Taylor’s series expansion about

a point (x, y):

(112)

where and are the maximum x and y distances within an element. Using the first two terms (up to first order terms)
in the above Taylor’s expansion, we can obtain the standard linear interpolation function for a triangle:

(113)

where is the area of the triangle. Likewise, one could calculate the interpolant for the other two nodes and discover
that

(114)

is constant over the triangle (and thus so is the gradient in y as well). Thus, we can derive for the triangle the standard
linear interpolation formulas that represent the first two terms of the Taylor’s series expansion. This means that the error
due to discretization (from using linear elements) is proportional to the third term of the Taylor’s expansion:

(115)

where is the exact solution. We can conjecture, then, that the error due to discretization for first order linear elements
is proportional to the second derivative. If is a linear function over the element, then the first derivative is a constant
and the second derivative is zero and there is no error due to discretization. This implies that the gradient must be
constant over each element. If the function is not linear, or the gradient is not constant over an element, the second
derivative will not be zero and is proportional to the error incurred due to “improper” discretization. Examining (115),
we can easily see that one way to decrease the error is to decrease the size of and . As and go to zero, the error
tends to zero as well. Thus, decreasing the mesh size in places of high errors due to high gradients decreases the error.
As an aside, we note that if one divides equation (15) by , one can also express the error in terms of the elemental
aspect ratio , which is a measure of the relative shape of the element. It is easy to see that one must be careful to
maintain an aspect ratio as close to unity as possible.
The problem with the preceding heuristic argument is that one has to know the exact solution a priori before one can

estimate the error. This is certainly a drawback considering we are trying to accurately approximate .

A. Convergence of a Sequence of Approximate Solutions

Let’s try to quantify our error a bit further. When we consider the preceding example, it seems to make sense that if
we increase the number of degrees of freedom we use to approximate our function, the accuracy must approach the true
solution. That is, we would hope that the sequence of approximate solutions will converge to the exact solution as the
number of degrees of freedom (DOF) increases indefinitely:

as (116)
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This is a statement of pointwise convergence. It describes the approximate solution as approaching arbitrarily close to
the exact solution at each point in the domain as the number of DOF increases.
Measures of convergence often depend on how the closeness of measuring the distance between functions is defined.

Another common description of measuring convergence is uniform convergence, which requires that the maximum
value of in the domain vanish as . This is stronger than pointwise convergence as it requires
a uniform rate of convergence at every point in the domain. Two other commonly used measures are convergence in
energy and convergence in mean, which involve measuring an average of a function of the pointwise error over the
domain [238].
In general, proving pointwise convergence is very difficult except in the simplest cases, while proving the convergence

of an averaged value, such as energy, is often easier. Of course, scientists and engineers are often much more interested
in assuring that their answers are accurate in a pointwise sense than in an energy sense because they typically want to
know values of the solution and gradients at specific places.
One intermediate form of convergence is called the Cauchy convergence. Here, we require the sequences of two

different approximate solutions to approach arbitrarily close to each other:

as (117)

While the pointwise convergence expression would imply the previous equation, it is important to note that the Cauchy
convergence does not imply pointwise convergence, as the functions could converge to an answer other than the true
solution.
While we cannot be assured of pointwise convergence of these functions for all but the simplest cases, there do

exist theorems that ensure that a sequence of approximate solutions must converge to the exact solution (assuming no
computational errors) if the basis functions satisfy certain conditions. The theorems can only ensure convergence in an
average sense over the entire domain, but it is usually the case that if the solution converges in an average sense (energy,
etc.), then it will converge in the pointwise sense as well.

B. Energy Norms

The error in energy, measured by the energy norm, is defined in general as [239], [240], [241]

(118)

where and is the differential operator for the governing differential equation (i.e. it contains the
derivatives operating on and any function multiplying ). For physical problems, this is often associated with
the energy density.
Another common measure of convergence utilizes the norm. This can be termed the average error and can be

associated with errors in any quantity. The norm is defined as

(119)

While the norms given above are defined on the whole domain, one can note that the square of each can be obtained
by summing element contributions,

(120)

where represents an element contribution and the total element number. Often, for an optimal finite element mesh,
one tries to make the contributions to this square of the norm equal for all elements.
While the absolute values given by the energy or norms have little value, one can construct a relative percentage

error that can be more readily interpreted:

(121)
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This quantity, in effect, represents a weighted RMS error. The analysis can be determined for the whole domain or
for element subdomains. One can use it in an adaptive algorithm by checking element errors against some predefined
tolerance, , and increasing the DOF only of those areas above the predefined tolerance.
To date, few researchers have applied adaptive techniques to bioelectric field problems [34], [82]. We now proceed

to describe an adaptive method procedure applied to forward and inverse problems in electrocardiography by Schmidt
et al. [82].
Schmidt et al. found (as have researchers in other fields) that, by using a posteriori estimates from the finite element

approximation of the governing equations, one can locally refine the mesh discretization and reduce the errors in the
direct solution. It has been assumed — and their findings support this notion — that improving the accuracy of the
direct solution also improves the subsequent inverse solution. The novel aspect of the approach is that it uses local
approximations of the error in the numerical solutions to drive an automatic adaptive mesh refinement. The basis of the
error estimations comes from recent research on the finite element method [194].
The essential feature of the finite element method is that the approximate forms of the scalar field satisfy the governing

equation in each element in some weighted sense. In h-refinement, the size of the element is reduced, while in p-
refinement the order of the basis function is increased. Using either h- or p-refinement methods one can increase the
accuracy of the approximation [242]. While either approach can be applied globally, computational limits make it more
efficient to apply refinement locally, to regions where it is deemed most beneficial. One way to monitor the overall
effect of refinement is to compute the total energy, which must converge monotonically if refinement is progressing
effectively.
Improvements via an adaptive h-refinement technique can be implemented by using an estimate of the element energy

error, such as the one described here derived from methods suggested by Lewis [243].
The error in the potential, , is defined as the difference between the exact potential, , and the calculated potential,
:

(122)

Similarly, the error in the gradient of the potential (electric field), , is

(123)

where and . The error norm is defined as:

(124)

Zienkiewicz [244], [245] has shown that

(125)

Using this result, (124) becomes

(126)

or, equivalently,
(127)

Here, is a measure of the total energy in the domain. Using this, the percentage error, , can be defined to be

(128)

This error measure gives a ratio of the energy difference and the total energy, which is in effect a percentage error for
each element.
Here we have used linear basis functions to describe the variation of the potential in each tetrahedral element. At

every point in the mesh, the potential is uniquely specified. However, the gradient is not specified at every point in space
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Fig. 16. A triangulated MRI prior to mesh refinement that forms the basis for a finite element approximation for forward and
inverse ECG solutions. From Schimdt et al.

but is defined to be constant over each element and discontinuous across element boundaries. Zienkiewicz showed that
globally current densities provide more accurate estimates of the energy than constant current densities [244], [245]. We
can use the difference between the two estimates to determine which elements need refinement. The smoothed current
densities are now defined at the same nodal locations as the potentials and are continuous across element boundaries.
The smoothing process uses the Galerkin technique [243] and involves minimizing the difference between the two
current densities,

(129)

where is the smoothed gradient representing the exact gradient and is the constant gradient from the finite
element solution. This method produces a system of equations in the following form:

(130)

where is a linear basis function defined at node i, is the value of the smoothed gradient at that point, is the
conductivity, and is the constant gradient resulting from the finite element solution. In equation (130), the current
density, is the unknown that is solved for at each node, i of the grid. Thus, we calculate a new estimate, ,
which can be used in place of the exact gradient, q. The current density now varies linearly in each tetrahedron and is
continuous everywhere.
Once the energy error has been computed, the mesh refinement can begin. The error must be related to some pa-

rameter, which guides the mesh refinement. We utilized a spacing function, , which controls the size and number of
elements [243]. This spacing function is defined to be the linear interpolation of the spacing values at the four nodes
of the tetrahedron. A variable is defined as the ratio of the element error to the average of the element errors:

(131)

If , then a new spacing function can be defined as

(132)

Thus, the spacing values at each node of the element are reduced. This new spacing function will then increase the
number of points in the regions of large errors. The whole process is repeated until the global error estimate falls below
the specified level.
The algorithm does not depend on how the modification was made. An error estimate other than the one just described

can be used by simply modifying the spacing values in some fashion. This allows any number of error estimators to be
used to guide the adaptive mesh refinement process. Results of applying the above algorithm are show in Figures 16,
17, and 18 from Schmidt et al. [82].
To find out more about adaptive refinement methods, see [238], [191], [34], [246], [239], [82].
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Fig. 17. A triangulated MRI after two iterations of the mesh refinement algorithm. From Schimdt et al.

Fig. 18. A model of the isolated dog heart showing the initial surface mesh (a), and a cut-away view just below one of the electrodes
(b)–(d) corresponding to the first, third and fifth iteration of the refinement process. From Schmidt et al.

VII. SOFTWARE

Due to the availability of software such as Netscape, Explorer, and Mosaic, many resources are now freely available
via the internet. As several new links are added each day, any list of URLs will be outdated before publication. However,
there are a substantial number of apparently stable, frequently updated pages that provide resources useful to biomedical
modelers. I have listed several such web pages below.
Netlib Repository at UTK and ORNL. http://netlib2.cs.utk.edu/. Netlib was one of the first on-line repositories of

numerical software and is still one of the best. Here you will find Linpack, Lapack, Voronoi, and a number of other
useful numerical software packages and codes.
Computational Science Education Program (CSEP). http://csep1.phy.ornl.gov/csep.html. CSEP is an excellent on-

line resource for computational science and computational engineering. The intended audience consists of students in
science and engineering at the advanced undergraduate level and higher. The e-book includes a chapter by the author
entitled Direct and Inverse Bioelectric Field Problems that contains exercises, projects, and C and Fortran computer
codes.
Diffpack. http://www.oslo.sintef.no/diffpack. Diffpack consists of a collection of object-oriented libraries for solving

partial differential equations, and several Unix utilities for general software management and numerical programming.
In particular, this piece of software is aimed at rapid prototyping of simulators based on PDEs, still offering a high level
of efficiency.
One bioelectric field application within Diffpack is HEART.
http://www.oslo.sintef.no/diffpack/projects/dkz/HEART.html. HEART is a collection of C++ classes that solves an
equation system consisting of a reaction-diffusion parabolic differential equation and an elliptic equation governing the
potential distribution in the cardiac muscle and surrounding tissues.
The NIST guide to mathematical software on the internet. http://gams.nist.gov/. This is a gateway to the NIST
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guide to available mathematical software, a cross-index and virtual repository of mathematical and statistical software
components of use in computational science and engineering.
The Problem Solving Environments Home Page.

http://www.cs.purdue.edu/research/cse/pses/research.html. A problem solving environment (PSE) is a computer system
that provides all the computational facilities necessary to solve a target class of problems. These features include
advanced solution methods, automatic and semiautomatic selection of solution methods, and ways to easily incorporate
novel solution methods. Moreover, PSEs use the language of the target class of problems, so users can run them without
specialized knowledge of the underlying computer hardware or software. This site lists a number of PSEs as well as
links to other computational tools.
PETSc. http://www.mcs.anl.gov/petsc/petsc.html. PETSc, the Portable, Extensible Toolkit for Scientific Computation

is a suite of data structures and routines for the uni- and parallel-processor solution of large-scale scientific application
problems modeled by partial differential equations.
Aztec. http://www.cs.sandia.gov/HPCCIT/aztec.html.

Aztec is a parallel iterative library for solving linear systems, , which is both easy-to-use and efficient. Simplicity
is attained using the notion of a global distributed matrix. The global distributed matrix allows a user to specify pieces
(different rows for different processors) of his application matrix exactly as he would in the serial setting (i.e. using a
global numbering scheme). Issues such as local numbering, ghost variables, and messages are ignored by the user and
are instead computed by an automated transformation function.
QMG: Mesh Generation Package.

http://www.cs.cornell.edu/Info/People/vavasis/qmg-home.html. The QMG package does finite element mesh generation
in two and three dimensions. The package includes geometric modeling software, the mesh generator itself, and a finite
element solver. The software is written primarily in C++ and Matlab.
UG - A Flexible Toolbox for the Adaptive Multigrid Solution of Partial Differential Equations. http://dom.ica3.uni-

stuttgart.de/ ug/. UG supports unstructured mesh generation with local refinement and coarsening. Available mesh
elements include triangles and quadrilaterals in 2D and tetrahedrons (and hexahedrons soon) in 3D. One can use an
arbitrary number of degrees of freedom in nodes, edges, sides, elements with sparse block matrix structure. There is an
interactive graphical user interface for Unix workstations using X11 and for Macintosh computers.
UNM Geometry Center. http://www.geom.umn.edu/software/cglist/. Directory of computational geometry software

at the University of Minnesota. This site has a number of excellent geometrical software packages including Voronoi
diagram and Delaunay triangulation/tetrahedralization packages, numerical and algebraic computation tools, as well as
visualization software.
David A. Bader’s List of Parallel Computing Sites.

http://www.umiacs.umd.edu/ dbader/sites.html. A wealth of information on high-performance computing with hun-
dreds of links to other sites.
Roadmap of HPCCApplications, Technology, and Markets. http://www.npac.syr.edu/roadmap/. A roadmap of HPCC

Applications, Technology, and Markets at the Northeast Parallel Architectures Center (NPAC), Syracuse University.
BMEnet. http://fairway.ecn.purdue.edu/bme/. The BMEnet is a biomedical engineering resource maintained at Pur-

due University under a grant from The Whitaker Foundation.
NAS Scientific Visualization Sites. http://www.nas.nasa.gov/NAS/Visualization/visWeblets.html. This site contains

an annotated bibliography of many scientific visualization web sites.

VIII. SUMMARY

I have provided an overview of computational and numerical techniques for bioelectric field problems. Modeling
and simulation of bioelectric fields involve applying diverse multidisciplinary skills, from computational geometry and
image processing to construct the models, numerical analysis and large-scale computing for approximating the physics
and physiology of the models, and scientific visualization to interpret results obtained from simulations.
While great progress has been made in the modeling and simulation of bioelectric fields over the last several years,

there is still much to be done before the modeling and simulation approach will be comfortably absorbed into the clinic
and device design industry. We are just now approaching the level of geometric, physical, and physiological complexity
that may yield solutions to scenerios physiologically realistic enough to provide practical results. Even now, though,
each of individual computational modeling and simulation techniques has advanced dramatically, the entire process of
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modeling and simulation of bioelectric field problems is anything but streamlined.
The typical process of performing computational modeling and simulation can be described by the following algo-

rithm:
1. Create and/or modify a discretized geometric model.
2. Create and/or modify initial conditions and/or boundary conditions.
3. Compute numerical approximations to the governing equation(s), storing results on disk.
4. Visualize and/or analyze results using a separate visualization package.
5. Make appropriate changes to the model.
6. Go back to step 1, 2 and/or 3.
7. Repeat.
The “art” of obtaining valuable results from a model has up until now required a scientist to execute this lengthy

process time and time again. Changes to the model, input parameters, or computational processes are typically made
using rudimentary tools, the most common being text editors. While the experienced scientist will instill some degree
of automation, usually via scripts, into the process, it is still time consuming and inefficient.
Ideally, scientists and engineers would be provided with a system in which all these heterogeneous but related com-

putational components were linked, so that all aspects of the modeling and simulation process could be controlled
graphically within the context of a single application program. While this would be the preferred modus operandi for
most computational scientists, it is not the current standard of scientific computing, because the creation of such a
program is an enormously difficult task.
The many difficulties in creating such a program arise from the need to integrate a wide range of disparate computing

disciplines - such as user interface technology, 3D graphics, parallel computing, programming languages, and numerical
analysis - with a wide range of equally disparate application - specific requirements.
A number of researchers are trying to overcome these difficulties by developing Problem Solving Environments

(PSEs). As noted by Gallopoulos et al. in [247], “A PSE is a computer system that provides all the computational fa-
cilities necessary to solve a target class of problems. These features include advanced solution methods, automatic and
semiautomatic selection of solution methods, and ways to easily incoporate novel solution methods. Moreover, PSEs
use the language of the target class of problems, so users can run them without specialized knowledge of the underlying
computer hardware or software. By exploiting modern technologies such as interactive color graphics, powerful pro-
cessors, and networks of specialized services, PSEs can track extended problem solving tasks and allow users to review
them easily. Overall, they create a framework that is all things to all people: they solve simple or complex problems,
support rapid prototyping or detailed analysis, and can be used in introductory education or at the frontiers of science.”
PSEs that have been developed for solving computational field problems include PDELab, PDEase, PARADIFE, among
others (see the PSE home page mentioned in the the Software section for more information).
The first PSE to be developed for use with bioelectric field problems is SCIRun [248], [249], [250]. SCIRun is a

scientific programming environment that allows the interactive construction, debugging and steering of large-scale sci-
entific computations. Using this “computational workbench,” a scientist can design and modify simulations interactively
via a dataflow programming model. SCIRun enables scientists to design and modify models and automatically change
parameters and boundary conditions as well as the mesh discretization level needed for an accurate numerical solution.
As opposed to the typical “off-line” simulation mode - in which the scientist manually sets input parameters, computes
results, visualizes the results via a separate visualization package, then starts again at the beginning - SCIRun “closes
the loop” and allows interactive steering of the design and computation phases of the simulation. To make the dataflow
programming paradigm applicable to large scientific problems, the researchers have identified ways to avoid the exces-
sive memory use inherent in standard dataflow implementations, and they have implemented fine-grained dataflow in
order to further promote computational efficiency.
A specific application of SCIRun is to design internal defibrillator devices and measure their effectiveness in an

interactive graphical environment. Using SCIRun, engineers are able to design internal defibrillation devices, place
them directly into the computer model, and automatically change parameters (size, shape and number of electrodes)
and source terms (position and magnitude of voltage sources) as well as the mesh discretization level needed for an
accurate finite element solution. Furthermore, engineers can use the interactive visualization capabilities to visually
gauge the effectiveness of their design in terms of distribution of electrical current flow and density maps of current
distribution [250]. A SCIRun network that can be used to model cardiac defibrillation is shown in Figure 19.
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Fig. 19. SCIRun network for the cardiac defibrillation problem
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While PSEs will certainly streamline the modeling, simulation, and visualization pipeline, there are still many issues,
mostly relating to complexity, for the computational scientist to tackle regarding bioelectric field problems. As the
complexity of physiological and geometric models continues to increase, more attention will need to be paid to creat-
ing efficient algorithms that take advantage of parallelism. Simultaneously, more emphasis may be placed on adaptive
methods (for both temporal and spatial apsects) that will help researchers to produce accurate solutions in a computa-
tionally efficient way. In addition, bioelectric field applications will increasingly require powerful parallel computers,
such as the SGI Power Challenge, the Intel Paragon, and the Cray T3D/E. This increased computing power provides the
ability to perform complex three-dimensional simulations, a significant benefit. However, such simulations present new
challenges for computational scientists. How does one effectively analyze and visualize complex 3D data? How does
one solve the problems of working with very large datasets often consisting of tens to hundreds of gigabytes? It easy for
a researcher to generate hundreds or even thousands of images, datafiles, and results. Organizing that data is a signifi-
cant problem that will require much work. Scientific database research may have much to offer in this area. How does
one provide tools that address these computational problems while serving the needs of scientific users? Clearly, the
computational bioengineer will need to couple forces with other computational, mathematical, and computer scientists
and engineers to successfully tackle many of these issues.
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