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Abstract 

Computers have changed the way we live, work, and even 
recreate.  Now, they are transforming how we think about 
and treat human disease.  In particular, advanced techniques 
in biomedical computing, imaging, and visualization are 
changing the face of biology and medicine in both research 
and clinical practice.  The goals of biomedical computing, 
imaging and visualization are multifaceted.  While some 
images and visualizations facilitate diagnosis, others help 
physicians plan surgery.  Biomedical simulations can help 
to acquire a better understanding of human physiology.  
Still other biomedical computing and visualization 
techniques are used for medical training. Within 
biomedical research, new computational technologies 
allow us to “see” into and understand our bodies with 
unprecedented depth and detail.  As a result of these 
advances, biomedical computing and visualization will 
help produce exciting new biomedical scientific 
discoveries and clinical treatments.  In this paper, we give 
an overview of the computational science pipeline for an 
application in neuroscience and present associated research 
results in medical imaging, modeling, simulation, and 
visualization.1 
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1 Introduction 

The next decade will see an explosion in the use and the 
scope of biomedical computing and visualization.  
Advanced, multimodal imaging and visualization 
techniques, along with new computational methods, will 
change the way many biomedical researchers and 
clinicians do their work.  The combination of biomedical 
imaging and visualization with biomedical simulations 
will produce information about anatomical structure that 
is linked to functional data, in the form of electric and 
magnetic fields, mechanical motion, and biochemistry, 
and genetics.    Such an integrated approach will provide 
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comprehensive views of the human body in progressively 
greater depth and detail.  However, such integration will 
require significant advances in biomedical computing 
software infrastructures and corresponding advances in 
multi-scale biomedical computing, imaging, and 
visualization algorithms (Johnson 2004). 

Over the past two decades, the techniques of computer 
simulation and visualization have had a substantial 
impact on the field of biomedicine, as they have on other 
areas of science and engineering.  Computer simulation 
allows biomedical researchers to subject increasingly 
sophisticated quantitative and qualitative conceptual 
models of biological behavior to rigorous quantitative 
simulation and analysis.   

2 Neuroscience Application: Neural Source 
Imaging 

Many times each second, the brain sends electrical 
impulses racing through the body's web of nerve cells to 
the motor neurons, where they initiate the electrochemical 
reactions that cause muscles to contract.  Several decades 
ago, scientists recognized that these excitation currents 
produce an electrical field that can be detected as small 
voltages on the scalp. In 1924, German psychiatrist Hans 
Berger recorded the first electroencelphogram (EEG).  The 
EEG electrode measures the small electrical activity from 
the brain and contains continuous trains of activity.  The 
practice through which one can infer the inter-cranial 
sources that give rise to these measurements is termed the 
neural source imaging or inverse EEG problem. Neural 
source imaging is a fundamental problem in neuroscience. 
Learning precisely which regions of the brain are active at 
a particular time is a central problem in fields ranging 
from cognitive science to neuropathology to surgical 
planning. 

While the modern technologies of electrode design and 
electronic recording apparatus differ significantly from 
their predecessors, the EEG waveforms are essentially the 
same as those recorded by Berger.  Even with the 
substantial advances in EEG technology, most of the 
machines in clinical use today provide relatively coarse 
descriptions of the overall electrical activity of the heart 
or brain. This limitation in resolution is primarily due to 
the fact that standard EEG measurements represent the 
cumulative electrical activity of the brain as a very small 
number of simple point sources of bioelectricity.  
Physicians uses these glimpses to help spot disorders by 
comparing the patient's EEGs with an atlas of waveforms 



that correspond to particular disease states.  Compressing 
all this information into a small number of features is 
very efficient, but can lack the sensitivity and spatial 
resolution required for diagnosing many illnesses. 

In some difficult cases, physicians turn to other 
techniques that are more invasive, costly, and painful and 
in rare cases, to exploratory surgery.  In some cases of 
epilepsy, for example, physicians must establish whether 
the source of this abnormal electrical activity is well 
localized, and hence operable.  At present, this diagnosis 
may require the application of electrodes directly to the 
surface of the brain. 

Using computer modeling, imaging, simulation and 
visualization, we are developing diagnostic tools that may 
reduce the need for these cases of preoperative surgery, by 
simulating and visualizing the electric fields emanating 
from the brain.  Using large-scale, three-dimensional 
computer models of the head and brain, we can produce 
more detailed visual representations of the electrical 
activity within the brain than the currently used brain 
snapshots from standard EEGs.  A primary goal is to 
develop these techniques based on painless, risk-free 
voltage measurements from the head surface and gain 
information that is now primarily available through 
highly invasive diagnostic procedures. 

 

3 Computational Science Pipeline 
In order to solve the neural source imaging problem from 
above, we must perform several steps that involve 
elements of what we call the computational science 
pipeline: experimental data acquisition (patient image 
acquisition), mathematical modeling (physical equations 
that describe bioelectric fields), geometric modeling 
(segmentation, mesh generation), material modeling 
(electrical conductivity and diffusion tensor), numerical 
approximation (large-scale parallel finite element 
analysis, linear solvers, nonlinear optimization), 
visualization (of the geometric model, material model, 
and solutions), and validation (of the models and 
solutions). 

Figure 1 schematically illustrates the “Inverse EEG 
Pipeline” we have constructed for efficient and interactive 
neural source imaging.  In addition to creating efficient 
algorithms for each task, it is also important to create 
useful, integrated software, such as the SCIRun (Parker 
1997, Weinstein 2005) software system described in the 
next section.  We now briefly describe the stages within 
the inverse EEG pipeline. 

 
Fig 1: The Inverse EEG Computational Pipeline. 

 

3.1 MRI Volume Segmentation and Voxel 
Classification 

Our pipeline takes raw MRI data from a scan of a 
patient's cranium as anatomic input.  This stage of the 
pipeline is accomplished using modules from the Insight 
Toolkit (ITK) (Yoo 2002) within SCIRun, using, for 
example a level set algorithm (Lefohn 2003), as shown in 
Figure 2.  The output from this process is a tagged 
volume of voxels, each labeled with a tag to identify the 
primary material contained within that voxel.  For our 
application, we are specifically interested in: air, skin, 
bone, cerebro-spinal-fluid, grey matter and white matter. 

 
Figure 2: Result of segmentation of the brain using a 
level set algorithm. 

3.2 Surface Construction  

From the classified voxels we extract the set of boundary 
surfaces via a flood-fill/seed-growing style algorithm.  
Each boundary then corresponds to a discrete material 
region.  Unfortunately, because the segmentation process 
can leave some noise in the data, we often have on the 
order of 10,000 surfaces after this process is completed, 
with many of these surfaces only bounding a single 
voxel.  To reduce the number of surfaces, we pre-process 
the segmented volume with an assimilation algorithm 
that annexes regions containing less than some threshold 
number of voxels into the largest neighboring region.  
This process has the positive effect of reducing the 
complexity of the model (where fewer surfaces implies 
lower complexity), but it can also be destructive if the 
threshold is set too high.  As a result, this was one of the 
parameters we studied in this study.  The surfaces that 
result from this extraction have a characteristic “staircase” 
jaginess, since they are composed of voxel faces.  To 
smooth out this data into more physiologically correct 
(and numerically stable) surfaces, we apply a scanline 
surface algorithm (Weinstein 2000) to these non-manifold 
surfaces.  The result is shown in the first frame of Figure 
3. 



 
Figure 3:  The result of surface construction and mesh 
generation from segmented MRI data. 

3.3 Scalp Co-registration and Boundary 
Condition Application  

In addition to the raw MRI data, we use two other 
clinically obtained raw datasets in our pipeline.  These 
datasets are the basis for the functional data that will be 
mapped onto the scalp surface and serve as Dirichlet 
boundary conditions.  The first of these datasets are the 
potentials recorded through electrodes attached to the 
patient's scalp.  The second dataset is a list of point 
locations in space, obtained with a pointing device and a 
magnetic tracker.  These points are used to spatially 
locate the electrode positions on the MR dataset, and 
consist of electrode positions and a cloud of points 
digitized off the patient's scalp.  The first step in the co-
registration process is to match the point cloud to the 
scalp surface extracted in the surface construction stage.  
This is done with a semi-automatic algorithm that applies 
affine transformations to the point cloud to minimize the 
summed squared distances from the points in the point 
cloud to the surface.  The second step of this process is to 
apply the boundary conditions to the scalp surface.  We 
simply determine the closest scalp point to each of the 
electrodes and assign it the corresponding potential with a 
Dirichlet boundary condition. 

3.4 Finite Element Mesh Construction  

To construct our finite element mesh, we use a spatial 
subdivision algorithm that subdivides space into uniform 
cubic voxels and places a single mesh node in each voxel. 
Voxels that correspond to air are not included in this 
process.  The placement of each node is chosen based on 
two criteria: if a surface passes through the voxel, the 
node is constrained to lie on the surface; nodes must 
maintain a minimal distance from each other (a Poisson 
disk constraint, applied between neighboring voxels is 
used to guarantee this property).  The edge lengths of 
these cubic voxels will directly determine the number of 
nodes generated.  Since fewer nodes will result in less 
accurate meshes geometrically, we varied this parameter 
to evaluate the effect of geometric inaccuracies on the 
cortical solution.  After generating all of the nodes, we 
use the CAMAL mesh generator (Sandia 2004) to 
construct a tetrahedral mesh.  Each element in the mesh is 
tagged with a material/conductivity. 

3.5 Finite element matrix construction 

The finite element matrix is constructed by discretizing a 
generalized Poisson equation, 
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 is the electric current per unit volume.  The 
details of the finite element theory and implementation 
are described in detail in (Johnson 1997).  The result of 
this algorithm is a sparse, symmetric, positive-definite 
stiffness matrix that encodes all of the geometry and 
electrical conductivity information of the problem. 

3.6 Nonlinear Optimization 

In order to solve the source localization problem, one 
needs to use nonlinear optimization.  This involves 
solving the discretized Poisson equation above multiple 
times in order to find the global minimum of a misfit 
function defined as the difference between the measured 
voltages on the surface of the scalp and the computed 
solutions assuming a model neural source.  We used both 
a multi-restart simplex search and a simulated annealing 
algorithm to find the global minimum of the misfit 
function.  Both algorithms recovered the same neural 
sources, modeled as dipoles.  The simplex search 
algorithm was restarted eight times for each source in 
order to improve the likelihood that we had localized the 
global minimum.  We validated our recovered minima 
through an exhaustive search of the domain.  Details of 
the algorithm and implementation can be found in 
(Weinstein 2000). 

3.7 Visualization 

Researchers at the SCI Institute and collaborators have 
created several novel visualization techniques to visualize 
scalar, vector, and tensor fields (Kniss 2005, Livnat 2005, 
Scheuermann 2005, Whitaker 2005, Zhang 2005).  As an 
example of a new multi-field visualization technique, we 
applied a combination of stream surface visualization 
with simple tensor field visualization to look at the 
effects of including anisotropy within a realistic head 
model for the EEG source localization simulation.  
Figures 4 and 5 illustrate the visualization of the effects 
of white matter anisotropy using these techniques.  We 
can observe a correlation between the primary direction of 
the conductivity structure of the white matter fiber 
bundles and the direction of the return currents.  The 
visualization of return currents in bioelectric field 
problems can reveal important details about the 
distribution of sources, interactions at conductivity 
boundaries, and the effect of geometric distortion on 
bioelectric fields.  By integrating the stream surfaces with 
a visualization of the diffusion tensors representing the 
white matter, we can better understand the structural, 
spatial relationships (Wolters 2005). 



 
Figure 4:  Visualization of return current surfaces from an 
EEG simulation using an isotropic conductivity model. 

 
Figure 5: Visualization of return current surfaces from an 
EEG simulation using an anisotropic conductivity model. 

In Figure 6 we show the orientation of the anisotropic 
white matter tracks from a diffusion tensor MR scan 
using a novel application of super quadric glyphs 
(Kindlmann 2004). 

 
Figure 6: Visualization of half a brain DT-MRI volume 
using super quadric glyphs.  Red indicates left/right, green 
indicates anterior/posterior, and blue indicates 
superior/inferior. 

4 SCIRun: Integrated Software System 

The desire to understand biological systems drives 
researchers to create ever-more sophisticated 
computational models.  While such sophistication is 
essential to good research, the resulting complexity of the 
scientific computing process has itself become a major 
hindrance to further progress.  Sources of this complexity 
include the number of equations and variables required to 
encapsulate realistic function, the size of the resulting 
systems and data sets, and the diverse range of 
computational resources (algorithms, databases, software, 
and hardware) required to support significant advances. 
Biomedical computing researchers gather multi-channel 
and multi-modal data from real-time collection 
instruments, access large distributed databases, and rely on 
sophisticated simulation and visualization systems for 
exploring biomedical systems. 

Managing such large-scale computations requires 
powerful hardware and efficient and transparent software 
that frees the user to engage the complexity of the 
scientific problem rather than of the tools themselves.  
Unfortunately, such biomedical computing software does 
not currently exist. The range of computational tools 
available is growing so rapidly that navigating this large 
set of possible options has become its own challenge.  
The need to integrate software is especially acute when 
scientists seek to create models that span spatial or 
temporal scales or cross physical systems (e.g. 
combining electrical with mechanical and biochemical 
parameters).  Integration is also necessary across the 
various components of the modeling and simulation 
process.  No single researcher has the skills required to 
master all the computational and biological knowledge 
needed to successfully create geometric and mathematical 



models, map them to numerical algorithms, implement 
them efficiently in modern computers, visualize the 
results, and understand them as they pertain to the specific 
biological system under investigation.  To successfully 
model such complex systems requires a multidisciplinary 
team of specialists, each with complementary expertise 
and an appreciation of the interdisciplinary aspects of the 
system, and each supported by a software infrastructure 
that can leverage specific expertise from multiple domains 
and integrate the results into a complete software system. 

Problem-solving environments (PSEs)2 provide a natural 
platform to support integration and leverage 
multidisciplinary expertise to create complete systems for 
biomedical computing (Bramley 2000).  Such systems 
solve the challenges of interfacing disparate elements and 
provide a level of functional abstraction that greatly 
assists researchers dealing with complex software 
systems. 

PSEs also provide infrastructure for vertical integration of 
computational knowledge.  Specific elements that may be 
incorporated into a comprehensive PSE include 
knowledge of the relevant discipline(s); the best 
computational techniques, algorithms and data structures; 
the associated programming techniques; the relevant user 
interface and human-computer interface design principles; 
the applicable visualization and imaging techniques; and 
methods for mapping the computations to various 
computer architectures (Bramley 2000).  A PSE can 
consolidate knowledge from a range of experts in these 
disparate areas into a system that offers the end user a 
powerful set of computational tools.  

Within the Scientific Computing and Imaging (SCI) 
Institute at the University of Utah, we have a long 
history of research in software architecture and creating 
problem-solving environments for scientific computing, 
such as SCIRun, BioPSE, and Uintah (SCIRun 2005).   

The SCIRun PSE allows the interactive creation, 
investigation, and steering of large-scale scientific 
computations.  SCIRun has been under development 
since the mid 1990s, but it has been enhanced 
significantly over the past five years due to the efforts of 
two large research centers that have used SCIRun as their 
core software system.  These centers are 1) The Center for 
the Simulation of Accidental Fires and Explosions (C-
SAFE), a Department of Energy ASHLI ASAP Level 1 
Center; and 2) the NIH NCRR Center for Integrative 
Biomedical Computing.  Largely because of these efforts, 
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SCIRun has become a comprehensive software 
environment for scientific computing applications.  
SCIRun provides a component model, based on a 
generalized dataflow paradigm, which allows different 
computational components and visualization components 
to be connected in a tightly integrated fashion.  A 
dataflow model implies the following: 1) data is sent to a 
software component, 2) the component manipulates the 
data in some manner, and 3) the new data is sent 
downstream to the next component for further 
manipulation. 

SCIRun can be viewed as a computational workbench, in 
which a scientist designs and modifies a simulation 
interactively via a component-based visual programming 
model. SCIRun also facilitates interactive debugging and 
steering of large-scale, typically parallel, scientific 
simulations by, for example, enabling a scientist to 
modify geometric models and interactively change 
numerical parameters and boundary conditions.  As 
opposed to the typical off-line simulation mode - in 
which the scientist manually sets input parameters, then 
computes results, and finally visualizes the results via a 
separate visualization package, and then starts again at the 
beginning - SCIRun closes the loop, combining each of 
these phases of the scientific investigation of the chosen 
problem. 

While SCIRun provides the framework and software 
support needed to provide the extensive functionality 
discussed above, the actual science is done by individual 
software components.  The modules are stand-alone pieces 
of software designed by various individuals or groups and 
contributed to the system.  It is through combining the 
functionality of a number of modules that interesting 
problems are solved.    

SCIRun/BioPSE Example of EEG Simulation and 
Visualization 

An example electroencephalography (EEG) neural source 
localization application is show in Figures 7 and 8. 
Figure 7 contains the dataflow network that implements 
an inverse EEG application.  At the top of the network, 
the input data files are loaded; these include the finite 
element mesh that defines the geometry and conductivity 
properties of the model and a precomputed lead-field 
matrix that encodes the relationship between electric 
sources in the domain and the resulting potentials that 
would be measured at the electrodes.  Further down in the 
network, we have a set of modules that optimize the 
dipole location in order to minimize the misfit between 
the measured potentials from the electrodes and the 
simulated potentials due to the dipole.  Finally, we have 
visualization and rendering modules, which provide 
interactive feedback to the user. 



 

Figure 7: SCIRun/BioPSE modules combined for EEG 
modeling (unstructured mesh generation), simulation 
(finite element simulation, parallel linear system solves, 
and inverse source localization), and visualization (mesh 
visualization, isosurface extraction, and vector field 
visualization. 

 

Figure 8: Visualization of simulation results of an EEG 
simulation localizing a neural source. 

PowerApps 

One of the major hurdles to SCIRun becoming a practical 
tool for the scientists and engineers has been SCIRun's 
dataflow interface.  While visual programming is natural 
for computer scientists and some engineers, who are 
accustomed to writing software and building algorithmic 

pipelines, it is overly cumbersome for application 
scientists3.  Even when a dataflow network implements a 
specific application (such as the bioelectric field 
simulation network provided with BioPSE and detailed in 
the BioPSE Tutorial), the user interface (UI) components 
of the network are presented to the user in separate UI 
windows, without any semantic context for their settings.  
For example, SCIRun provides file browser user 
interfaces for reading in data.  However, on the dataflow 
network all of the file browsers have the same generic 
presentation.  Historically, there has not been a way to 
present the filename entries in their semantic context, for 
example to indicate that one entry should identify the 
electrodes input file and another should identify the finite 
element mesh file. 

While this interface shortcoming has long been identified, 
it has only recently been addressed.  We recently 
introduced PowerApps.  A PowerApp is a customized 
interface built atop a dataflow application network.  The 
dataflow network controls the execution and 
synchronization of the modules that comprise the 
application, but the generic user interface windows are 
replaced with entries that are placed in the context of a 
single application-specific interface window.  Figure 9 
shows the BioFEM PowerApp implementation of the 
neural source localization application. 

 

Figure 9: The BioFEM custom interface.  Though the 
application is functionality equivalent to the dataflow 
version shown in Figure 7, this PowerApp version 
provides an easier-to-use custom interface.  Everything is 
contained within a single window; the user is lead 
through the steps of loading and visualizing the data with 
the tabs on the right; and generic control settings have 
been replaced with contextually appropriate labels; and 
application-specific tooltips (not shown) appear when the 
user places the cursor over any user interface element. 
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5 Next Generation Software Architecture:  
SCIRun2 

At the SCI Institute, we are beginning development of a 

next-generation software architecture, called SCIRun2 
(Zhang 2004).  This system shares much of its software 
code-base with SCIRun, and it is our intent to evolve 
SCIRun into SCIRun2 over the next year. 

SCIRun2 seeks to remove barriers to software component 
reuse by employing a flexible component architecture that 
enables a number of different styles of components (called 
component models) to be used together simultaneously.  
Thus far, we have been very successful in writing 
component wrappers to allow software packages (such as 
ITK, Teem, MATLAB, the CAMAL mesh generator, and 
so forth) to be used as modules in SCIRun.  All of these 
undertakings have been successes: they have broadened the 
applicability of SCIRun, improved its performance, and 
have made it a more useful tool for our collaborators and 
for the scientific community at large.  In practice, 
though, some of these efforts were very straightforward 
while others required significant custom development to 
overcome the technical hurdles. 

SCIRun2, born of our experience developing SCIRun, 
provides a new internal architecture that is specifically 
designed to integrate component-based and object-based 
software such as the libraries described above, making 
this task of integration both simpler and more powerful. 

The primary innovative design feature of SCIRun2 is a 
meta-component model that facilitates integration of a 
number of classes of tools from various, previously 
incompatible systems.  In the same way that components 
plug into a traditional component-based PSE (such as the 
original SCIRun), SCIRun2 will allow entire component 
models to be incorporated dynamically. SCIRun2 
facilitates the coupling of multiple component models, 
each of which can bring together a variety of components. 
In addition, the SCIRun2 architecture directly enables 
features that we wish to add to SCIRun, such as support 
for MPI-based components, a separation of the user 
interface from the computational engine, improved 
scripting support, and features for collaboration. 

6 Summary 

Advanced biomedical computing techniques coupled with 
advances in multi-modal imaging and visualization will 
change the way many biomedical researchers and 
clinicians do their work.  The combination of biomedical 
imaging, and visualization with biomedical simulations 
will produce information about anatomical structure that 
is linked to functional data, in the form of electric and 
magnetic fields, mechanical motion, and biochemistry, 
and genetics.  Such an integrated approach will provide 
comprehensive views of the human body in progressively 
greater depth and detail.  However, such integration will 
require significant advances in biomedical computing 
software infrastructures and corresponding advances in 

multi-scale biomedical computing, imaging, and 
visualization algorithms. 
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