
Biomedical Computing and Visualization

Chris R. Johnson and David M. Weinstein
Scientific Computing and Imaging Institute

School of Computing
University of Utah

50 S. Central Campus Drive, Salt Lake City, UT 84112, US
crj@sci.utah.edu, dmw@sci.utah.edu

Abstract

Computers have changed the way we live, work, and even
recreate. Now, they are transforming how we think about
and treat human disease. In particular, advanced techniques
in biomedical computing, imaging, and visualization are
changing the face of biology and medicine in both research
and clinical practice. The goals of biomedical computing,
imaging and visualization are multifaceted. While some
images and visualizations facilitate diagnosis, others help
physicians plan surgery. Biomedical simulations can help
to acquire a better understanding of human physiology.
Still other biomedical computing and visualization
techniques are used for medical training. Within
biomedical research, new computational technologies
allow us to “see” into and understand our bodies with
unprecedented depth and detail. As a result of these
advances, biomedical computing and visualization will
help produce exciting new biomedical scientific
discoveries and clinical treatments. In this paper, we give
an overview of the computational science pipeline for an
application in neuroscience and present associated research
results in medical imaging, modeling, simulation, and
visualization.1

Keywords: Biomedical computing, imaging, problem
solving environment, visualization.

1 Introduction

The next decade will see an explosion in the use and the
scope of biomedical computing and visualization.
Advanced, multimodal imaging and visualization
techniques, along with new computational methods, will
change the way many biomedical researchers and
clinicians do their work. The combination of biomedical
imaging and visualization with biomedical simulations
will produce information about anatomical structure that
is linked to functional data, in the form of electric and
magnetic fields, mechanical motion, and biochemistry,
and genetics. Such an integrated approach will provide

Copyright © 2006, Australian Computer Society, Inc.† This
paper appeared at the Twenty-Ninth Australasian Computer
Science Conference (ACSC2006), Hobart, Australia .
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 48. Vladimir Estivill-Castro and
Gill Dobbie, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

comprehensive views of the human body in progressively
greater depth and detail. However, such integration will
require significant advances in biomedical computing
software infrastructures and corresponding advances in
multi-scale biomedical computing, imaging, and
visualization algorithms (Johnson 2004).

Over the past two decades, the techniques of computer
simulation and visualization have had a substantial
impact on the field of biomedicine, as they have on other
areas of science and engineering. Computer simulation
allows biomedical researchers to subject increasingly
sophisticated quantitative and qualitative conceptual
models of biological behavior to rigorous quantitative
simulation and analysis.

2 Neuroscience Application: Neural Source
Imaging

Many times each second, the brain sends electrical
impulses racing through the body's web of nerve cells to
the motor neurons, where they initiate the electrochemical
reactions that cause muscles to contract. Several decades
ago, scientists recognized that these excitation currents
produce an electrical field that can be detected as small
voltages on the scalp. In 1924, German psychiatrist Hans
Berger recorded the first electroencelphogram (EEG). The
EEG electrode measures the small electrical activity from
the brain and contains continuous trains of activity. The
practice through which one can infer the inter-cranial
sources that give rise to these measurements is termed the
neural source imaging or inverse EEG problem. Neural
source imaging is a fundamental problem in neuroscience.
Learning precisely which regions of the brain are active at
a particular time is a central problem in fields ranging
from cognitive science to neuropathology to surgical
planning.

While the modern technologies of electrode design and
electronic recording apparatus differ significantly from
their predecessors, the EEG waveforms are essentially the
same as those recorded by Berger. Even with the
substantial advances in EEG technology, most of the
machines in clinical use today provide relatively coarse
descriptions of the overall electrical activity of the heart
or brain. This limitation in resolution is primarily due to
the fact that standard EEG measurements represent the
cumulative electrical activity of the brain as a very small
number of simple point sources of bioelectricity.
Physicians uses these glimpses to help spot disorders by
comparing the patient's EEGs with an atlas of waveforms

that correspond to particular disease states. Compressing
all this information into a small number of features is
very efficient, but can lack the sensitivity and spatial
resolution required for diagnosing many illnesses.

In some difficult cases, physicians turn to other
techniques that are more invasive, costly, and painful and
in rare cases, to exploratory surgery. In some cases of
epilepsy, for example, physicians must establish whether
the source of this abnormal electrical activity is well
localized, and hence operable. At present, this diagnosis
may require the application of electrodes directly to the
surface of the brain.

Using computer modeling, imaging, simulation and
visualization, we are developing diagnostic tools that may
reduce the need for these cases of preoperative surgery, by
simulating and visualizing the electric fields emanating
from the brain. Using large-scale, three-dimensional
computer models of the head and brain, we can produce
more detailed visual representations of the electrical
activity within the brain than the currently used brain
snapshots from standard EEGs. A primary goal is to
develop these techniques based on painless, risk-free
voltage measurements from the head surface and gain
information that is now primarily available through
highly invasive diagnostic procedures.

3 Computational Science Pipeline
In order to solve the neural source imaging problem from
above, we must perform several steps that involve
elements of what we call the computational science
pipeline: experimental data acquisition (patient image
acquisition), mathematical modeling (physical equations
that describe bioelectric fields), geometric modeling
(segmentation, mesh generation), material modeling
(electrical conductivity and diffusion tensor), numerical
approximation (large-scale parallel finite element
analysis, linear solvers, nonlinear optimization),
visualization (of the geometric model, material model,
and solutions), and validation (of the models and
solutions).

Figure 1 schematically illustrates the “Inverse EEG
Pipeline” we have constructed for efficient and interactive
neural source imaging. In addition to creating efficient
algorithms for each task, it is also important to create
useful, integrated software, such as the SCIRun (Parker
1997, Weinstein 2005) software system described in the
next section. We now briefly describe the stages within
the inverse EEG pipeline.

Fig 1: The Inverse EEG Computational Pipeline.

3.1 MRI Volume Segmentation and Voxel
Classification

Our pipeline takes raw MRI data from a scan of a
patient's cranium as anatomic input. This stage of the
pipeline is accomplished using modules from the Insight
Toolkit (ITK) (Yoo 2002) within SCIRun, using, for
example a level set algorithm (Lefohn 2003), as shown in
Figure 2. The output from this process is a tagged
volume of voxels, each labeled with a tag to identify the
primary material contained within that voxel. For our
application, we are specifically interested in: air, skin,
bone, cerebro-spinal-fluid, grey matter and white matter.

Figure 2: Result of segmentation of the brain using a
level set algorithm.

3.2 Surface Construction

From the classified voxels we extract the set of boundary
surfaces via a flood-fill/seed-growing style algorithm.
Each boundary then corresponds to a discrete material
region. Unfortunately, because the segmentation process
can leave some noise in the data, we often have on the
order of 10,000 surfaces after this process is completed,
with many of these surfaces only bounding a single
voxel. To reduce the number of surfaces, we pre-process
the segmented volume with an assimilation algorithm
that annexes regions containing less than some threshold
number of voxels into the largest neighboring region.
This process has the positive effect of reducing the
complexity of the model (where fewer surfaces implies
lower complexity), but it can also be destructive if the
threshold is set too high. As a result, this was one of the
parameters we studied in this study. The surfaces that
result from this extraction have a characteristic “staircase”
jaginess, since they are composed of voxel faces. To
smooth out this data into more physiologically correct
(and numerically stable) surfaces, we apply a scanline
surface algorithm (Weinstein 2000) to these non-manifold
surfaces. The result is shown in the first frame of Figure
3.

Figure 3: The result of surface construction and mesh
generation from segmented MRI data.

3.3 Scalp Co-registration and Boundary
Condition Application

In addition to the raw MRI data, we use two other
clinically obtained raw datasets in our pipeline. These
datasets are the basis for the functional data that will be
mapped onto the scalp surface and serve as Dirichlet
boundary conditions. The first of these datasets are the
potentials recorded through electrodes attached to the
patient's scalp. The second dataset is a list of point
locations in space, obtained with a pointing device and a
magnetic tracker. These points are used to spatially
locate the electrode positions on the MR dataset, and
consist of electrode positions and a cloud of points
digitized off the patient's scalp. The first step in the co-
registration process is to match the point cloud to the
scalp surface extracted in the surface construction stage.
This is done with a semi-automatic algorithm that applies
affine transformations to the point cloud to minimize the
summed squared distances from the points in the point
cloud to the surface. The second step of this process is to
apply the boundary conditions to the scalp surface. We
simply determine the closest scalp point to each of the
electrodes and assign it the corresponding potential with a
Dirichlet boundary condition.

3.4 Finite Element Mesh Construction

To construct our finite element mesh, we use a spatial
subdivision algorithm that subdivides space into uniform
cubic voxels and places a single mesh node in each voxel.
Voxels that correspond to air are not included in this
process. The placement of each node is chosen based on
two criteria: if a surface passes through the voxel, the
node is constrained to lie on the surface; nodes must
maintain a minimal distance from each other (a Poisson
disk constraint, applied between neighboring voxels is
used to guarantee this property). The edge lengths of
these cubic voxels will directly determine the number of
nodes generated. Since fewer nodes will result in less
accurate meshes geometrically, we varied this parameter
to evaluate the effect of geometric inaccuracies on the
cortical solution. After generating all of the nodes, we
use the CAMAL mesh generator (Sandia 2004) to
construct a tetrahedral mesh. Each element in the mesh is
tagged with a material/conductivity.

3.5 Finite element matrix construction

The finite element matrix is constructed by discretizing a
generalized Poisson equation,

!

" #$"% = &I
V

, where

!

" is the voltage,

!

" is the electrical conductivity tensor,
and

!

I
V

 is the electric current per unit volume. The
details of the finite element theory and implementation
are described in detail in (Johnson 1997). The result of
this algorithm is a sparse, symmetric, positive-definite
stiffness matrix that encodes all of the geometry and
electrical conductivity information of the problem.

3.6 Nonlinear Optimization

In order to solve the source localization problem, one
needs to use nonlinear optimization. This involves
solving the discretized Poisson equation above multiple
times in order to find the global minimum of a misfit
function defined as the difference between the measured
voltages on the surface of the scalp and the computed
solutions assuming a model neural source. We used both
a multi-restart simplex search and a simulated annealing
algorithm to find the global minimum of the misfit
function. Both algorithms recovered the same neural
sources, modeled as dipoles. The simplex search
algorithm was restarted eight times for each source in
order to improve the likelihood that we had localized the
global minimum. We validated our recovered minima
through an exhaustive search of the domain. Details of
the algorithm and implementation can be found in
(Weinstein 2000).

3.7 Visualization

Researchers at the SCI Institute and collaborators have
created several novel visualization techniques to visualize
scalar, vector, and tensor fields (Kniss 2005, Livnat 2005,
Scheuermann 2005, Whitaker 2005, Zhang 2005). As an
example of a new multi-field visualization technique, we
applied a combination of stream surface visualization
with simple tensor field visualization to look at the
effects of including anisotropy within a realistic head
model for the EEG source localization simulation.
Figures 4 and 5 illustrate the visualization of the effects
of white matter anisotropy using these techniques. We
can observe a correlation between the primary direction of
the conductivity structure of the white matter fiber
bundles and the direction of the return currents. The
visualization of return currents in bioelectric field
problems can reveal important details about the
distribution of sources, interactions at conductivity
boundaries, and the effect of geometric distortion on
bioelectric fields. By integrating the stream surfaces with
a visualization of the diffusion tensors representing the
white matter, we can better understand the structural,
spatial relationships (Wolters 2005).

Figure 4: Visualization of return current surfaces from an
EEG simulation using an isotropic conductivity model.

Figure 5: Visualization of return current surfaces from an
EEG simulation using an anisotropic conductivity model.

In Figure 6 we show the orientation of the anisotropic
white matter tracks from a diffusion tensor MR scan
using a novel application of super quadric glyphs
(Kindlmann 2004).

Figure 6: Visualization of half a brain DT-MRI volume
using super quadric glyphs. Red indicates left/right, green
indicates anterior/posterior, and blue indicates
superior/inferior.

4 SCIRun: Integrated Software System

The desire to understand biological systems drives
researchers to create ever-more sophisticated
computational models. While such sophistication is
essential to good research, the resulting complexity of the
scientific computing process has itself become a major
hindrance to further progress. Sources of this complexity
include the number of equations and variables required to
encapsulate realistic function, the size of the resulting
systems and data sets, and the diverse range of
computational resources (algorithms, databases, software,
and hardware) required to support significant advances.
Biomedical computing researchers gather multi-channel
and multi-modal data from real-time collection
instruments, access large distributed databases, and rely on
sophisticated simulation and visualization systems for
exploring biomedical systems.

Managing such large-scale computations requires
powerful hardware and efficient and transparent software
that frees the user to engage the complexity of the
scientific problem rather than of the tools themselves.
Unfortunately, such biomedical computing software does
not currently exist. The range of computational tools
available is growing so rapidly that navigating this large
set of possible options has become its own challenge.
The need to integrate software is especially acute when
scientists seek to create models that span spatial or
temporal scales or cross physical systems (e.g.
combining electrical with mechanical and biochemical
parameters). Integration is also necessary across the
various components of the modeling and simulation
process. No single researcher has the skills required to
master all the computational and biological knowledge
needed to successfully create geometric and mathematical

models, map them to numerical algorithms, implement
them efficiently in modern computers, visualize the
results, and understand them as they pertain to the specific
biological system under investigation. To successfully
model such complex systems requires a multidisciplinary
team of specialists, each with complementary expertise
and an appreciation of the interdisciplinary aspects of the
system, and each supported by a software infrastructure
that can leverage specific expertise from multiple domains
and integrate the results into a complete software system.

Problem-solving environments (PSEs)2 provide a natural
platform to support integration and leverage
multidisciplinary expertise to create complete systems for
biomedical computing (Bramley 2000). Such systems
solve the challenges of interfacing disparate elements and
provide a level of functional abstraction that greatly
assists researchers dealing with complex software
systems.

PSEs also provide infrastructure for vertical integration of
computational knowledge. Specific elements that may be
incorporated into a comprehensive PSE include
knowledge of the relevant discipline(s); the best
computational techniques, algorithms and data structures;
the associated programming techniques; the relevant user
interface and human-computer interface design principles;
the applicable visualization and imaging techniques; and
methods for mapping the computations to various
computer architectures (Bramley 2000). A PSE can
consolidate knowledge from a range of experts in these
disparate areas into a system that offers the end user a
powerful set of computational tools.

Within the Scientific Computing and Imaging (SCI)
Institute at the University of Utah, we have a long
history of research in software architecture and creating
problem-solving environments for scientific computing,
such as SCIRun, BioPSE, and Uintah (SCIRun 2005).

The SCIRun PSE allows the interactive creation,
investigation, and steering of large-scale scientific
computations. SCIRun has been under development
since the mid 1990s, but it has been enhanced
significantly over the past five years due to the efforts of
two large research centers that have used SCIRun as their
core software system. These centers are 1) The Center for
the Simulation of Accidental Fires and Explosions (C-
SAFE), a Department of Energy ASHLI ASAP Level 1
Center; and 2) the NIH NCRR Center for Integrative
Biomedical Computing. Largely because of these efforts,

2 We note that there are a number alternative phrases for
what we mean by a problem solving environment
currently being used in the scientific software literature,
including software frameworks, toolkits, scientific
software environments, software workbenches, plus a
number of application specific names.

SCIRun has become a comprehensive software
environment for scientific computing applications.
SCIRun provides a component model, based on a
generalized dataflow paradigm, which allows different
computational components and visualization components
to be connected in a tightly integrated fashion. A
dataflow model implies the following: 1) data is sent to a
software component, 2) the component manipulates the
data in some manner, and 3) the new data is sent
downstream to the next component for further
manipulation.

SCIRun can be viewed as a computational workbench, in
which a scientist designs and modifies a simulation
interactively via a component-based visual programming
model. SCIRun also facilitates interactive debugging and
steering of large-scale, typically parallel, scientific
simulations by, for example, enabling a scientist to
modify geometric models and interactively change
numerical parameters and boundary conditions. As
opposed to the typical off-line simulation mode - in
which the scientist manually sets input parameters, then
computes results, and finally visualizes the results via a
separate visualization package, and then starts again at the
beginning - SCIRun closes the loop, combining each of
these phases of the scientific investigation of the chosen
problem.

While SCIRun provides the framework and software
support needed to provide the extensive functionality
discussed above, the actual science is done by individual
software components. The modules are stand-alone pieces
of software designed by various individuals or groups and
contributed to the system. It is through combining the
functionality of a number of modules that interesting
problems are solved.

SCIRun/BioPSE Example of EEG Simulation and
Visualization

An example electroencephalography (EEG) neural source
localization application is show in Figures 7 and 8.
Figure 7 contains the dataflow network that implements
an inverse EEG application. At the top of the network,
the input data files are loaded; these include the finite
element mesh that defines the geometry and conductivity
properties of the model and a precomputed lead-field
matrix that encodes the relationship between electric
sources in the domain and the resulting potentials that
would be measured at the electrodes. Further down in the
network, we have a set of modules that optimize the
dipole location in order to minimize the misfit between
the measured potentials from the electrodes and the
simulated potentials due to the dipole. Finally, we have
visualization and rendering modules, which provide
interactive feedback to the user.

Figure 7: SCIRun/BioPSE modules combined for EEG
modeling (unstructured mesh generation), simulation
(finite element simulation, parallel linear system solves,
and inverse source localization), and visualization (mesh
visualization, isosurface extraction, and vector field
visualization.

Figure 8: Visualization of simulation results of an EEG
simulation localizing a neural source.

PowerApps

One of the major hurdles to SCIRun becoming a practical
tool for the scientists and engineers has been SCIRun's
dataflow interface. While visual programming is natural
for computer scientists and some engineers, who are
accustomed to writing software and building algorithmic

pipelines, it is overly cumbersome for application
scientists3. Even when a dataflow network implements a
specific application (such as the bioelectric field
simulation network provided with BioPSE and detailed in
the BioPSE Tutorial), the user interface (UI) components
of the network are presented to the user in separate UI
windows, without any semantic context for their settings.
For example, SCIRun provides file browser user
interfaces for reading in data. However, on the dataflow
network all of the file browsers have the same generic
presentation. Historically, there has not been a way to
present the filename entries in their semantic context, for
example to indicate that one entry should identify the
electrodes input file and another should identify the finite
element mesh file.

While this interface shortcoming has long been identified,
it has only recently been addressed. We recently
introduced PowerApps. A PowerApp is a customized
interface built atop a dataflow application network. The
dataflow network controls the execution and
synchronization of the modules that comprise the
application, but the generic user interface windows are
replaced with entries that are placed in the context of a
single application-specific interface window. Figure 9
shows the BioFEM PowerApp implementation of the
neural source localization application.

Figure 9: The BioFEM custom interface. Though the
application is functionality equivalent to the dataflow
version shown in Figure 7, this PowerApp version
provides an easier-to-use custom interface. Everything is
contained within a single window; the user is lead
through the steps of loading and visualizing the data with
the tabs on the right; and generic control settings have
been replaced with contextually appropriate labels; and
application-specific tooltips (not shown) appear when the
user places the cursor over any user interface element.

3 We note this statement is often true of software written
by computer science researchers being used by application
scientists and engineers.

5 Next Generation Software Architecture:
SCIRun2

At the SCI Institute, we are beginning development of a

next-generation software architecture, called SCIRun2
(Zhang 2004). This system shares much of its software
code-base with SCIRun, and it is our intent to evolve
SCIRun into SCIRun2 over the next year.

SCIRun2 seeks to remove barriers to software component
reuse by employing a flexible component architecture that
enables a number of different styles of components (called
component models) to be used together simultaneously.
Thus far, we have been very successful in writing
component wrappers to allow software packages (such as
ITK, Teem, MATLAB, the CAMAL mesh generator, and
so forth) to be used as modules in SCIRun. All of these
undertakings have been successes: they have broadened the
applicability of SCIRun, improved its performance, and
have made it a more useful tool for our collaborators and
for the scientific community at large. In practice,
though, some of these efforts were very straightforward
while others required significant custom development to
overcome the technical hurdles.

SCIRun2, born of our experience developing SCIRun,
provides a new internal architecture that is specifically
designed to integrate component-based and object-based
software such as the libraries described above, making
this task of integration both simpler and more powerful.

The primary innovative design feature of SCIRun2 is a
meta-component model that facilitates integration of a
number of classes of tools from various, previously
incompatible systems. In the same way that components
plug into a traditional component-based PSE (such as the
original SCIRun), SCIRun2 will allow entire component
models to be incorporated dynamically. SCIRun2
facilitates the coupling of multiple component models,
each of which can bring together a variety of components.
In addition, the SCIRun2 architecture directly enables
features that we wish to add to SCIRun, such as support
for MPI-based components, a separation of the user
interface from the computational engine, improved
scripting support, and features for collaboration.

6 Summary

Advanced biomedical computing techniques coupled with
advances in multi-modal imaging and visualization will
change the way many biomedical researchers and
clinicians do their work. The combination of biomedical
imaging, and visualization with biomedical simulations
will produce information about anatomical structure that
is linked to functional data, in the form of electric and
magnetic fields, mechanical motion, and biochemistry,
and genetics. Such an integrated approach will provide
comprehensive views of the human body in progressively
greater depth and detail. However, such integration will
require significant advances in biomedical computing
software infrastructures and corresponding advances in

multi-scale biomedical computing, imaging, and
visualization algorithms.

7 Acknowledgments
This work was supported, in part, by a grant from the
NIH NCRR 5P41-1RR12553-07 and from grants from
DARPA, DOE, and NSF. SCIRun, BioPSE, and
PowerApps software are all available as Open Source
from the SCI Institute website (www.sci.utah.edu).
SCIRun, BioPSE and the PowerApps are currently
supported on three different platforms: Linux, Macintosh
OSX, and SGI IRIX. A Windows port will be available
in early 2006.

8 References

Johnson, C.R., MacLeod, R.S., Parker, S.G., and
Weinstein, D.M. (2004): Biomedical Computing and
Visualization Software Environments.
Communications of the ACM, 47 (11): 64-71.

Parker, S.G., Weinstein, D.M., and Johnson, C.R
(1997): The SCIRun Computational Steering Software
System. In Modern Software Tools in Scientific
Computing, 1-40. Arge, E., Bruaset, A.M. and
Langtangen, H.P. (eds). Birkhauser Press.

Weinstein, D.M., Parker, D.M., Simpson, J.,
Zimmerman, K., and Jones, G. (2005): Visualization
in the SCIRun Problem-Solving Environment. In The
Visualization Handbook, 615-632. Hansen, C.D. and
Johnson, C.R. (eds). Elsevier.

Yoo, T.S., Ackerman, M.J., Lorensen, W.E, Schroeder,
W., Chalana, V. Aylward, S., Metaxes, D., and
Whitaker, R. (2002): Engineering and Algorithm
Design for an Image Processing API: A Technical
Report on ITK - The Insight Toolkit. In Proc. of
Medicine Meets Virtual Reality, (586-592). Westwood,
J. (ed). IOS Press Amsterdam.

Lefohn, A.E., Cates, J.E., and Whitaker, R.T (2003):
Interactive, GPU-Based Level Sets for 3D
Segmentation. In Medical Image Computing and
Computer Assisted Intervention (MICCAI), 564-572.

Weinstein, D.M. (2000): Scanline Surfacing: Building
Separating Surfaces from Planar Contours. In
Proceeding of IEEE Visualization 2000, 283-289.

Sandia National Laboratories (2004): CAMAL - The
CUBIT Adaptive Meshing Algorithm Library -
http://cubit.sandia.gov/camal.html - Release 2.0.2.

Johnson, C.R. (1997): Computational and Numerical
Methods for Bioelectric Field Problems. In Critical
Reviews in BioMedical Engineering, 25(1):1-81.

Weinstein, D.M., Zhukov, L. and Johnson, C.R.
(2000): Lead-Field Bases for EEG Source Imaging.
Annals of Biomedical Engineering, 28(9):1059-1065.

Wolters, C.H., Anwander, A., Tricoche, X, Lew, S., and
Johnson, C.R. (2005): Influence of Local and Remote
White Matter Conductivity Anisotropy for a Thalamic

Source on EEG/MEG Field and Return Current
Computation. In International Journal of
Bioelectromagnetism (In Press).

Kindlmann, G. (2004): Superquadric Tensor Glyphs. In
Proceeding of The Joint Eurographics - IEEE TCVG
Symposium on Visualization 2004, (147-154).

Kniss, J.M., Kindlmann, G., Hansen, C.H. (2005):
Multidimentional Transfer Functions for Volume
Rendering. In The Visualization Handbook, (189-
210). Hansen, C.D. and Johnson, C.R. (eds). Elsevier.

Livnat, Y. (2005): Accelerated Isosurface Extraction
Approaches. In The Visualization Handbook, (39-55).
Hansen, C.D. and Johnson, C.R. (eds). Elsevier.

Scheuermann, G. and Tricoche, X (2005): Topological
Methods for Flow Visualization. In The Visualization
Handbook, (341-356). Hansen, C.D. and Johnson,
C.R. (eds). Elsevier.

Whitaker, R.T. (2005): Isosurfaces and Level-Sets. In The
Visualization Handbook, (97-123). Hansen, C.D. and
Johnson, C.R. (eds). Elsevier

Zhang, S., Laidlaw, D.H., and Kindlmann, G. (2005):
Diffusion Tensor MRI Visualization. In The
Visualization Handbook, (327-340). Hansen, C.D. and
Johnson, C.R. (eds). Elsevier

Bramley, R., Char B., Gannon, D. , Hewett, T.,
Johnson, C.R., and Rice, J. (2000): Enabling
Technologies for Computational Science: Frameworks,
Middleware, and Environments. In Workshop on
Scientific Knowledge, Information, and Computing,
(19-32). Houstis, E., Rice, J., Gallopoulos, E, and
Bramley, R. (eds). Kluwer Academic.

SCIRun, BioPSE, and PowerApp Software. Scientific
Computing and Imaging Institute.
http://www.sci.utah.edu/.

Zhang, K., Damevski, K., Venkatachalapathy, V.,
Parker, S. (2004): SCIRun2: A CCA Framework for
High Performance Computing, In Proceedings of The
9th International Workshop on High-Level Parallel
Programming Models and Supportive Environments.

