
64 November 2004/Vol. 47, No. 11 COMMUNICATIONS OF THE ACM

Over the past two decades, computer simulation and
visualization have significantly influenced and improved the field of
biomedicine, as they have other areas of science and engineering.
While some images and visualizations facilitate medical diagnosis,
others help physicians plan surgical procedures. For example, visual-

ization tools have been critical in planning recent brain surgeries to correct
large aneurysms in patients being treated by neurosurgeons at the University
of Utah Medical Center. Biomedical computing and visualization techniques
are used for medical training. Computer simulation lets biomedical researchers
subject increasingly sophisticated quantitative and qualitative conceptual mod-
els of biological behavior to rigorous quantitative simulation and analysis.
Visualizing the results of these simulations helps scientists explore and under-
stand the simulation behavior and results.

The desire to understand biological systems drives researchers to create
increasingly sophisticated computational models. While such sophistication is
essential to good research, the resulting complexity of the scientific computing
process has become a major hindrance to further use of advanced computing
tools in biomedical research and patient treatment. Sources of this complexity
include the number of equations and variables required to represent realistic
functions, the size of the resulting systems and data sets, and the diversity of the

Side view of cortical imaging and dipole source localization. Electric scalp potential
recordings (color-coded on the disks on the scalp surface) are used to recover the

potential distribution on the cortical surface, as well as the equivalent dipole current
sources (shown as arrows embedded in the cortex). Potentials are color-coded: red

corresponds to positive values; blue to negative values; and green to values near zero.
Image generated with the SCIRun/BioPSE software system provided by

the Scientific Computing and Imaging Institute.

Problem-solving environments and advanced visualization
take on the complexity of biomedical computing, improving

its utility to scientists and clinicians alike.

Biomedical Computing and
Visualization Software

Environments

By Chris R. Johnson, Rob MacLeod,
Steven G. Parker, and David Weinstein

COMMUNICATIONS OF THE ACM November 2004/Vol. 47, No. 11 65

66 November 2004/Vol. 47, No. 11 COMMUNICATIONS OF THE ACM

computational resources required to support signifi-
cant understanding of biomedical phenomena and
medical treatment [2]. Biomedical computing
researchers collect multichannel and multimodal data
from real-time collection instruments, access large
distributed databases, and rely on simulation and
visualization systems for navigating biomedical sys-
tems and models.

Managing these large-scale computations requires
powerful hardware and efficient, transparent software
that frees researchers and clinicians alike to engage the
complexity of the scientific problem, rather than the
complexity of the tools themselves. Unfortunately,
such biomedical computing software does not exist
today.

The current selection of computational tools is
increasing so quickly that navigating and choosing
from among them has become its own challenge (see
the article by Homa Javahery et al. in this issue). The
need to integrate software is especially great when sci-
entists seek to build models that span spatial or tem-
poral scales or that cross physical systems. No
individual researcher has the skills required to master
all the computational and biological knowledge
needed to create geometric and mathematical models,
map them to numerical algorithms, implement them
efficiently in modern computers, visualize the results,
and then understand them as they pertain to the spe-
cific biological system under investigation. Modeling
complex systems requires a multidisciplinary team of
specialists, each with complementary expertise and
supported by a software infrastructure that integrates
that expertise into a complete software system.

Problem-solving environments (PSEs) provide a
natural platform for integrating and leveraging multi-
disciplinary expertise to create complete systems for
biomedical computing [2, 3, 7, 9]. Such systems solve
the challenge of interfacing disparate elements while
also providing a level of functional abstraction
researchers need in dealing with complex software sys-
tems. PSEs also provide infrastructure for integrating
computational knowledge. PSEs may incorporate a
number of specific elements, including knowledge of
the relevant discipline(s); the most useful computa-
tional techniques, algorithms, and data structures; the
associated programming techniques; the relevant

human-computer interface design principles; the
applicable visualization and imaging techniques; and
methods for mapping the computations to various
computer architectures [2].

PSEs can also consolidate knowledge from a range
of experts into a system providing end users a power-
ful set of computational tools. The Scientific Com-
puting and Imaging (SCI) Institute at the University
of Utah has a long history (since 1994) of research
involving PSEs for scientific computing, including
SCIRun, BioPSE, and Uintah [5, 6, 8].

SCIRun and BioPSE
The SCIRun PSE supports the interactive creation,
investigation, and steering of large-scale scientific
computations. It has been enhanced through the
efforts of two large research centers that use it as
their core software system: the Center for the Simu-
lation of Accidental Fires and Explosions (C-SAFE),
a U.S. Department of Energy Level 1 Center; and
the National Institutes of Health’s National Center
for Research Resources (www.ncrr.nih.gov) Center
for Bioelectric Field Modeling, Simulation, and
Visualization. Due largely to these efforts, SCIRun
has now evolved into a comprehensive software
environment for scientific computing applications.

The SCIRun component model is based on a gener-
alized dataflow paradigm that allows the tight integra-
tion of computational components and visualization
components. A dataflow model involves three processes
in sequence: data is sent to a software component; the
component manipulates the data in some manner; and
the new data then passes downstream to the next com-
ponent for further manipulation.

SCIRun can be viewed as a computational work-
bench in which scientists design and modify simula-
tions interactively via a component-based visual
programming model. SCIRun also facilitates interac-
tive debugging and steering of large-scale, typically
parallel, scientific simulations by, for example,
enabling scientists to modify geometric models and
interactively change numerical parameters and
boundary conditions. An especially important aspect
of SCIRun is that it combines the setting of input
parameters, computation, and visualization into one
tool that is used in real time, as opposed to the tradi-

Managing large-scale computations requires powerful
hardware and efficient, transparent software that frees the

user to engage the complexity of the scientific problem, rather than the
complexity of the tools themselves.

tional practice of doing these
three tasks separately and in
batch mode.

While SCIRun provides the
framework and software infra-
structure needed to support
this extensive functionality, the
individual components encap-
sulate the actual science one
might wish to carry out. The
modules are standalone pieces
of software designed by various
individuals or groups and con-
tributed to the system. Interest-
ing problems are solved
through the combined func-
tionality of a number of such
modules.

SCIRun consists of a layered
set of libraries. Though it uses
an object-oriented design, its
developers have carefully
avoided overuse of the object-
oriented paradigm, which
could threaten efficiency. In
implementing the SCIRun ker-
nel and modules, we have lever-
aged a powerful toolbox of C++
classes within SCIRun, tuning them for scientific
computing and operation in a multithreaded environ-
ment, and have employed an efficient reference-
counting scheme with smart pointers to allow
different modules to efficiently share common data
structures.

The BioPSE package introduced a generic Field
data structure to SCIRun that is used to represent any
geometric domain and a set of data values defined
over that domain. The design challenge for Fields was
to create a general and flexible data structure without
sacrificing system performance. Since Fields are the
predominant primitive in the SCIRun dataflow archi-
tecture, they must be designed to meet the various
needs of our users. Fields have greatly reduced the
complexity of many of the existing modules while
simultaneously enhancing their functionality.

The ShowField module in BioPSE/SCIRun, for
example, is a generic tool for visualizing a Field. It
takes an arbitrary Field and a colormap as input, and
as output generates geometric scene-graph primitives

for subsequent rendering. For different types of Fields
the geometric primitives might have elements in com-
mon but might also have elements that are distinct.
Before BioPSE/SCIRun was available, for every possi-
ble combination of geometry, user-selected rendering
parameters, colormap options, and data value types, a
specific piece of code would be necessary to handle
that particular set of options. Maintaining such code
is prohibitively complicated. In contrast, by imple-
menting a consistent interface to all of our Field types,
we have abstracted away the details of the different
geometry types in the ShowField module. This
approach to abstracting geometry greatly reduces the
number of lines of code required for ShowField,
makes the code much easier to understand for both
developers and users, and reduces the likelihood that
the code will contain bugs. Moreover, it dramatically
simplifies the process of adding a new geometry or
data value type to BioPSE/SCIRun; a new type just
needs to support the required interface in order to be
renderable by the ShowField module.

COMMUNICATIONS OF THE ACM November 2004/Vol. 47, No. 11 67

Figure 1. SCIRun/BioPSE modules
combined for EEG modeling, simulation,
and visualization.

A common drawback to
generalized interfaces is that
generalization typically comes
at the price of performance.
In order to support a general

interface, the code cannot know in advance what type
of Fields might arrive as input; optimization is there-
fore difficult to do. Dynamic compilation and load-
ing is used to permit optimization based on the input
types. It compiles optimized code for each specific
case (as soon as a module knows which specific types
of Fields have arrived as input); the system then
dynamically loads the resulting new object and exe-
cutes it. For users, these operations are all transparent,
and for developers they are simple to use. The advan-
tage of this technique is that SCIRun generates only
specific optimized code for the types of Fields about

which a particular user is interested. (For a complete
discussion on dynamic compilation, see [4].)

The next generation of SCIRun (tentatively called
SCIRun2, possibly available in 2005) is a framework
combining the SCIRun infrastructure with common
component architecture (CCA) [1] and connections
to other commercial and academic research-oriented
component models. SCIRun2 [11] will utilize paral-
lel-to-parallel remote method invocation to connect
components in a distributed memory environment
and be multithreaded to facilitate shared memory
programming. It also will have an optional visual-pro-
gramming interface. Overall, SCIRun2 will provide a
broad approach to component-based biomedical sim-
ulation to allow scientists to combine a selection of
tools for solving problems of interest. The overarch-
ing SCIRun2 design goal—giving computational sci-

68 November 2004/Vol. 47, No. 11 COMMUNICATIONS OF THE ACM

Figure 2. Visualization
of results of an EEG
simulation localizing a
neural source.

entists the ability to use the right tool for the right
job—is motivated by the diverse needs of biomedical
and other scientific users.

EEG simulation and visualization. Figures 1 and
2 illustrate the functionality of SCIRun and BioPSE
with an example of electroencephalographic (EEG)
source localization. Figure 1 outlines the dataflow

network implementing the solution. The input data
files loaded at the top of the network include the
finite element mesh (FEM) that defines the geome-
try and conductivity properties of the model and a
precomputed lead-field matrix that encodes the rela-
tionship between the electric sources in the domain
and the resulting potentials that would be measured
at the electrodes. Farther down in the network, a set
of modules optimizes the dipole location in order to
minimize the lack of conformance between the mea-
sured potentials from the electrodes and the simu-
lated potentials due to the dipole. Finally,
visualization and rendering modules provide interac-

tive feedback to the user.
A major hurdle to SCIRun becoming an everyday

tool for scientists and engineers has been its dataflow
interface. While visual programming is natural for
computer scientists and some engineers accustomed
to writing software and building algorithmic
pipelines, it is overly cumbersome for many applica-

tion scientists. Even when a
dataflow network implements a
specific application (such as the
bioelectric field simulation net-
work provided with BioPSE and
detailed in the BioPSE Tutorial),
the user interface components of
the network are presented to the
user in separate user-interface win-
dows, without any context for
their settings. For example,
although SCIRun provides a
generic file-browser user interfaces
for reading-in data, many such
user-interface elements exist in the
dataflow network, each with the
same generic presentation, and are
thus indistinguishable. The user
cannot tell which type of file each
browser expects.

One approach to improving
user-interface support for SCIRun is to create Power-
Apps, or a customized interface built atop a dataflow
application network; see [10] for examples. The
dataflow network controls the execution and synchro-
nization of the modules comprising the application,
but SCIRun developers have consolidated the generic
user interface windows, replacing them with an appli-
cation-specific interface.

Included with the version 1.22 release of BioPSE
(July 2004) is a PowerApp called BioFEM based on
a FEM network; Figure 3 shows the striking differ-
ence in user interfaces between BioPSE and
BioFEM. In the dataflow version of the application,
users have separate interface windows for controlling
different aspects of the simulation and visualization,
but nothing about these windows indicates the con-
text for the associated controls. The PowerApp ver-
sion of the same functionality, by contrast, has a

COMMUNICATIONS OF THE ACM November 2004/Vol. 47, No. 11 69

Figure 3. User interfaces compared: (a) BioPSE dataflow interface
for a bioelectric field application; (b) BioFEM custom interface.
Though the BioFEM application is functionality equivalent to the
dataflow version for BioPSE, the BioFEM version provides an
easier-to-use custom interface.

while visual programming is natural for computer scientists and for
some engineers accustomed to writing software and building
algorithmic pipelines, it is overly cumbersome for many application scientists.

much more streamlined and context-associated
interface and a much simpler appearance. The full
flexibility of the more general dataflow interface is
hidden but still available should the researcher
require functionality not provided by the specialized
interface.

Future Biomedical Software
The future of biomedical computing depends on an
integrated software environment that ideally combines
software from multiple sources into a computational
workbench, and that allows multidisciplinary special-
ists to contribute specific tools to the workbench with-
out having to be expert in all other fields. Creating a
dramatically better computational workbench requires
five major advances in software engineering:

• Allowing biomedical software tools to seamlessly
interoperate with one another;

• Uniting state-of-the-art tools created by different
biomedical researchers to perform state-of-the-art
computational experiments;

• Making tools accessible to other researchers
through Web-based and/or grid-based mechanisms;

• Making tools more powerful through parallel and
distributed implementations and through perfor-
mance improvements; and

• Making tools easy to use, accurate, and reliable
through sophisticated user-interface development
and robust software engineering.

Leveraging the lessons we’ve learned creating the
SCIRun, BioPSE, and Uintah PSEs, we are now
developing a new component-software architecture to
create a biomedical software environment that
addresses the features required to make advanced PSEs
an everyday tool for researchers and clinicians.

References
1. Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L.,

Parker, S., and Smolinksi, B. Toward a common component architecture
for high-performance scientific computing. In Proceedings of the Eighth
IEEE International Symposium on High-Performance Distributed Computa-
tion (Redondo Beach, CA, Aug. 3–6). IEEE Computer Society, 1999.

2. Bramley, R., Char, B., Gannon, D., Hewett, T., Johnson, C., and
Rice, J. Enabling technologies for computational science: Frameworks,
middleware, and environments. In Proceedings of the Workshop on Sci-
entific Knowledge, Information, and Computing, E. Houstis, J. Rice, E.
Gallopoulos, and R. Bramely, Eds. Kluwer Academic Publishers,
Boston, 2000.

3. Bramley, R., Gannon, D., Stuckey, T., Villacis, J., Balasubramanian,
J., Akman, E., Breg, F., Diwan, S., and Govindaraju, M. Component
architectures for distributed scientific problem solving. IEEE Comput.
Sci. Engineer. 5, 2 (1998), 50–63.

4. Cole, M. and Parker, S. Dynamic compilation of C++ template code.
Scientific Programming (2003), 321–327.

5. de St. Germain, J., Parker, S., McCorquodale, J., and Johnson, C. Uin-
tah: A massively parallel problem-solving environment. In Proceedings
of the Ninth International Symposium on High-Performance Distributed
Computing (Pittsburgh, PA, Aug. 1–4, 2000), 33–42.

6. Johnson, C., Parker, S., and Weinstein, D. Component-based prob-
lem-solving environments for large-scale scientific computing. Concur-
rency and Computation: Practice and Experience 14 (2002), 1337–1349.

7. Johnson, C. and Parker, S. Applications in computational medicine
using SCIRun: A computational steering programming environment.
In Proceedings of Supercomputer ‘95 (San Diego, Dec. 4–8), IEEE Press,
1995, 2–19.

8. Parker, S., Weinstein, D., and Johnson, C. The SCIRun computa-
tional steering software system. In Modern Software Tools for Scientific
Computing, E. Arge, A. Brauset, and H. Langtangen, Eds. Birkhauser
Press, Cambridge, MA, 1997, 1–44.

9. Parker, S. and Johnson, C. SCIRun: A scientific programming envi-
ronment for computational steering. In Proceedings of Supercomputer
‘95 (San Diego, Dec. 4–8), IEEE Press, 1995.

10. Scientific Computing and Imaging Institute. SCIRun and BioPSE
PowerApps; available from www.sci.utah.edu.

11. Zhang, K., Damevski, K., Venkatachalapathy, V., and Parker, S.
SCIRun2: A CCA framework for high-performance computing. In
Proceedings of the Ninth International Workshop on High-Level Parallel
Programming Models and Supportive Environments (Santa Fe, NM, Apr.
26–30). IEEE Computer Society Press, 2004.

Chris R. Johnson (crj@sci.utah.edu) is director of the Scientific
Computing and Imaging Institute and Distinguished Professor of
Computer Science and Director, School of Computing, the University
of Utah, Salt Lake City.
Rob MacLeod (macleod@cvrti.utah.edu) is an associate director of
the Scientific Computing and Imaging Institute and associate director
of the Cardiovascular Research and Training Institute at the University
of Utah, Salt Lake City.
Steven G. Parker (sparker@cs.utah.edu) is a research assistant
professor in the School of Computing and the Scientific Computing
and Imaging Institute at the University of Utah, Salt Lake City.
David Weinstein (dmw@sci.utah.edu) is technical manager of
the National Institutes of Health NCRR for Bioelectric Field
Modeling, Simulation, and Visualization in the Scientific Computing
and Imaging Institute at the University of Utah, Salt Lake City.

The authors gratefully acknowledge support from National Institutes for Health
NCRR and Biomedical Information Science and Technology Initiative, National Sci-
ence Foundation Partnerships for Advanced Computational Infrastructure, and from
the Department of Energy Advanced Simulation and Computing Initiative and Scien-
tific Discovery through Advanced Computing program. SCIRun, BioPSE, and the
PowerApps software are all available as open source from the SCI Institute’s Web site
(www.sci.utah.edu). SCIRun, BioPSE and the PowerApps are supported on three dif-
ferent platforms: Linux (Red Hat 8.0/9.0 and Mandrake 9.0), Macintosh (OSX 10.3),
and SGI (IRIX 6.5).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

© 2004 ACM 0001-0782/04/1100 $5.00

c

70 November 2004/Vol. 47, No. 11 COMMUNICATIONS OF THE ACM

The future of biomedical computing depends on an integrated
software environment that allows multidisciplinary specialists to contribute

specific tools to it without having to be expert in all other fields.

COMMUNICATIONS OF THE ACM November 2004/Vol. 47, No. 11 71

Physical model of simulated coral produced using a 3D printing technique (selective laser sintering).
Thousands of independent virtual polyps grew this structure themselves in a simulated reef environment

over 24 hours on a 16-processor Linux cluster.
Simulations: Roeland M.H. Merks, Alfons G. Hoekstra, Jaap A. Kaandorp, and

Peter M.A. Sloot, Computational Science, University of Amsterdam, The Netherlands.
Photography: Ronald van Weeren, Artis Zoo, Amsterdam, The Netherlands.

