
When was the last time you saw an isosurface with
error bars or streamlines with standard devia-

tions or volume visualizations with representations of
confidence intervals? With few exceptions, visualiza-
tion research has ignored the visual representation of
errors and uncertainty for 3D visualizations. However,
if you look at peer-reviewed science and engineering
journals, you will see that the majority of 2D graphs
represent error and/or uncertainty within the experi-
mental or simulated data. Why the difference? Clearly,
if it’s important to represent error and uncertainty in
2D graphs, then it’s equally important to represent error
and uncertainty in 2D and 3D visualization.

The possible detriment caused by the failure to rep-
resent errors and uncertainties in 3D visualizations
became clear to us a couple of years ago when neuro-
surgeons and radiologists used one of our volume ren-
derings of the brain and cerebral vasculature during
their surgical planning for a patient. In this situation,
accuracy and good understanding would have made a
significant difference for the patient. As we explained
linear interpolation errors and other possible uncer-
tainties to the surgeons and radiologists, it occurred to
me that our visualization was incomplete and we need-
ed to do a better job of visually representing errors and
uncertainties.

In a similar incident, at an Advanced Simulation and
Computing workshop that we attended, one US
Department of Energy national laboratory experimen-
tal scientist pointed out that he could compare possible
differences and errors between two 3D visualizations
only by printing the visualizations out on transparen-
cies, laying them on top of each other, and holding them
up to the light. He dubbed this the “view graph norm”
and noted that even such simple comparison techniques
were not available within most visualization systems.

Certainly, this lack can be partly attributed to the
inherent difficulty in defining, characterizing, and con-
trolling comparisons between different data sets and to
the corresponding error and uncertainty in the experi-
mental, simulation, and/or visualization process. In
addition, we in the visualization community have devel-
oped few methods that allow for easy comparison and
representation of error and uncertainty in visualization
data. However, the main reason most 2D and 3D simu-
lation and experimental data visualizations do not con-

tain representations of error and uncertainty is that the
visualization research community has not made such
representations a priority. To take visualization
research—and its usefulness to researchers in science,
engineering, and medicine—to the next level, the visu-
alization research community needs to make visually
representing errors and uncertainties the norm rather
than the exception.

What’s been done so far
Fortunately, a few visualization researchers have

started thinking about 3D visual representations of
errors and uncertainties, the sources of which can
include uncertainty in 

■ acquisition (instrument measurement error, numer-
ical analysis error, statistical variation), 

■ the model (both mathematical and geometric), 
■ transformation (errors introduced from resampling,

filtering, quantization, and rescaling), and 
■ visualization. 

(See Taylor and Kuyatt1 for a useful overview of uncer-
tainty definitions.) Though space precludes a compre-
hensive discussion of previous work in error and
uncertainty visualization, we thought it would be use-
ful to highlight a few examples.

The geographic information systems (GIS) commu-
nity carried out some of the earliest work on 3D repre-
sentations of such errors and uncertainties for terrain
models, where the effect of uncertainty on subsequent
operations is an area of particular concern. Imagine an
engineer planning a sewer pipeline based on an inac-
curate terrain model and later discovering that the
pipeline and its contents must flow uphill, when, had
the uncertainty been known, the engineer could have
performed an onsite inspection or chosen a better
model. Wood and Fisher address the effect of uncer-
tainty on GIS operations such as in the previous exam-
ple, in addition to errors in spatial distributions.2 In their
work they also explore different interpolation methods
and their affects on a final terrain model.

Data is interpolated (or filtered in some way) in
almost any visualization. Lodha et al. looked at the
uncertainty in different surface interpolates.3 However,
unlike Wood and Fisher, who relied on the observer to

Chris R.
Johnson and
Allen R.
Sanderson

Scientific
Computing and
Imaging
Institute,
University of
Utah

A Next Step: Visualizing Errors and Uncertainty ________

Visualization Viewpoints

Editor: Theresa-Marie Rhyne

2 September/October 2003 Published by the IEEE Computer Society 0272-1716/03/$17.00 © 2003 IEEE



compare the different interpolation methods, Lodha et
al. developed techniques for direct comparison of sur-
faces using a variety of geometric glyphs. Their glyphs
can be 2D or 3D and might represent a wide variety of
information. For instance, displacement glyphs, which
are similar to error bars, can provide a good indication
of the differences between surfaces, as illustrated in
Figure 1.

Wittenbrink et. al also used glyphs for visualizing
uncertainty in vector fields.4 Their work concentrated
on designing glyphs to convey the uncertainty in both
orientation and magnitude. Figure 2 shows an example
of their work. These types of glyphs work quite well with
one exception: when the glyphs overlap the visualiza-
tion becomes cluttered, making it difficult to under-
stand. This is a common problem in many glyph-based
3D visualizations.

Lodha et al. combined their techniques to create
UFlow, a method to view the uncertainty in fluid flow
using different numerical integration algorithms and

different time steps.5 As in their work with vector glyphs,
they developed several 3D glyphs that ranged from path
envelopes and ribbons to batons and barbells to visual-
ize fluid flow differences, as Figure 3 shows. Lopes and
Brodlie also looked at this problem.6 They used strips
and tubes to visualize differences, as Figure 4 shows.

Pang et. al. summarized a variety of techniques suited
for uncertainty visualization.7 These techniques ranged
from adding or modifying the model’s geometry with, for
example, a bump map or altered lighting attributes to
using textures. Perhaps the most interesting technique
they proposed was the use of blurring, as Figure 5 (next
page) shows. Instead of blurring, Grigoryan et al.8 used
point-based primitives to create a fuzzy surface that
achieved similar results, as Figure 6 shows. Blurring is a
natural cue to the eye that something is amiss. We can
easily apply this technique to a variety of different visu-
alization techniques from particle tracing to isosurfacing.

We have found that techniques such as blurring pro-
vide excellent tools for visualizing uncertainty because
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1 Visualization of the uncertainty between two surface
interpolants using displacement glyphs. 

2 Visualization of wind velocity (a) with and (b) without uncertainty using
direction uncertainty glyphs and regular arrow glyphs respectively. 

3 Barbell glyphs showing the uncertainty between two
numerical integration algorithms used for streamline
calculations.

4 Stream tube showing the uncertainty in a particle’s path using different
integration step sizes and tolerances. 
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users intuitively associate such visual representations
with uncertainty. We are currently researching similar
approaches using patterns formed with reaction diffu-
sion systems.9 The brain naturally follows a spatio-tem-
poral pattern and can easily perceive subtle changes.
For example, we can create a pattern of elliptical spots
based on a mapping of a vector’s orientation and mag-
nitude and the diffusion matrix in a reaction-diffusion
system. This matrix—which is anisotropic—exists for
each vector in the flow field.

Figures 7 and 8 show the anisotropic diffusion applied
to the Turing10 and Gray–Scott11,12 reaction-diffusion
models for a vector field at 45 degrees with a random
variation in the magnitude.

Uncertainty measurements
In our previous examples, we fixed the amount of

anisotropy in the diffusion matrix. However, by allow-

ing the amount of anisotropy to vary, we produce
another variable that we can map. When the amount
of anisotropy is small, the spot formed is almost circu-
lar, with the ratio of the semi-axes at approximately
one. However, when the anisotropy is high, the spot
formed is elliptical, deforming at times in such an
extreme manner that it almost becomes a thick line. For
example, the ratio of the semi-axes could be much
greater than one. This creates a visual difference well
suited to mapping an orientation uncertainty. When
the orientation uncertainty is small, the spot is ellipti-
cal, reflecting a precise orientation. When the uncer-
tainty is high, the spot is more circular, reflecting the
uncertainty in the orientation. Figure 9 demonstrates
this change.

Where to go from here
A primary goal of effective visualization is to pro-

vide a complete and accurate visual representation of
data and models for users to interrupt. A complete
visual representation would include representations
of error and uncertainty in addition to standard sci-
entific visualization techniques. Certainly other
important criteria exist for an effective visualization,
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5 Particle
tracing using
blurring to
show the
uncertainty in
the path. 

6 Point-based primitives used to create a fuzzy surface
to show uncertainty.

(a) (b) (c)

7 Turing model visualization of a vector field with (a) random magnitude,
(b) constant orientation, and (c) magnitude and orientation.

(a) (b) (c)

8 Gray–Scott model visualization of a vector field with (a) random magni-
tude, (b) constant orientation, and (c) magnitude and orientation.
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9 (a) Turing and (b) Gray–Scott model visualizations of
orientation uncertainty. The orientation uncertainty
increases from left to right across each image.



including the often-overlooked
perceptual issues regarding the
user’s psycho-physical ability to
effectively understand the images.
The Visualization Viewpoints arti-
cle in the July/August 2003 issue
of IEEE Computer Graphics and
Applications addresses the impor-
tant subject of user studies as a
method to measure a visualization’s
performance and effectiveness.

We see the need to create a for-
mal, theoretical error and uncer-
tainty visualization framework and
to investigate and explore new visu-
al representations for characterizing
error and uncertainty. Furthermore,
a formal evaluation (testing with
user studies) of the visual tech-
niques for comparing experimental
and simulation 2D and 3D data
while incorporating statistical,
numerical, and/or measurement
errors is necessary. Such new tech-
niques could include

■ the ability to overlay and compare
2D and 3D visualizations and
uncertainties (automating the
view-graph norm);

■ use of new physically based
glyphs such as those built around
a reaction-diffusion type model;

■ modification to data and/or visu-
alization attributes—for example,
using bump mapping;

■ improvement to psycho-visual
metaphors, such as highlighting
an area;

■ better use of annotation and inter-
active information overloading;

■ better visual representation of,
and interaction with, statistical
data; and

■ use of information visualization
methods applied to 3D scientific
visualization data.

One simple example of error and
uncertainty visualization techniques that we are inves-
tigating involves combining isosurface methods with
volume rendering methods. For example, we can rep-
resent the average value of a scalar field with an isosur-
face and then represent the error or uncertainty of the
scalar field using volume rendering, as Figures 10 and 11
show.

Conclusions
The development of formal theoretical frameworks (in

a similar approach to that of the scientific computing area
(see http://www.siam.org/journals/sisc/sp_issue.htm)
and the creation of new visual representations of error

and uncertainty will be fundamental to a better under-
standing of 3D experimental and simulation data. Such
improved understanding will validate new theoretical
models, enable better understanding of data, and facili-
tate better decision making. We urge the scientific visu-
alization research community to take the next step and
make visually representing errors and uncertainties the
norm rather than the exception. ■
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10 Isosurface
of a synthetic
data set (in
gray) bracketed
with volume-
rendered
regions (red
and green)
indicating
uncertainty
around the
isovalue.

11 Isosurface
of an magnetic
resonance
imaging data
set (in orange)
surrounded by 
a volume-
rendered region
of low opacity
(in green) to
indicate uncer-
tainty in surface
position.
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