
Large-scale Computational Science Applications using
the SCIRun Problem Solving Environment

Christopher R. Johnson, Steven G. Parker, and David Weinstein
Scientific Computing and Imaging Institute

School of Computing
University of Utah

Salt Lake City, Utah 84112
Email: crj@cs.utah.edu, sparker@cs.utah.edu and dmw@cs.utah.edu

URL: www.sci.utah.edu

Abstract

In this paper we describe applications of the SCIRun system to large-scale computational
science problems. SCIRun is a scientific problem solving environment that allows the interac-
tive construction and steering of large-scale scientific computations. A scientific application is
constructed by connecting computational elements (modules) to form a program (network). This
program may contain several computational elements as well as several visualization elements,
all of which work together in orchestrating a solution to a scientific problem. Geometric inputs
and computational parameters may be changed interactively, and the results of these changes
provide immediate feedback to the investigator.

Introduction

Five years ago at Supercomputer ‘95, I had the privilege to give the keynote address,
celebrating the 10 year anniversary of the Supercomputer Conference in Mannheim.
At the conference, I introduced a new scientific problem solving environment called
SCIRun to solve large-scale problems in computational medicine [1]. Since that time,

1



many papers on SCIRun have been published [2, 3, 4, 5] and other researchers have
started to use SCIRun [6, 7, 8]. These new applications range from large-scale atmo-
spheric diffusion simulations, to problems in optical tomography, reservoir simulation
and visualization, and new visualization techniques for vector fields using haptic (force)
feedback. Furthermore, SCIRun is being used as the basis for new problem solving en-
vironments for the DOE ASCI project [9] and an NIH NCRR Center [10].

In the Supercomputer ‘95 paper, we provided the following Summary and Future
Work section:

We have presented an overview of SCIRun applied to large scale problems
in computational medicine. SCIRun is a computational steering model that
allows users to “close the loop” and utilize visualization to guide (steer)
the design and computation phases of a simulation. We are continuing to
develop, optimize, and add flexibility to current features of our steering
model. We are also adapting the computational steering model to a num-
ber of applications, including solving problems in inverse ECG and EEG,
providing interactive surgery assistance for problems in neurosurgery, and
addressing problems in computational fluid dynamics and environmental
science.

Currently the system runs on Silicon Graphics computers, using shared
memory hardware to communicate between processors in a multi-processor
environment. Work is under way to port the system to new architectures. In
particular, support for parallelism on workstation clusters will be integrated
into the system. The dataflow network can map directly to a network of
processors or machines (one or more modules per processor). Minimizing
the network traffic and communication overhead for a particular dataflow
network and machine configuration is an interesting problem that this ex-
tension will attempt to address.

This seems like an ideal place to begin our Supercomputer ‘2000 contribution. In
this paper we will given an updated overview of the current SCIRun problem solv-
ing environment and discuss new large-scale applications that are being solving using
SCIRun.

Overview of the SCIRun Problem Solving Environment

SCIRun is a parallel scientific problem solving environment that allows the interactive
construction, debugging and steering of large-scale, typically parallel, scientific compu-
tations. SCIRun can be envisioned as a “computational workbench,” in which a scientist
can design and modify simulations interactively via a component-based visual program-
ming model. SCIRun enables scientists to modify geometric models and interactively



change numerical parameters and boundary conditions, as well as to modify the level
of mesh adaptation needed for an accurate numerical solution. As opposed to the typi-
cal “off-line” simulation mode - in which the scientist manually sets input parameters,
computes results, visualizes the results via a separate visualization package, then starts
again at the beginning - SCIRun “closes the loop” and allows interactive steering of the
design, computation, and visualization phases of a simulation.

The dataflow programming paradigm has proven useful in many applications. We
have extended the use of the dataflow programming model into the computational pieces
of the simulation. To make the dataflow programming paradigm applicable to large
scientific problems, we have identified ways to avoid the excessive memory use inherent
in standard dataflow implementations, and we have implemented fine-grained dataflow
in order to further promote computational efficiency.

Interactive Computing and Steering

A primary feature of SCIRun enables the user to interactively control scientific simula-
tions while the computation is in progress. This control allows the user to vary boundary
conditions, model geometries, or various computational parameters during simulation.
Currently, many debugging systems provide this capability in a very raw, low-level
form. SCIRun is designed to provide high-level control over parameters in an efficient
and intuitive way, through graphical user interfaces and scientific visualization. These
methods permit the scientist or engineer to “close the loop” and use the visualization to
steer phases of the computation.

The ability to steer a large-scale simulation provides many advantages to the sci-
entific programmer. As changes in parameters become more instantaneous, the cause-
effect relationships within the simulation become more evident, allowing the scientist to
develop more intuition about the effect of problem parameters, to detect program bugs,
to develop insight into the operation of an algorithm, or to deepen an understanding of
the physics of the problem(s) being studied. The scientific investigation process relies
heavily on answers to a range of “What if?” questions. Computational steering allows
these questions to be answered more efficiently and therefore to guide the investigation
as it occurs.

Parallelism in SCIRun

SCIRun utilizes two methods of parallelism. The first, task parallelism, is implemented
automatically by simultaneously executing multiple modules according to the dataflow
graph. Since task parallelism is very limited in the typical scientific application, the sec-
ond method of parallelism is to explicitly parallelize various modules in a data-parallel
(SPMD) fashion. A set of worker threads will be mapped to various processors and will
cooperate in accomplishing the function of the module. The worker threads may use



the synchronization primitives provided by the Multitask library to communicate with
one another.

The shared memory assumption allows for a simple, clean implementation of steer-
able parameters with low synchronization overhead in the normally running cases. As
an example of parallelism, a simple data-parallel conjugate gradient matrix solver in
SCIRun achieves a 90% parallel efficiency on 16 MIPS R10K (195 Mhz) processors,
solving a 200,000 row sparse matrix with 3.2 million non-zeros in 32 seconds.

Components of SCIRun

In order to implement a steerable application, we have broken down SCIRun into a
layered set of libraries. SCIRun uses an object oriented design; however, it should
be stressed that we have paid careful attention to avoid over-using the object oriented
paradigm to a point that efficiency suffers. In implementing the SCIRun kernel and
modules, we leverage off of a powerful toolbox of C++ classes that have been tuned for
scientific computing and operation in a multi-threaded environment.

SCIRun derives much of its flexibility from its internal use of threads. Threads
allow multiple concurrent execution paths in a single program. SCIRun uses threads to
facilitate parallel execution, to allow user interaction while computation is in progress,
and to allow the system to change variables without interrupting a simulation. However,
standards for implementing threads are only starting to appear, and the standards that
are appearing are, thus far, cumbersome. We have constructed a layer that provides a
simple, clean C++ interface to threads and provides abstraction from the actual standard
used to implement them (currently pthreads and SGI sproc).

Steering Optimizations

To accommodate the large datasets required by high resolution computational models,
we have optimized and streamlined the dataflow implementation. These optimizations
are made necessary by the limitations many scientists have experienced with currently
available dataflow visualization systems [11].

Data Structure Management

Many implementations of the dataflow paradigm use the port/connection structure to
make copies of the data. Consider the example in Figure 1. If the vector field is copied
to both the Hedgehog and Streamline modules, then twice as much memory is con-
sumed as necessary. In addition, a significant amount of CPU time is required to copy
large, complex data structures. To avoid these overheads, we employ a simple reference
counting scheme with smart pointers [12] in C++. This scheme helps reduce complex-
ity by allowing different modules to share common data structures with copy-on-write



semantics. When the Gradient module creates the VectorField, it sets a reference count
in the vector field to zero. As Gradient hands a copy of the vector field data structure to
each of the downstream modules, the receiving module increments the reference count.
When each module is finished with the data structure, it decrements the reference count.
When the reference count reaches zero, the object is destroyed. These reference counts
are maintained automatically by C++ classes (the smart pointers) to reduce programmer
error. Copying the object is necessary only when a module needs to change a data
structure and the reference count is greater than one (i.e., another module is also using
it).

Progressive Refinement

Due to memory and speed limitations of current computing technologies, it will not
always be possible to complete these large-scale computations at an interactive rate. To
maintain some degree of dynamic interactivity, the system displays intermediate results
as soon as they are available. Such results include partially converged iterative matrix
solutions, partially adapted finite element grids, and incomplete streamlines or isosur-
faces. In the defibrillator design example shown above, the user moves an electrode and
sees some feedback almost immediately. The solution continues to converge to the final

Figure 1: A closeup view of a dataflow network. A vector field, produced by the Gra-
dient module, is consumed by both the Streamline and Hedgehog modules. In SCIRun,
the data are shared between the modules so that the data do not need to be duplicated.



solution. In this way, an engineer or scientist can watch a solution converge and, based
on the results observed, may either decide to make changes and start over or allow the
simulation to continue to full convergence.

Exploiting Interaction Coherence

A common interactive change consists of moving and orienting portions of the geom-
etry. Because of the nature of this interaction, surface movement is apt to be restricted
to a small region of the domain. Using information available from both how the geom-
etry has moved and its position prior to the move, the system can anticipate results and
“jump start” many of the iterative methods [13]. For example, iterative matrix solvers
can be jump-started by interpolating the solution from the old geometry onto the new
mesh. When changes to the model geometry are small, the resulting initial guess is
close to the desired solution so the solver converges rapidly. This concept is similar to
exploiting temporal coherence in a time-dependent system by using the previous time-
step as the initial guess to the next time step. An even more compelling example is
seen in the mesh generation process for the torso defibrillator modeling problem. Typ-
ically, mesh generation for the entire torso model would take tens of minutes to hours.
Since we know that the user only wants to move the defibrillator electrodes, we generate
the mesh without the electrodes beforehand. Then, when the user selects an electrode
placement, nodes for the defibrillator electrodes are placed into the mesh in only a few
seconds.

For most boundary value and initial value problems, the final answers will be the
same for the incremental and brute-force approaches (subject to numerical tolerances).
However, for nonlinear problems where there may be multiple solutions or for unsteady
(parabolic) problems, results may be completely different. In these instances, the inter-
action coherence should not be exploited or results will not be scientifically repeatable.

Through coupling each of these techniques, we are able to introduce some degree
of interactivity into a process that formerly took hours, days or even weeks. Although
some of these techniques (such as displaying intermediate results) add to the computa-
tion time of the process, we attempt to compensate by providing optimizations (such as
exploiting interaction coherence) that are not available with the old “data file” paradigm.

Steering in a Dataflow System

The dataflow mechanism and the modules have been designed to support steering of
large-scale scientific simulations. SCIRun uses three different methods to implement
steering in this dataflow-oriented system:

1. Direct lightweight parameter changes: A variable is connected to a user in-
terface widget, and that variable is changed directly (by another thread) in the
module. The iterative matrix solver module allows the user to change the target



Figure 2: A portion user interface for the SolveMatrix module. The user can change
the target residual by moving the small diamond on the graph. This is an example of a
direct lightweight parameter change.

error even while the module is executing. This parameter change does not pass a
new token through the dataflow network but simply changes the internal state of
the SolveMatrix module, effectively changing the definition of the operator rather
than triggering a new dataflow event. The interface for SolveMatrix is shown in
Figure 2.

2. Cancellation: When parameters are changed, the module can choose to cancel
the current operation. For example, if boundary conditions are changed, it may
make sense to cancel the computation to focus on the new solution. This makes
the most sense when solving elliptic problems, since the solution does not depend
on any previous solution.

3. Feedback loops in the dataflow program: For a time varying problem, the pro-
gram usually goes through a time stepping loop with several major operations
inside. The boundary conditions are integrated in one or more of these opera-
tions. If this loop is implemented in the dataflow system, then the user can make
changes in those operators that are integrated on the next trip through the loop.
An example of this is shown in Figure 3, where the user has created an adaptive
finite element solution method. The results of one solution are used to estimate
the solution error, and then the mesh is refined in areas of high error. Another so-



Figure 3: Demonstration of steering through a feedback loop in the dataflow network.
Data flows beginning with an initial Mesh (generated in InsertDelaunay), performs a
computation (BuildFEMatrix and SolveMatrix), refines the mesh according to an error
estimate (MeshRefiner), and continues back to MeshIterator. The MeshIterator module
will continue iterating the loop until the MeshRefiner module declares that no more
adaptation is necessary. The final mesh is rendered using the MeshRender module.

lution is computed, and the process is repeated until a target error level has been
reached. The user can change the mesh adaptation criteria shown on the left, but
the new values are not used until the next iteration of the loop.

SCIRun as a Scientific Library

SCIRun uses a visual programming interface to allow the scientist to construct simu-
lations through powerful computational components. While the visual programming
environment is the central focus of SCIRun, it requires a powerful set of computational
tools. In the first stage of SCIRun, we have concentrated on integrating the computa-



tional components that we have used to solve our own computational problems. Such
tools Delaunay 3D tetrahedral mesh generators and mesh adaptation routines, direct
and iterative linear and nonlinear equations solvers and finite element space discretisa-
tion routines, see [3]. We have recently expanded focus and are now in the process of
integrating popular libraries and tools, see [3] into the SCIRun environment.

The SCIRun Development Environment

Perhaps the most powerful facet of SCIRun is the ability to use it in the development
phases of a simulation. SCIRun augments the development environment by provid-
ing convenient access to a powerful set of computational components. However, these
components could never be comprehensive, so SCIRun also provides an environment
whereby new modules can be developed efficiently. If a module triggers a segmenta-
tion violation, bus error or failed assertion, SCIRun stops the module at the point of
error, thus allowing the developer to attach a debugger to the program at the point of
failure. This avoids the frustrating experience of trying to reproduce these errors in the
debugger. In addition, SCIRun provides simple instrumentation of module performance
(CPU times printed out interactively), feedback execution states (waiting for data, per-
cent completed, etc.), and visualization of memory usage. SCIRun employs dynamic
shared libraries to allow the user to recompile only a specific module without the ex-
pense of a complete re-link. Another SCIRun window contains an interactive prompt
which gives the user access to a Tcl shell that can be used to interactively query and
change parameters in the simulation.

Requirements of the Application

SCIRun is not magic – it is simply a powerful, expressive environment for constructing
steerable applications, either from existing applications or starting from the ground-up.
The application programmer must assume the responsibility of breaking up an applica-
tion into suitable components. In practice, this modularization is already present inside
most codes, since “modular programming” has been preached by software engineers as
a sensible programming style for years.

More importantly, it is the responsibility of the application programmer to ensure
that parameter changes make sense with regard to the underlying physics of the prob-
lem. In a CFD simulation, for example, it is not physically possible for a boundary
to move within a single timestep without a dramatic impact on the flow. The appli-
cation programmer may be better off allowing the user to apply forces to a boundary
that would move the boundary in a physically coherent manner. Alternatively, the user
could be warned that moving a boundary in a non-physical manner would cause gross
errors in the transient solution.



Computational Applications

Atmospheric Diffusion Simulation

The first computational application we consider is taken from a model of atmospheric
dispersion from a power station plume - a concentrated source of NO x emissions, [14].
The photo-chemical reaction of this NOx with polluted air leads to the generation of
ozone at large distances downwind from the source. An accurate description of the
distribution of pollutant concentrations is needed over large spatial regions in order to
compare with field measurement calculations. The present trend is to use models in-
corporating an ever larger number of reactions and chemical species in the atmospheric
chemistry model. The complex chemical kinetics in the atmospheric model gives rise
to abrupt and sudden changes in both space and time in the concentration of the chem-
ical species in both space and time. These changes must be matched by changes in
the spatial mesh and the timesteps if high resolution is required, [15]. The difference
in time-scale between the reaction of these species leads to stiff systems of equations
which require implicit numerical solvers and special linear equations solvers [16]. The
requirements of such a problem are that it is necessary to combine:

• Unstructured tetrahedral mesh generation and adaptation.

• Physically realistic spatial discretisation methods.

• Stiff ode integrators tailored to the application.

• Fast interactive visualization for multi-species flows

• Computational steering facilities for transient problems.

These requirements were met by combining the SCIRun software with the spatial
discretisation, mesh adaptation and time integration codes CSPRINT and TETRAD
[16, 17] and by wrapping these codes in SCIRun modules, with converters to map to
the SCIRun data structures [6].

SCIRun composes computational and visualization algorithms with these data el-
ements using a dataflow style “boxes and wires” approach. An example of the atmo-
spheric diffusion dataflow network using Tetrad is shown in Figure 4.

Atmospheric Diffusion Simulation Results

Each run was been carried out over a period of 48 hours so that the diurnal variations
could be observed. We present here only a selection of the results that illustrate the
main features relating to the adaptivity and to the use of SCIRun. The main area of
mesh refinement is along the plume edges close to the chimney, indicating that there
is a high level of structure in the plume. Using the adaptive mesh, we can clearly see



Figure 4: A dataflow network, showing modules (boxes), connections (wires) and the
i/o ports on the modules that the wires connect). The plume and mesh shown are in the
early stages of development.

the plume edges and can easily identify areas of high concentrations. The effects of
the plume on ozone concentrations also provides some interesting results. Close to
the plume the concentration of O3 is much lower than that in the background. Due to
the high NOx concentrations the inorganic chemistry is dominant in this region and the
ozone is consumed by the second reaction. As the plume travels downwind and the NOx
levels decrease, the plume gradually picks up emissions of VOC’s, as shown in Figure
5. The OVC chemistry leads to the production of NO2 which pushes the above reaction
in the reverse route. The levels of ozone can therefore rise above the background levels
at quite large distances downwind from the source of NOx.

Computational Inverse EEG Problem

The inverse EEG problem can be described as the mathematical mapping of EEG scalp
recordings back onto the cortical surface or within the cortex to approximate fundamen-
tal current sources. This inverse problem lies at the foundation of surgical planning and
prognosis for neurological conditions ranging from epilepsy to schizophrenia [18] and
to brain tumors. The goal of cortical mapping is to integrate patient anatomical infor-
mation and measured voltage potential recordings from the surface of the patient’s scalp
in order to non-invasively determine the electrical activity on and within the patient’s
cortical surface [19].



Figure 5: This picture shows one component of the plume in greater detail in three
perpendicular cross-sections.

There has been much research into computationally modeling the electrical activity
of the brain, but only a few successful systems have been implemented. These systems
range in geometric model complexity from grossly simplified, spherical representations
to patient-specific finite element models. However, none of the systems to date have
been designed for large-scale architectures and none of these systems offer a flexible
mechanism for comparing modeling and solution techniques.

In this application we present an inverse EEG solution and implementation within
the SCIRun problem solving environment. Leveraging the infrastructure of SCIRun,
we have designed a general tool that enables users to experiment with various modeling
and simulation techniques and to examine the results with many types of visualization
probes and methods. The user can control all aspects of the problem, scaling the model
and simulation complexity to match available computational resources and experiment-
ing with alternative solutions to gain intuition about the problem.

A schematic overview of our solution process for the inverse EEG problem is shown
in Figure 6. A segmented MR volume provides anatomical data, required for accurate
conductivity and boundary condition information in our model. Functional data, the
known EEG potentials at the scalp boundary, are read in from a raw file and stored
with the digitized point locations sampled with a Polhemus tracker. This data forms the
basis for a finite element inverse problem, whereby either the electric sources within
the brain that induced the recorded EEG potentials, or the corresponding potentials on
the cortical surface, can be computationally recovered.



Finite
Element
Matrix
Construction

Matrix
Decomposition

Potential
Derivation

and Cortical

MR Volume
Segmentation
and Voxel
Classification

Surface
Construction

Surface and
Volume
Visualization

RMS Error
Analysis

Finite
Element
Mesh
Construction

Modeling Simulation Analysis/Visualization

Scalp

and Boundary
Condition
Application

Coregistration

Figure 6: A schematic representation of the full inverse EEG pipeline.

As a plug-in system, SCIRun allows rapid prototyping and analysis of new imple-
mentations. The user can evaluate different methods by implementing them in different
modules and “hot-swapping” them within a common dataflow network to compare re-
sults.

Figure 7: The SCIRun inverse EEG modeling pipeline.

The modeling components of the inverse EEG pipeline collectively enable the user
to construct a full finite element mesh with appropriate boundary conditions and con-
ductivity tensors from segmented MRI images, raw EEG potentials and digitized posi-
tional information [20]. The modeling pipeline is shown in Figure 7.



EEG Simulation Results

We have applied the inverse EEG pipeline described above to examine the neural acti-
vation process known as the P300. The P300 component of the event-related potential
(ERP) follows 300-400 ms after the presentation of a stimulus [21].

Figure 8: Results from a cortical mapping simulation. For visualization purposes, the
nodal values have been interpolated over the original scalp and cortical surfaces.

Total execution time for the pipeline that generated the solution in Figure 8 was
less than fifteen minutes. Most importantly, only one minute of time required manual
intervention (as the user manually chose the fiducials for coregistration); the rest of the
time the algorithms functioned completely automatically.

Reservoir Simulation and Visualization

Finally, we conclude with some examples of using SCIRun for large-scale geoscience
simulation and visualization. We recently worked with members of the Energy Geo-
sciences Institute (EGI) at the University of Utah and a major U.S. oil company to
incorporate oil reservoir simulation and visualization within SCIRun. We incorporated
a fully-implicit, three dimensional, two-phase (oil/gas) simulator into the SCIRun en-
vironment. The simulator was developed in C ++and highly modularized. The user can
control the simulation before it starts, during the run and to initiate a new simulation
based on the final or partial results. Real-time feedback is provided to the user during
simulation via a graph of the convergence of the solution and via the presentation of
intermediate solutions. The user can change the target error for the simulation in real-
time, examine the visualization of the intermediate results or manipulate the input to
the simulation.

Additionaly, the user can change well parameters, such as location of the wells in
3D by selecting a well and moving it to a different location. The user can also change
the strength of the flow of a well and determine whether the well is a producer or
injector. These changes can be applied while the simulation is in progress which in turn
will cause to simulation to stop and restart automatically based on the new parameters.
Below we show two sample visualizations of large-scale seismic data visualization.



Figure 9: Seismic data for targeting strategic drilling sites using isosurface extraction.

Future Work

In a flexible, extensible environment such as SCIRun, there are numerous possibili-
ties for expansion. Many new features driven by the needs of scientific applications
such as those we have described above. Other needs are the result of basic research in
component architectures for scientific computing.

One of the largest infrastructure changes will be support for execution in a net-
worked/distributed environment [4]. For simplicity, we focused on shared memory
multiprocessors for the initial implementation of SCIRun. The second implementation
included support for distribting modules to achieve task based parallelism over a net-
work. We also are now pushing it to work effectively on large-scale distributed memory



Figure 10: Volume rendering of seismic data.

supercomputers and clusters. In this case, a single module may use dozens or hundreds
of processors to perform the desired task.

Along with these modifications will come “detachable user interfaces.” Currently
SCIRun applications must be executed within the SCIRun user interface, but for a long-
running simulation, it would be beneficial to start the program and then come back
periodically to check on the progress of the program. The user can steer the simulation
and then return at a later time to see the effects of the changes. This modification
would likely be performed in conjunction with a modified user interface that reduces
the number of popup windows scattered about the user’s screen.

The Common Component Architecture Forum [22] is a current and ongoing col-
laboration between the Center for Scientific Computing and Imaging (SCI) at the Uni-
versity of Utah and the Department of Energy National Laboratories (and other uni-
versity research groups). With representatives from these facilities, the CCA Work-
ing Group was formed “to develop a specification for a component architecture for
high-performance computing.” This goal has long been a central theme of the SCIRun
problem solving environment. The proposed project will form a symbiotic relationship



between the DOE labs, Utah, and other university participants, in which SCIRun will
provide applications, tools, and experience with high-performance component archi-
tectures to the CCA community, and the DOE labs and other university groups part
of the CCA effort will help provide SCIRun with a more flexible and widely accepted
component model.

Acknowledgments

This work was supported in part by awards from the NIH NCRR, DOE ASCI and the
NSF. We would like to thank Yarden Livnat for the seismic images and Ray Levey of
EGI for the seismic data. The authors would like to thank our collaborators: Martin
Berzins, Geoff Potts, Don Tucker, Simon Arridge, and Martin Schweiger who have
developed applications within SCIRun.

References

[1] C.R. Johnson and S.G. Parker. Applications in computational medicine using
SCIRun: A computational steering programming environment. In H.W. Meuer,
editor, Supercomputer ‘95, pages 2–19. Saur-Verlag, 1995.

[2] S.G. Parker and C.R. Johnson. SCIRun: A scientific programming environment
for computational steering. In Supercomputing ‘95. IEEE Press, 1995.

[3] S.G. Parker, D.M. Weinstein, and C.R. Johnson. The SCIRun computational steer-
ing software system. In E. Arge, A.M. Bruaset, and H.P. Langtangen, editors,
Modern Software Tools in Scientific Computing, pages 1–44. Birkhauser Press,
1997.

[4] M. Miller, C. Hansen, and C.R. Johnson. Simulation steering with SCIRun
in a distributed environment. In B. Kgstrm, J. Dongarra, E. Elmroth, and
J. Wasniewski, editors, Applied Parallel Computing, 4th International Workshop,
PARA’98, volume 1541 of Lecture Notes in Computer Science, pages 366–376.
Springer-Verlag, Berlin, 1998.

[5] S. G. Parker. The SCIRun Problem Solving Environment and Computational Steer-
ing Software System. PhD thesis, University of Utah, 1999.

[6] C.R. Johnson, M. Berzins, L. Zhukov, and R. Coffey. SCIRun: Applications to at-
mospheric diffusion using unstructured meshes. In M.J. Baines, editor, Numerical
Methods for Fluid Dynamics VI, pages 111–122. Oxford University Press, 1998.



[7] M. Schweiger, L. Zhukov, S. Arridge, and Johnson C. Optical tomography using
the SCIRun simulation and visualization package: Preliminary results for three-
dimensional geometries and parallel processing. Optical Express: International
Electronic Journal of Optics, 4(8):263–269, 1999.

[8] L. Durbeck, N. Macias, D. Weinstein, C. Johnson, and J. Hollerbach. SCIRun hap-
tic display for scientific visualization. In Third Phantom User’s Group Workshop,
PUG98, Cambridge, MA, 1998. MIT.

[9] Center for the Simulation of Accidental Fires and Explosions (C-SAFE):
http://www.csafe.utah.edu/.

[10] NIH NCRR Center for Bioelectric Field Modeling, Simulation, and Visualization:
http://www.sci.utah.edu/ncrr.

[11] B. Ribarsky and et al. Object-oriented, dataflow visualization systems—A
paradigm shift? In Proceedings of Visualization ’92, pages 384–388. IEEE Press,
1992.

[12] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading,
1991.

[13] C.R. Johnson and S.G. Parker. A computational steering model applied to prob-
lems in medicine. In Supercomputing ‘94, pages 540–549. IEEE Press, 1994.

[14] G. Hart, A. Tomlin, J. Smith, and M. Berzins. Multi-scale atmospheric dispersion
modelling by the use of adaptive grid techniques. In Environmental Monitoring
and Assessment, 1997.

[15] A. Tomlin, M. Berzins, J. Ware, J. Smith, and M. Pilling. On the use of adap-
tive gridding methods for modelling chemical transport from multi-scale sources.
Atmospheric Env., 31(18):2945–2959.

[16] I. Ahmad and M. Berzins. An algorithm for odes from atmospheric dispersion
problems. Appl. Num. Math., 25:137–149, 1997.

[17] W. Speares and M. Berzins. A 3d unstructured mesh adaptation algorithm for time
dependent shock dominated problems. Int. Jour Num. Meths. in Fluids, 25:81–
104, 1997.

[18] S.F. Faux, R.W. McCarley, P.G. Nestor, M.E. Shenton, S.D. Pollak, V. Pen-
hume, E. Mondrow, B. Marcy, A. Peterson, T. Horvath, and K.L. Davis. P300
topographic assymetries are present in unmedicated schizophrenics. Electroen-
cephalography and clinical Neurophysiology, 88:32–41, 1993.

[19] B. Lutkenhoner, E. Menninghaus, O. Steinstrater, C. Wienbruch, M. Gissler, and
T. Elbert. Neuromagnetic source analysis using magnetic resonance images for



the construction of source and volume conductor model. Brain Topography,
7(4):291–299, 1995.

[20] D.M. Weinstein and C.R. Johnson. Effects of geometric uncertainty on the in-
verse EEG problem. In R.L. Barbour, M.J. Carvlin, and M.A. Fiddy, editors,
Computational, Experimental, and Numerical Methods for Solving Ill-Posed In-
verse Imaging Problems: Medical and Nonmedical Applications, volume 3171,
pages 138–145. SPIE, 1997.

[21] S. Sutton, M. Braren, J. Zubin, and E. R. John. Evoked potential correlates of
stimulus uncertainty. Science, 150:1187–8, 1965.

[22] Common Component Architecture Forum: http://www.acl.lanl.gov/cca.


