
Visibility-Based Prefetching for Interactive Out-Of-Core Rendering

Wagner T. Corrêa∗

Princeton University
James T. Klosowski†

IBM Research
Cláudio T. Silva‡

University of Utah

Abstract

We present a new visibility-based prefetching algorithm for inter-
active out-of-core rendering of large models on an inexpensive PC.
Using an approximate visibility technique, we can very accurately
and efficiently determine which geometry will be visible in the near
future and prefetch that geometry from disk before it must be ren-
dered. Our prefetching algorithm is a key part of a visualization
system capable of rendering a 13-million triangle model with 99%
accuracy at interactive frame rates. Our prefetching algorithm is
the first of its kind to be based on a from-point visibility technique,
and enables interactive rendering on a commodity PC, as opposed
to expensive high-end graphics workstations or parallel machines.

CR Categories: I.3.2 [Graphics Systems]: Computer Graphics—
Computing Methodologies; I.3.3 [Picture/Image Generation]:
Computer Graphics—Computing Methodologies

Keywords: out-of-core rendering, interactive rendering, commod-
ity PCs, occlusion culling, prefetching, walkthrough

1 Introduction

In this paper, we present a new visibility-based prefetching al-
gorithm for retrieving out-of-core 3D models and rendering them
at interactive rates on an inexpensive PC. Interactive rendering of
large models has applications in many areas, including computer-
aided design, engineering, entertainment, and training. Tradition-
ally, interactive rendering of large models has required triangle
throughput only available on high-end graphics workstations or par-
allel machines that cost hundreds of thousands of dollars. Recently,
with the explosive growth in performance of PC graphics cards that
cost a few hundred dollars, inexpensive PCs are becoming an attrac-
tive alternative to high-end machines. Although inexpensive PCs
can match the triangle throughput of high-end machines, inexpen-
sive PCs have much less main memory than high-end machines. To-
day a typical high-end machine has 16 GB of main memory, while
a typical inexpensive PC has 512 MB (32 times less). Thus, a chal-
lenge in exploiting the performance of PC graphics cards is design-
ing rendering systems that work under tight memory constraints.

∗Department of Computer Science, Princeton University, 35 Olden St.,
Princeton, NJ 08540; wtcorrea@cs.princeton.edu.

†Visual Technologies, IBM T. J. Watson Research Center, PO Box 704,
Yorktown Heights, NY 10598; jklosow@us.ibm.com.

‡Work performed while at AT&T. Currently at Scientific Computing and
Imaging Institute, School of Computing, University of Utah, 50 S. Central
Campus Dr., Salt Lake City, UT 84112; csilva@cs.utah.edu.

Figure 1: Our out-of-core rendering system can preprocess a 13-
million-triangle model in 3 minutes, and then render it with 99%
accuracy at 10 frames per second on an inexpensive PC.

Our rendering system, iWalk, overcomes the memory constraints
of an inexpensive PC by using an out-of-core preprocessing algo-
rithm and a new multi-threaded out-of-core rendering approach to
overlap rendering, visibility computation, and disk operations. The
preprocessing algorithm breaks the geometry of a model into man-
ageable pieces, and creates on disk a spatial subdivision of the ge-
ometry. At runtime, the system maintains in memory a cache of the
most recently used geometry.

The system can run in two visibility modes: approximate or con-
servative. In approximate mode, the system tries to maximize the
quality of the rendered images, given a user-defined budget of ge-
ometry per frame. This budget is based on the hardware capabilities
(such as the graphics card triangle throughput and the disk band-
width) and the target frame rate. In conservative mode, for those
instances that cannot tolerate any errors in the rendered images, the
system determines and renders all the visible geometry, potentially
at lower frame rates. In either visibility mode, as the viewpoint
changes, the visible geometry changes, and the geometry cache has
to load from disk the visible geometry that is not in the cache. Even
small changes in the viewpoint can cause large changes in visibility.
This problem manifests itself as abrupt drops in frame rates because
of bursts of disk operations.

The prefetching algorithm we present in this paper addresses this
problem. The goal of prefetching is to have the geometry already
in memory by the time it is needed. The prefetching algorithm
runs as a separate thread, and is orthogonal to the visibility mode.
The prefetching thread uses a from-point visibility algorithm to
find the geometry the user is likely to see in the near future, and
sends prefetch requests to the geometry cache. If the geometry
cache is busy loading geometry needed for the current frame, it ig-
nores prefetch requests; otherwise, it loads the requested geometry
from disk. By amortizing the cost of bursts of disk operations over
frames with few disk operations, prefetching improves the perfor-
mance of the system in either visibility mode.

The main contribution of this paper is a multi-threaded out-of-
core rendering approach which to our knowledge is the first to com-
bine speculative prefetching with a from-point visibility algorithm.

Our prefetching algorithm plays a critical role in our iWalk system,
which is capable of rendering a model with tens of millions of poly-
gons at interactive frame rates on an inexpensive PC (Figure 1).

2 Related Work

Researchers have studied the problem of rendering complex mod-
els at interactive frame rates for many years. Clark [1976] pro-
posed many of the techniques for rendering complex models used
today, including the use of hierarchical spatial data structures, level-
of-detail (LOD) management, hierarchical view-frustum and oc-
clusion culling, and working-set management (geometry caching).
Garlick et al. [1990] presented the idea of exploiting multiprocessor
graphics workstations to overlap visibility computations with ren-
dering. Airey et al. [1990] described a system that combined LOD
management with the idea of precomputing visibility information
for models made of axis-aligned polygons.

Funkhouser et al. [1992] described the first published system that
supported models larger than main memory, and performed spec-
ulative prefetching. Their system was based on the from-region
visibility algorithm of Teller and Séquin [1991], which required
long preprocessing times, and was limited to models made of axis-
aligned cells. Our system is based on the from-point visibility al-
gorithm of Klosowski and Silva [2000; 2001], which requires very
little preprocessing, and can handle any 3D polygonal model.

Aliaga et al. [1999] presented the Massive Model Rendering
(MMR) system, which employed many acceleration techniques, in-
cluding replacing geometry far from the user’s point of view with
imagery, occlusion culling, LOD management, and from-region
prefetching. MMR was the first published system to handle mod-
els with tens of millions of polygons at interactive frame rates, al-
though it did require an expensive high-end multi-processor graph-
ics workstation.

Wald et al. [2001] developed a ray tracing system that used a
cluster of 7 dual-processor PCs to render low-resolution images of
models with tens of millions of polygons at interactive frame rates.
Avila and Schroeder [1997] and El-Sana and Chiang [2000] devel-
oped systems for interactive out-of-core rendering based on LOD
management, but these systems did not perform occlusion culling.
Varadhan and Manocha [2002] describe a system for out-of-core
rendering that uses hierarchical LODs [Erikson et al. 2001] and
prefetching, but their system does not perform occlusion culling,
and their preprocessing step is in-core.

Wonka et al. [2001] employed a from-point visibility algo-
rithm and used two processors to overlap visibility computation
and rendering at runtime (similarly to the idea introduced by Gar-
lick et al. [1990]), but they only reported results for 2.5D environ-
ments that were smaller than main memory. Many other researchers
have also developed systems for out-of-core rendering, but with-
out focusing on achieving interactive frame rates [Chiang and Silva
1997; Chiang et al. 1998; Cox and Ellsworth 1997; Pharr et al.
1997; Shen et al. 1999; Sutton and Hansen 2000].

3 Out-Of-Core Preprocessing

Recall that our main goal is to render a large model using an inex-
pensive PC with small memory. To accomplish this, we must first
construct an out-of-core hierarchical representation for the model
during a preprocessing step, and then at runtime load on demand
the hierarchy nodes that the user sees. Our current algorithm builds
an out-of-core octree [Samet 1990] whose leaves contain the geom-
etry of the model. To store the octree on disk, we save the geometric
contents of each octree node in a separate file, and create a hierar-
chy structure (HS) file, which stores information about the spatial

relationship of the nodes in the hierarchy, and for each node it con-
tains the node’s bounding box and auxiliary data needed for visibil-
ity culling. The HS file is the main data structure that our system
uses to control the flow of data and is assumed to fit in memory.
For the 13-million triangle model used throughout this paper, the
HS file was only 3 MB.

An in-core approach to build an octree for a model would process
the entire model in one pass, using a machine with large enough
memory to hold both the model and the resulting octree. We avoid
this brute-force approach because we do not want to use a separate
expensive machine with large memory just to build the octree. Our
out-of-core algorithm builds an octree for a model directly on ma-
chines with small memory. The algorithm first breaks the model
in sections that fit in main memory, and then incrementally builds
the octree on disk, one pass for each section, keeping in memory
only the section being processed. Our preprocessing algorithm re-
quires no user intervention and is very fast, often orders of mag-
nitude faster than previous approaches. It constructs the octree for
the UNC power plant model [UNC 1999] in just 3 minutes, while
the MMR system [Aliaga et al. 1999] required over two weeks, and
the system by Wald et al. [2001] spent 2.5 hours preprocessing the
same model.

Our preprocessing is similar in nature to several other construc-
tion algorithms [Cignoni et al. 2002; Ueng et al. 1997; Wald et al.
2001]. It is most akin to the algorithm of Cignoni et al. [2002], and
therefore has comparable preprocessing times. Other recent con-
struction algorithms are presented in [Durand et al. 2000; Schaufler
et al. 2000; Wonka et al. 2000; Wonka et al. 2001]. As our con-
struction algorithm is not the main focus of this paper, we refer the
reader to [Corrêa et al. 2002] for a thorough examination of the
differences between all of these algorithms.

4 Out-of-Core Rendering

Figure 2 shows a diagram of iWalk’s rendering approach. The user
interface (a) keeps track of the position, orientation, and field-of-
view of the user’s camera. For each new set of camera parameters,
the system computes the visible set — the set of octree nodes that
the user sees. According to the user’s choice, the system can com-
pute an approximate visible set (b), or a conservative visible set (c).
To compute an approximate visible set, iWalk uses the prioritized-
layered projection (PLP) algorithm [Klosowski and Silva 2000]. To
compute a conservative visible set, iWalk uses cPLP [Klosowski
and Silva 2001], a conservative extension of PLP. For each node
in the visible set, the rendering thread (d) sends a fetch request to
the geometry cache (i), which will read the node from disk (j) into
memory. The rendering thread then sends the node to the graphics
card (e) for display (f). To avoid bursts of disk operations, the look-
ahead thread (g) predicts where the user’s camera is likely to be in
the next frame. For each predicted camera, the look-ahead thread
uses PLP (h) to estimate the visible set, and then sends prefetch
requests to the geometry cache (i).

To better understand our rendering approach, we need to briefly
review the visibility algorithms that iWalk uses. PLP is an approxi-
mate, from-point visibility algorithm that may be thought of as a set
of modifications to the traditional hierarchical view frustum culling
algorithm [Clark 1976]. First, instead of traversing the model hier-
archy in a predefined order, PLP keeps the hierarchy leaf nodes in a
priority queue called the front, and traverses the nodes from highest
to lowest priority. When PLP visits a node, it adds it to the visible
set, removes it from the front, and adds the unvisited neighbors of
the node to the front. Second, instead of traversing the entire hier-
archy, PLP works on a budget, stopping the traversal after a certain
number of primitives have been added to the visible set. Finally,
PLP requires each node to know not only its children, but also all
of its neighbors.

approximate
visible set conservative

visible set

fetch
request

nodes to
render

nodes to
render

approximate
visible set

approximate
visibility: PLP

(h)

geometry
cache

(i)

look−ahead
(g)

occlusion
queries

front

camera image

read request

geometry

geometry

user
interface

(a)

approximate
visibility: PLP

(b)

conservative
visibility: cPLP

(c)
(d)

graphics
card
(e)

disk
(j)

monitor
(f)

fetch request

prefetch request

predicted camera

rendering

Figure 2: The multi-threaded out-of-core rendering approach of the iWalk system. For each new camera (a), the system finds the set of
visible nodes using either approximate visibility (b), or conservative visibility (c). For each visible node, the rendering thread (d) sends a
fetch request to the geometry cache (i), and then sends the node to the graphics card (e). The look-ahead thread (g) predicts future cameras,
estimates the nodes that the user would see then (h), and sends prefetch requests to the geometry cache (i).

In addition to being time-critical, another key feature of PLP that
iWalk exploits is that PLP can generate an approximate visible set
based on just the information stored in the hierarchy structure file
created at preprocessing time. In other words, PLP can estimate the
visible set without access to the actual scene geometry.

An implementation of PLP may be simple or sophisticated, de-
pending on the heuristic to assign priorities to each node. Several
heuristics precompute for each node a value between 0.0 and 1.0
called solidity, which estimates how likely it is for the node to oc-
clude an object behind it. At run time, the priority of a node is found
by initializing it to 1.0, and attenuating it based on the solidity of
the nodes found along the traversal path to the node (Figure 3).

Although PLP is in practice quite accurate for most frames, it
does not guarantee image quality, and some frames may show ob-
jectionable artifacts. To avoid this potential problem, the system
may use cPLP [Klosowski and Silva 2001], a conservative exten-
sion of PLP that guarantees 100% accurate images. However, cPLP
cannot find the visible set from the HS file only, and needs to read

Figure 3: A section of the UC Berkeley Soda Hall model. At run-
time, the iWalk system uses the prioritized-layered projection (PLP)
algorithm to estimate the nodes potentially visible from the current
view frustum (outlined in yellow). The transparent color of each
node indicates the projection priority of the node.

the geometry of all potentially visible nodes. These additional disk
operations may make cPLP much slower than PLP. Our imple-
mentation of cPLP can use either an item-buffer technique that is
portable to any platform that supports OpenGL, or occlusion query
extensions (such as the HP test [Severson 1999] and the nVidia oc-
clusion query [Rege 2002]) when they are available. Thus, cPLP
needs to fetch geometry from the geometry cache, and read pixels
or occlusion queries from the graphics card.

5 From-Point Visibility-Based Prefetching

The idea behind prefetching is to predict a set of nodes that the user
is likely to see next, and bring them to memory ahead of time. Ide-
ally, by the time the user sees those nodes, they will be already in the
geometry cache, and the frame rates will not be affected by the disk
latency. Systems researchers have studied prefetching strategies for
decades [Gindele 1977; Przybylski 1990], and many previous ren-
dering systems [Aliaga et al. 1999; Funkhouser 1996; Funkhouser
et al. 1992; Varadhan and Manocha 2002] have used prefetching
successfully. To our knowledge, all previous prefetching methods
that employ occlusion culling have been based on from-region vis-
ibility algorithms, and were designed to run on multiprocessor ma-
chines. Our prefetching method works with from-point visibility
algorithms, and runs as a separate thread in a uniprocessor machine.

Our prefetching method exploits the fact that PLP can very
quickly compute an approximate visible set. Given the current cam-
era (Figure 2a), the look-ahead thread (Figure 2g) predicts the next
camera position by simply extrapolating the current position and
the camera’s linear and angular speeds. More sophisticated predic-
tion schemes could consider accelerations and several prior camera
locations. For each predicted camera, the look-ahead thread uses
PLP (Figure 2h) to determine which nodes the predicted camera is
likely to see. For each node likely to be visible, the look-ahead
thread sends a prefetch request to the geometry cache (Figure 2i).
The geometry cache puts the prefetch requests in a queue and a set
of prefetch threads process the requests. If there are no fetch re-
quests pending, and if the maximum amount of geometry that can
be prefetched per frame has not been reached, a prefetch thread will
pop a request from the prefetch queue, and read the requested node
from disk (if necessary) (Figure 2j). If the cache is full, the least
recently used nodes are evicted from memory. The requested nodes
are then placed in a queue of nodes that are ready to be rendered.

fetch(node, ready_queue)
{

lock cache;
while (node is busy)

wait until node is free;
mark node as busy;
if (node is valid) {

miss = false;
update node position;

} else {
miss = true;
allocate memory;

}
unlock cache;

if (miss)
read node;

lock cache;
if (miss)

add node to cache;
if (no fetches pending)

broadcast no fetches pending;
unlock cache;
add node to ready_queue;

}

prefetch(node, ready_queue)
{

lock cache;
while (there are fetch requests pending)

wait until no fetch requests pending;
while (node is busy)

wait until node is free;
mark node as busy;
if ((node is valid)

|| (reached max prefetch amount per frame)
|| (reached max prefetch request age))
can_read = false;

else {
can_read = true;
allocate memory;

}
unlock cache;

if (can_read) {
read node;
lock cache;
add node to cache;
unlock cache;

}
add node to ready_queue;

}

release(node)
{

lock cache;
mark node as free;
if (node is valid)

broadcast memory available;
broadcast node is free;
unlock cache;

}

Figure 4: Pseudo-code for the main cache routines.

(a) user’s view

(b) cache view

Figure 5: A sample frame inside the power plant model. (a) The
image that the user sees. (b) The state of the nodes in the cache.

Figure 4 shows the pseudo-code for the main routines run by
the threads in the cache. When a client makes a fetch request, a
thread executes the fetch routine (and similarly for a prefetch re-
quest). When the client is done using that node, it must call the
release routine. These routines have to be very careful about shar-
ing the cache data structures. To guarantee mutual exclusion, there
is a lock to access the cache, and each node has a flag indicating
whether it is free or busy. This scheme is similar to the one used
in the UNIX buffer cache [Bach 1986]. Figure 5a shows the user’s
view of the UNC power plant model [UNC 1999] during a walk-
through session, and Figure 5b shows the state of the octree nodes
in the cache.

Unlike our from-point prefetching method, from-region pre-
fetching methods decompose the model into cells, and precompute
for each cell the geometry that the user would see from any point in
the cell. At runtime, from-region methods guess in which cell the
user will be next, and load the geometry visible from that cell ahead
of time. Our from-point prefetching method has several advantages
over from-region prefetching methods. First, from-region methods
typically require long preprocessing times (tens of hours), while our
from-point method requires little preprocessing (a few minutes).
Second, the set of nodes visible from a single point is typically
much smaller than the set of nodes visible from any point in a re-
gion. Thus, our from-point prefetching method avoids unnecessary
disk operations, and has a better chance than a from-region method
of prefetching nodes that actually will be visible soon. Third, some
from-region methods require that cells coincide with axis-aligned
polygons in the model. Our from-point method imposes no restric-
tion on the model’s geometry. Finally, the nodes visible from a cell
may be very different from the nodes visible from a neighbor of that
cell. Thus, a from-region method may cause bursts of disk activity
when the user crosses cell boundaries, while a from-point method
better exploits frame-to-frame coherence.

Since the cost of disk read operations is high, most systems try
to overlap all of these operations with other computations by run-
ning several processes on a multiprocessor machine [Aliaga et al.
1999; Funkhouser 1996; Garlick et al. 1990], or on a network of
machines [Wald et al. 2001; Wonka et al. 2001]. Along these same
lines, our system uses multiple threads on a single processor ma-
chine to overlap disk operations with visibility computations and
rendering.

6 Experimental Results

To evaluate our system, and in particular our prefetching algo-
rithm, we experimented with the 13-million-triangle UNC power
plant model [UNC 1999]. The raw model was roughly 600 MB
in size; after our preprocessing step, the model size increased to
1 GB. To our knowledge, no other system has been able to render
this model at interactive rates on a single PC. Our system ran Red
Hat Linux 8.0, had a 2.8 GHz Pentium IV CPU, 512 MB of main
memory, a 35 GB SCSI disk, and an nVidia Quadro 980 XGL card.
Using top, we found that the operating system and related utili-
ties used roughly 64 MB of main memory. For our test machine,
we found that the following configuration worked well: 256 MB
of geometry cache, 8 fetch threads, 1 prefetch thread, a maximum
of 2 MB of prefetched geometry per frame, approximate visibility
with a budget of 280,000 triangles per frame, a target frame rate of
10 fps, and image resolution of 1024×768.

To analyze the overall performance of our system, we measured
the frame rates achieved when walking through the power plant
model along several predefined paths (which enabled repeatable
conditions for our experiments). Note that our algorithms made
no assumptions on the paths being known beforehand; therefore,
complete camera interactivity is always available to the user. The
first path used has 36,432 viewpoints, visits almost every part of the
model, and requires fetching a total of 900 MB of data from disk.
Using the above configuration, our system rendered the frames
along that path in 74 minutes. Only 95 frames (0.26%) caused the
system to achieve less than 1 fps. The mean frame rate was 9.2 fps,
and the median frame rate was 9.3 fps. To analyze the detailed
performance of our system, it is easier to use shorter paths. For
this purpose, we used a 500-frame path which required 210 MB of
data to be read from disk. If fetched independently, the maximum
amount of memory necessary to render any given frame in approx-
imate mode would be 16 MB.

To study how multiple threads improve the frame rates, we ran
tests using three different configurations. The first configuration

frame number

fra
m

e
ra

te
 (f

ra
m

es
/s

ec
)

0 100 200 300 400 500

2
4

6
8

10

(a) sequential fetching and rendering

frame number

fra
m

e
ra

te
 (f

ra
m

es
/s

ec
)

0 100 200 300 400 500

0
2

4
6

8
10

(b) concurrent fetching and rendering

frame number

fra
m

e
ra

te
 (f

ra
m

es
/s

ec
)

0 100 200 300 400 500

0
2

4
6

8
10

(c) concurrent fetching, rendering, and prefetching

Figure 6: Using multiple threads to improve frame rates. We
measured the frame rates during a 500-frame walkthrough of the
power plant model under three configurations: (a) using one thread
for fetching and rendering; (b) using multiple threads to overlap
fetching and rendering; and (c) using multiple threads to overlap
fetching, rendering, and prefetching. Concurrent fetching elimi-
nates some downward spikes, and adding concurrent speculative
prefetching eliminates almost all of the remaining spikes. The first
spike happens because the cache is initially empty. The three con-
figurations produce identical images.

frame number

ac
cu

ra
cy

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 7: Image accuracy for a 500-frame walkthrough of the power
plant model when using approximate visibility. The vertical axis
represents the fraction of correct pixels in the approximate images
in comparison to the conservative images. The minimum accuracy
was 97.3%, and the median accuracy was 99.2%.

frame number

si
ze

 (K
B

)

0 100 200 300 400 500

0
20

00
60

00
10

00
0

misses
prefetches

(a) without prefetching

frame number

si
ze

 (K
B

)

0 100 200 300 400 500

0
20

00
60

00
10

00
0

misses
prefetches

(b) with prefetching

Figure 8: Using prefetching to amortize the cost of disk operations.
We measured the amount of geometry fetched per frame without
prefetching (a) and with prefetching (b). Prefetching amortizes the
cost of bursts of disk operations over frames with few disk oper-
ations, thus eliminating most frame rate drops. The system was
configured to prefetch at most 2 MB per frame.

is entirely sequential: a single thread is responsible for computing
visibility, performing disk operations, and rendering. The second
configuration adds asynchronous fetching to the first configuration,
allowing up to 8 fetch threads. The third configuration adds an ex-
tra thread for speculative prefetching to the second configuration,
allowing up to 2 MB of geometry to be prefetched per frame. Fig-
ure 6 shows the frame rates achieved by these three configurations
for the 500-frame path. For the purely sequential configuration,
we see many downward spikes that correspond to abrupt drops in
frame rates, which are caused by the latency of the disk operations,
and spoil the user’s experience (The first spike happens because
the cache is initially empty). When we add asynchronous fetch-
ing, many of the downward spikes disappear, but too many still
remain. The user’s experience is much better, but the frame rate
drops are still disturbing. When we add speculative prefetching,
all significant downward spikes disappear, and the user experience
is smooth. Note that the gain in interactivity comes entirely from
overlapping the independent operations. The three configurations
achieve exactly the same image accuracy (Figure 7).

Figure 8 shows why prefetching improves the frame rates. The
charts compare the amount of geometry that the system reads from
disk per frame for the second and third configurations described
above. Prefetching greatly reduces the need to fetch large amounts
of geometry in a single frame, and thus helps the system to maintain
higher and smoother frame rates.

Figure 9 shows that the user speed is another important param-
eter in the system, and has to be adjusted to the disk bandwidth.
When the user speed increases, the changes in the visible set are
larger. In other words, as the frame-to-frame coherence decreases,
the amount of data the system needs to read per frame increases.
Thus, caching and prefetching are more effective if the user moves
at speeds compatible with the disk bandwidth. The figure also indi-
cates that higher disk bandwidth should improve frame rates.

7 Conclusion

We have presented a system for rendering large models on machines
with small memory at interactive frame rates. A key component of
our out-of-core rendering approach is a new prefetching algorithm
based on a from-point visibility algorithm. The prefetch algorithm
accurately and efficiently predicts what geometry will be visible in
subsequent frames and prefetches them from disk. We believe our
system is the first to be able to preprocess the 13-million triangle
UNC power plant model and render it interactively on a single PC.

One area of future work is adding level-of-detail (LOD) man-
agement to our entire system. In approximate mode, our system
may produce images with low accuracy if the camera sees the entire
model. El-Sana et al. [2001] show how to integrate LOD manage-
ment with PLP-based occlusion culling. Another possible area for
future work is speeding up rendering in conservative mode, which
currently can be much slower than rendering in approximate mode.
Finally, we also would like to extend the system to support dynamic
scenes.

Acknowledgments

We thank Daniel Aliaga, David Dobkin, Juliana Freire, Thomas
Funkhouser, Jeff Korn, Patrick Min, and Emil Praun for sugges-
tions and encouragement. We also thank the University of North
Carolina at Chapel Hill and the University of California at Berkeley
for providing us with datasets. This research was partly funded by
CNPq (Conselho Nacional de Desenvolvimento Cientı́fico e Tec-
nológico), Brazil.

frame number

fra
m

e
ra

te
 (f

ra
m

es
/s

ec
)

0 20 40 60 80 100 120

0
2

4
6

8
10

(a) very high user speed

frame number
fra

m
e

ra
te

 (f
ra

m
es

/s
ec

)
0 50 100 150 200 250

0
2

4
6

8
10

(b) high user speed

frame number

fra
m

e
ra

te
 (f

ra
m

es
/s

ec
)

0 100 200 300 400 500

0
2

4
6

8
10

(c) normal user speed

frame number

fra
m

e
ra

te
 (f

ra
m

es
/s

ec
)

0 200 400 600 800 1000

0
2

4
6

8
10

(d) low user speed

Figure 9: Adjusting the user speed to the disk bandwidth. We measured the frame rates along a camera path inside the power plant model for
different user speeds (or equivalently, for different number of frames in the path). If the user moves too fast, the frame rates are not smooth.
The faster the user moves, the larger the changes in occlusion, and therefore the larger the number of disk operations.

References

AIREY, J. M., ROHLF, J. H., AND FREDERICK P. BROOKS, J. 1990.
Towards image realism with interactive update rates in complex virtual
building environments. 1990 ACM Symposium on Interactive 3D Graph-
ics 24, 2 (Mar.), 41–50.

ALIAGA, D., COHEN, J., WILSON, A., ZHANG, H., ERIKSON, C., HOFF,
K., HUDSON, T., STÜRZLINGER, W., BAKER, E., BASTOS, R., WHIT-
TON, M., BROOKS, F., AND MANOCHA, D. 1999. MMR: An interac-
tive massive model rendering system using geometric and image-based
acceleration. 1999 ACM Symposium on Interactive 3D Graphics (Apr.),
199–206.

AVILA, L. S., AND SCHROEDER, W. 1997. Interactive visualization of
aircraft and power generation engines. In IEEE Visualization ’97, IEEE,
483–486.

BACH, M. J. 1986. The Design of the UNIX Operating System. Prentice
Hall.

CHIANG, Y.-J., AND SILVA, C. T. 1997. I/O optimal isosurface extraction.
IEEE Visualization ’97 (Nov.), 293–300.

CHIANG, Y.-J., SILVA, C. T., AND SCHROEDER, W. J. 1998. Interactive
out-of-core isosurface extraction. IEEE Visualization ’98 (Oct.), 167–
174.

CIGNONI, P., ROCCHINI, C., MONTANI, C., AND SCOPIGNO, R. 2002.
External memory management and simplification of huge meshes. IEEE
Transactions on Visualization and Computer Graphics.

CLARK, J. H. 1976. Hierarchical geometric models for visible surface
algorithms. Communications of the ACM 19, 10 (Oct.), 547–554.

CORRÊA, W. T., KLOSOWSKI, J. T., AND SILVA, C. T. 2002.
iWalk: Interactive out-of-core rendering of large models. Tech-
nical Report TR-653-02, Princeton University. Available at:
http://www.cs.princeton.edu/˜wtcorrea/papers/iwalk.pdf.

COX, M. B., AND ELLSWORTH, D. 1997. Application-controlled demand
paging for out-of-core visualization. IEEE Visualization ’97 (Nov.), 235–
244.

DURAND, F., DRETTAKIS, G., THOLLOT, J., AND PUECH, C. 2000. Con-
servative visibility preprocessing using extended projections. In Pro-
ceedings of Siggraph 2000, 239–248.

EL-SANA, J., AND CHIANG, Y.-J. 2000. External memory view-
dependent simplification. Computer Graphics Forum 19, 3 (Aug.), 139–
150.

EL-SANA, J., SOKOLOVSKY, N., AND SILVA, C. T. 2001. Integrating
occlusion culling with view-dependent rendering. In IEEE Visualization
2001, 371–378.

ERIKSON, C., MANOCHA, D., AND BAXTER III, W. V. 2001. HLODs for
faster display of large static and dynamic environments. In 2001 ACM
Symposium on Interactive 3D Graphics, 111–120.

FUNKHOUSER, T. A., SÉQUIN, C. H., AND TELLER, S. J. 1992. Man-
agement of large amounts of data in interactive building walkthroughs.
1992 ACM Symposium on Interactive 3D Graphics 25, 2 (Mar.), 11–20.

FUNKHOUSER, T. A. 1996. Database management for interactive display
of large architectural models. Graphics Interface ’96 (May), 1–8.

GARLICK, B. J., BAUM, D. R., AND WINGET, J. M. 1990. Interac-
tive viewing of large geometric databases using multiprocessor graphics
workstations. In Siggraph Course: Parallel Algorithms and Architec-
tures for 3D Image Generation. ACM Siggraph, 239–245.

GINDELE, B. S. 1977. Buffer block prefetching method. IBM Technical
Disclosure Bulletin 20, 2, 696–697.

KLOSOWSKI, J. T., AND SILVA, C. T. 2000. The prioritized-layered pro-
jection algorithm for visible set estimation. IEEE Transactions on Visu-
alization and Computer Graphics 6, 2 (Apr.-June), 108–123.

KLOSOWSKI, J. T., AND SILVA, C. T. 2001. Efficient conservative vis-
ibility culling using the prioritized-layered projection algorithm. IEEE
Transactions on Visualization and Computer Graphics 7, 4 (Oct.-Dec.),
365–379.

PHARR, M., KOLB, C., GERSHBEIN, R., AND HANRAHAN, P. 1997. Ren-
dering complex scenes with memory-coherent ray tracing. Proceedings
of Siggraph 97 (Aug.), 101–108.

PRZYBYLSKI, S. A. 1990. Cache and Memory Hierarchy Design: A
Performance-Directed Approach. Morgan Kaufmann.

REGE, A., 2002. Occlusion extensions. http://developer.nvidia.com/docs/-
IO/2645/ATT/GDC2002 occlusion.pdf.

SAMET, H. 1990. The Design and Analysis of Spatial Data Structures.
Addison-Wesley.

SCHAUFLER, G., DORSEY, J., DECORET, X., AND SILLION, F. X. 2000.
Conservative volumetric visibility with occluder fusion. In Proceedings
of Siggraph 2000, 229–238.

SEVERSON, K., 1999. VISUALIZE workstation graphics for Windows NT.
HP product literature.

SHEN, H.-W., CHIANG, L.-J., AND MA, K.-L. 1999. A fast volume ren-
dering algorithm for time-varying fields using a time-space partitioning
(TSP) tree. IEEE Visualization ’99 (Oct.), 371–378.

SUTTON, P. M., AND HANSEN, C. D. 2000. Accelerated isosurface ex-
traction in time-varying fields. IEEE Transactions on Visualization and
Computer Graphics 6, 2 (Apr.-June), 98–107.

TELLER, S. J., AND SÉQUIN, C. H. 1991. Visibility preprocessing for
interactive walkthroughs. Proceedings of Siggraph 91 25, 4 (July), 61–
69.

UENG, S.-K., SIKORSKI, C., AND MA, K.-L. 1997. Out-of-core stream-
line visualization on large unstructured meshes. IEEE Transactions on
Visualization and Computer Graphics 3, 4 (Oct.-Dec.), 370–380.

UNC, 1999. Power plant model. http://www.cs.unc.edu/˜geom/-
Powerplant/. The Walkthru Group at UNC Chapel Hill.

VARADHAN, G., AND MANOCHA, D. 2002. Out-of-core rendering of
massive geometric environments. In IEEE Visualization 2002.

WALD, I., SLUSALLEK, P., AND BENTHIN, C. 2001. Interactive dis-
tributed ray tracing of highly complex models. Rendering Techniques
2001, 277–288.

WONKA, P., WIMMER, M., AND SCHMALSTIEG, D. 2000. Visibility pre-
processing with occluder fusion for urban walkthroughs. In Rendering
Techniques 2000, 71–82.

WONKA, P., WIMMER, M., AND SILLION, F. 2001. Instant visibility.
Computer Graphics Forum 20, 3, 411–421.

