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Abstract

Quantitative diffusion tensor imaging (DTI) has become the major imaging modality to study properties of white matter and the geom-
etry of fiber tracts of the human brain. Clinical studies mostly focus on regional statistics of fractional anisotropy (FA) and mean diffu-
sivity (MD) derived from tensors. Existing analysis techniques do not sufficiently take into account that the measurements are tensors, and
thus require proper interpolation and statistics of tensors, and that regions of interest are fiber tracts with complex spatial geometry. We
propose a new framework for quantitative tract-oriented DTI analysis that systematically includes tensor interpolation and averaging,
using nonlinear Riemannian symmetric space. A new measure of tensor anisotropy, called geodesic anisotropy (GA) is applied and com-
pared with FA. As a result, tracts of interest are represented by the geometry of the medial spine attributed with tensor statistics (average
and variance) calculated within cross-sections. Feasibility of our approach is demonstrated on various fiber tracts of a single data set. A
validation study, based on six repeated scans of the same subject, assesses the reproducibility of this new DTI data analysis framework.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Diffusion tensor imaging (DTI) of brain structures mea-
sures diffusion properties by the local probability of self-
motion of water molecules. A tensor field characterizes
amount and locally preferred directions of local diffusivity.
While diffusion can be considered isotropic in fluid it
appears highly anisotropic along neural fiber tracts due
to inhibition of free diffusion of intra- and extra-cellular
fluid (Beaulieu, 2002). DTI has become the preferred
modality to explore white matter properties associated with
brain connectivity in vivo.
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The literature proposes a variety of DTI processing
techniques, ranging from tensor field computation to quan-
titative analysis, and including visualization, regulariza-
tion, registration, tractography and population statistics.
Few of these methods make use of the full tensor informa-
tion though most would benefit from an appropriate math-
ematical framework for tensor operations and tensor
statistics calculation. For instance, tensor interpolation is
of high interest for regularization, which is a crucial com-
ponent in DTI in view of the high sensitivity to noise and
to partial voluming effects. However, most approaches pro-
posed so far do not directly regularize the tensor measure-
ments. The diffusion weighted images are smoothed before
tensor calculation in Parker et al. (2000), only the vector
field defined by the principal direction diffusion (PDD) is
filtered in Poupon et al. (2001). In Coulon et al. (2004),
the PDD field and the three eigenvalue maps are restored
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in a decoupled manner. Registration and spatial normali-
zation (Alexander et al., 2001; Jones et al., 2002) are
another typical examples, where tensor interpolation is
required. Moreover, tensor statistics calculation also
becomes necessary for statistical DTI analysis in popula-
tion studies. So far, analysis schemes have mostly focused
on measuring properties in regions of interest and to a les-
ser extent along fiber bundles (Ding et al., 2003; Fillard
et al., 2003; Corouge et al., 2004; Jones et al., 2006) and
they have not made use of the full tensor information. Con-
sequently, clinical studies have mostly been limited to sta-
tistics of fractional anisotropy or mean diffusivity maps
on a voxel-by-voxel basis (Lim and Helpern, 2002).

In this paper, we design a new framework for quantita-
tive DTI data analysis. First, we use the full tensor infor-
mation and include tensor interpolation and tensor
averaging. We choose the affine-invariant Riemannian met-
ric to define tensor operations and tensor statistics out of
the various tensor metrics proposed in the literature. Sec-
ond, as opposed to voxel-based analysis, we propose an
object-oriented approach in which the fiber tracts act as
coordinate systems for quantitative DTI analysis. Such a
structural approach is superior for data representation of
DTI if it is to be used for analysis of functional properties
of anatomical structures, in this case white matter fiber
tracts. Our concept provides a complete representation of
each individual bundle, describing both geometry and dif-
fusion properties. The representation includes model of
the geometry of individual bundles and statistics of diffu-
sion tensors to be associated with the geometric model.
The tract geometry is modeled by estimation of a prototype
shape and characterization of shape variability. Tensor
information is integrated across cross-sections and repre-
sented along bundles. Each location along the template
curve is attributed with a template tensor (an average ten-
sor), from which we derive diffusion properties.

The next section motivates our choice for the affine
invariant Riemannian metric and summarizes the key prin-
ciples of the Riemannian framework, which has been fully
described elsewhere, for tensor operations and tensors sta-
tistics. It also presents a new measure of tensor anisotropy
consistent with the chosen tensor metric. Section 3
describes the geometric modeling of fiber tracts and
explains how such a theoretical framework is used to attri-
bute the mean geometric model with diffusion tensor statis-
tics. Section 4 illustrates our methodology on a single data
set before presenting a validation study.

2. Theoretical framework

2.1. Motivation

We denote the space of all diffusion tensors, i.e., the
space of all 3 · 3 symmetric, positive-definite matrices, as
PD(3). Averaging and interpolation of diffusion tensors
can be formulated as a least-squares minimization problem
in this space. This definition depends on the choice of met-
ric, or distance, on the space PD(3). Various metrics have
been proposed to measure the distance between two ten-
sors. Some of them are based on scalar features extracted
from the diffusion tensor, like in Guimond et al. (2002),
where DTI data registration is driven by eigenvalues maps.
Such approaches unfortunately ignore the directional
information contained in the tensor. Out of several similar-
ity measures based on the full diffusion tensor, the tensor
Euclidean distance, or Frobenius norm, is empirically
shown to perform the best for matching diffusion tensor
images (Alexander et al., 1999). It compares with the tensor
metric proposed by Zhang et al. (2004, 2005), which is
derived from diffusion profiles and expressed as a weighted
sum of the Euclidean distance and the trace distance (abso-
lute value of the difference of the tensors’ traces). The
Frobenius norm is used in Jones et al. (2002) to compute
statistics of a distribution of tensors. The average tensor
is defined as the Fréchet mean of a set of tensors and coin-
cides with the linear averaging of the tensors coefficients
under the chosen metric. Linear averaging is also applied
in Westin et al. (2002) for Gaussian filtering of a tensor
field.

However, tensors with the standard addition and scalar
multiplication, i.e., as defined on square matrices, do not
form a vector space. For example, the negation of a posi-
tive-definite matrix is not positive-definite. Accordingly,
standard linear operations and statistics are not appropri-
ate: they do not preserve the natural properties of the
tensors. The determinant, respectively, the positive-
definiteness, of the diffusion tensors is not preserved by lin-
ear first, respectively second, order statistics. In particular,
linear averages suffer from a ‘‘swelling’’ effect, where diffu-
sion tensors with the same determinant will have an average
with a larger determinant. This can be thought of as intro-
ducing diffusion when averaging, which is not physically
acceptable. Linear interpolation of diffusion tensors suffers
from this same effect. Lately, several groups have overcome
these shortcomings by describing the space of diffusion ten-
sors, PD(3), as a curved manifold, or more specifically, a
Riemannian symmetric space and by deriving on this space
a more natural metric for tensor operations: the affine-
invariant Riemannian metric (Fletcher and Joshi, 2004;
Batchelor et al., 2005; Pennec et al., 2006). Another family
of Riemannian metrics, the Log-Euclidean metrics, has very
recently been proposed (Arsigny et al., 2005). Being Euclid-
ean in the domain of tensor logarithms, these metrics sim-
plify calculations on tensors and lower the computational
cost. Averages of a set of tensors with Log-Euclidean and
affine-invariant metrics are theoretically and practically
very similar. However, the affine-invariant Riemannian
metric is the only one with full affine invariance.

In this paper, we adopt the affine-invariant Riemannian
metric as its mathematical properties makes it an appropri-
ate choice for computation of tensor operations and tensor
statistics. The symmetric space metric does not suffer from
the swelling effect of the linear metric, that is, diffusion ten-
sors with the same determinant will have an average with



Fig. 2. Comparison of FA (solid line) and GA (dashed line) values for the
tensors with eigenvalues exp(t), exp(�t), exp(�t).
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the same determinant. Synthetic examples of weighted
averages of tensors are provided in Fig. 1. We use tensor
averaging and interpolation methods, first presented in
Fletcher and Joshi (2004) and Fletcher (2004), that are
based on the notion of geodesic distance within this space.

2.2. Statistics and interpolation of diffusion tensors

In Appendix B, we further develop the notion of sym-
metric space and the computation of geodesic distance on
PD(3). We define statistics, average and variance, of a set
of diffusion tensors based on the geodesic distance on
PD(3). Interpolation of diffusion tensors follows as an
extension to weighted averaging.

2.3. Geodesic anisotropy

An important widely used function for characterizing
the anisotropy of a tensor is fractional anistropy (FA).
Although FA characterizes anisotropy, it is not based on
the intrinsic geometry of the space of diffusion tensors.
We now describe a new anisotropy measure for diffusion
tensors, first defined in Fletcher (2004), called geodesic

anisotropy (GA) that is based on the geodesic distance in
the symmetric space PD(3). Geodesic anisotropy is intui-
tively a measure of how far away a diffusion tensor is from
being isotropic. Therefore, a natural measurement of the
anisotropy of a diffusion tensor p 2 PD(3) is the geodesic
distance between p and the closest isotropic diffusion ten-
sor. The geodesic anisotropy of p can be written as:

GAðpÞ ¼
X3

i¼1

ðlog ðkiÞ � log kÞ2
 !1

2

; ð1Þ

where ki denotes the eigenvalues of p and log k denotes the
average of the logs of the eigenvalues (see Appendix B for
mathematical details).
Fig. 1. Synthetic examples of weighted averages of tensors. The white ellipsoids
ellipsoid with the linear method (bottom). Left: weights = {0.5,0.5}. Right: w
preserve the determinant. (For interpretation of the references to color in this
Geodesic anisotropy, like FA, is invariant to uniform
scaling of a diffusion tensor. Unlike FA, which is in the
range [0,1], the GA is unbounded and can take values in
[0,1]. FA and GA represent a different mapping of the
eigenvalues. Eq. (1) shows that the geodesic anisotropy is
equivalent to the standard deviation of the log of the eigen-
values (times a scale factor). This is similar to how the frac-
tional anisotropy is defined via the standard deviation of
the eigenvalues, which are treated as linear entities. The
GA is consistent with the thinking of PD(3) as a symmetric
space, where the eigenvalues are treated as multiplicative
entities rather than linear ones. A comparison of FA and
GA values of the one-parameter family of tensors that have
eigenvalues k1 = exp(t), k2 = k3 = exp(�t) is shown in
Fig. 2.
average to the red ellipsoid with the geodesic method (top) and to the blue
eights = {0.75,0.25}. It can be observed that the linear method does not
figure legend, the reader is referred to the web version of this article.)
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3. Analysis methodology

Interpolation and averaging of tensors is applied for
quantitative fiber tract-oriented analysis of DTI. The
geometry of an individual fiber tract is modeled, basically
with what is commonly called a point distribution model
(PDM) (Cootes et al., 1995). Diffusion tensor statistics
are computed across fiber tract sections and are associ-
ated with the mean geometric model, resulting in a com-
pact description of diffusion properties along the fiber
tract. An overview of our framework is illustrated in
Fig. 3.

3.1. Preprocessing: tensor field computation and fiber
extraction

The tensor field, defined by a 3 · 3 symmetric definite-
positive matrices in each voxel, is computed from DTI
data by solving the Stejskal–Tanner’s diffusion equation
system as described in Westin et al. (2002). A tractogra-
phy algorithm (Fillard and Gerig, 2003) extracts stream-
lines following the principal diffusion tensor directions
between source and target regions of interest. The track-
ing is performed under local continuity constraints (Xu
et al., 2002), backwards, and provides sub-voxel precision.
Our latest version of the tractography tool includes tensor
interpolation as described in Section 2. Except at branch-
ing or crossing points, the extracted 3D curves are
assumed to represent the most likely pathways through
the tensor field. Note that the term ‘‘fibers’’ is used for
streamlines in the vector field which do not represent real
anatomical fibers. Since the robustness of fiber tracking
remains limited at junctions and in noisy low-contrast
regions, the extracted fiber set contains outlier curves.
We developed an iterative algorithm to reject outliers
and to cluster curves to fiber bundles based on pairwise
Fig. 3. Overview of the DT
distance metrics measuring position and shape similarity
of pairs of fibers (Corouge et al., 2004).

3.2. Geometric modeling

An individual fiber tract, described by a set of stream-
lines, acts as a training set from which we estimate a tem-
plate shape, the mean shape, and statistical deviations by
learning its inherent shape variability. Representation and
matching of the training set relies on the definition of com-
mon end points and on a data reparametrization from
which we establish correspondences. Pose parameters are
then estimated by a Procrustes analysis (Goodall, 1991).
A principal component analysis is subsequently applied
to characterize statistical shape variation.

3.2.1. Parameterization and correspondences

First, for each fiber tract under analysis, we specify com-
mon start and end points, which can be reliably identified
across subjects. The start and end points are defined as the
intersection of the fiber tract with a plane. Most often, the
orientation of the plane is chosen orthogonal to the fiber
tract direction. Its position is determined either by anatom-
ical information or by a geometric criterion, like the location
where fibers start dispersing towards various cortical
regions. Note that multiple cutting planes with different ori-
entations can be used for a given fiber tract. Second, fibers
represented as polylines are reparametrized by cubic
B-spline curves. This choice is well adapted to model a wide
range of curves. It provides each fiber with a continuous rep-
resentation and ensures a regular sampling along each fiber
as well as a consistent sampling for all fibers in the tract. We
slightly oversample the observations in order to prevent any
loss of shape information but also to avoid any undesirable
increase of dimensionality. Finally, points with the same arc
length along the fiber tract are defined as homologous.
I analysis framework.
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Given this correspondence, the alignment of all curves in the
training set is achieved by Procrustes analysis.

3.2.2. Pose parameter estimation: Procrustes analysis

Let F ¼ fFn; 1 6 n 6 N ; Fn 2Mk;mg be a set of N

fibers, each defined by a set of k corresponding points in
m = 3 dimensions, and represented by a k · m matrix.
For N = 2, an ordinary Procrustes analysis (OPA) gives
the optimal similarity transformation parameters in a least
squares sense by minimizing

d2
OPAðF1;F2Þ ¼ kF2 � ðsF1Rþ 1kttÞk2

; ð2Þ
where s 2 Rþ� is a scaling parameter, R 2 SO(m) is a
rotation, t is a m · 1 translation vector and 1k is a k · 1
vector of ones. Minimization of (2) over the similarity
group has an algebraic solution when shapes are centered,
i.e., 1t

kF ¼ 0, and normalized to unit size, i.e., kFk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceðFtFÞ

p
¼ 1 : t ¼ 0; R ¼ UVt; s ¼ traceðDÞ, where

VDUt ¼ Ft
2F1 is the singular value decomposition of

Ft
2F1. In the actual case, where N > 2, a generalized Pro-

crustes analysis (GPA) estimates the similarity transforma-
tion parameters which minimize the sum of squared norms
of pairwise differences

d2
GPAðF1; . . . ;FN Þ

¼ 1

N

XN

n¼1

XN

p¼nþ1

snFnRnþ 1ktt
n

� �
� spFpRpþ 1ktt

p

� ���� ���2

: ð3Þ

The optimization is performed iteratively:

(1) Translation. Fibers are centered with respect to their
center of mass, gn : Fc

n ¼ Fn � gn.
(2) Scaling. Centered data are normalized to unit size:

Fcs
n ¼ Fc

n= Fc
n

�� ��.
(3) Rotation. Let Fold

n ¼ Fcs
n . The N shapes are rotated in

turn. For each n, 1 6 n 6 N:P
F ¼
(a) F n ¼ 1
N�1 p 6¼nFold

p ,
(b) sn ¼ 1; tn ¼ 0; Rn ¼ arg minRd2

OPA Fold
n ; F n

� �
,

(c) Fnew
n ¼ Fold

n Rn and Fold
n ¼ Fnew

n .
Step 3 is iterated until the generalized Procrustes dis-
tance d2

GPAðFold
1 ; . . . ;Fold

N Þ can not be reduced further. The
alignment of the training set is achieved by applying the
estimated rotations to the centered but non unit-scaled ini-
tial shapes Fc

n, resulting in the set of aligned fibers
FA ¼ FA

n ; 1 6 n 6 N
� 	

. Indeed, the scaling is needed to
optimally estimate the rotation but a size normalization
is not desirable since the training fibers belong to the same
individual fiber tract.

In summary, let T be the set of Procrustes estimated
transformations, T ¼ fð�gn;CnÞ; 1 6 n 6 Ng with gn the
translation vector defined by the center of mass of the
nth fiber and Cn the resulting rotation for fiber
n : Cn ¼ PiR

ðiÞ
n , with RðiÞn the rotation computed in the ith

step 3 iteration of the GPA. Then,

A A
� 	
Fn ¼ ðFn � gnÞCn; 1 6 n 6 N : ð4Þ
3.2.3. Estimation of the mean shape

Given the set of aligned shapes, the mean shape F is esti-
mated by averaging the spatial coordinates at each corre-
sponding location over the tract:

F ¼ 1

N

XN

n¼1

FA
n : ð5Þ

Additionally, statistical shape deviations from this tem-
plate shape along the tract can be characterized by extract-
ing the principal modes of deformation relative to the mean
shape via a principal component analysis.
3.3. Attributing the geometric model with diffusion tensor

statistics

The estimated mean shape models the geometry of the
fiber tract. A complete representation of the tract,
describing both geometry and diffusion properties, is
obtained by attributing each location along the mean
curve with statistics of diffusion tensors calculated over
cross-sections.

3.3.1. Computing the mean tensor over fiber tract

cross-sections at each location of the tract

First, each sample point x from the set of reparameter-
ized fibers is assigned a tensor p. Since the tensor field is
defined on the discrete voxel grid while x lies on a contin-
uous curve, a geodesic interpolation (see Section 2.2 and
Appendix B) is required to compute the tensor p at the
location x. The tensor p is given by the weighted average
of the eight voxel tensor values in the nearest 2 · 2 · 2
neighborhood of x, the weights being defined by trilinear
interpolation (see Eq. (B.3)). Let P be the set of obtained
tensors, P ¼ fpn;ig with n indexing the set of reparameter-
ized fibers F and i the location along each reparameter-
ized fiber. Then, the tensor set P is aligned by rotation.
Using Cn 2 SO(3), the rotation estimated by Procrustes
analysis for the reparameterized fiber Fn, each tensor
pn,i lying on Fn is rotated to the tensor p0n;i by the group
action Ct

n : p0n;i ¼ Ct
npn;iCn;8i. Last, at each corresponding

location i along the tract, the mean tensor li is computed
from the set of aligned tensors, fp0n;ig, as defined by Eq.
(B.1). In addition, cross-sectional tensor diffusion vari-
ability can be assessed at each location of the average
curve by computing the geodesic standard deviation (see
Eq. (B.2)).

Just note that, for visualization purposes, each average
tensor is translated to its corresponding average location
on the average curve. Since diffusion tensors are invari-
ant to translation, this does not affect any diffusion
property.
3.3.2. Deriving diffusion properties

At each location along the template curve, diffusion
properties are derived from the average tensor. We con-
sider the following measures:
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� the three eigenvalues, k1, k2 and k3, of the average diffu-
sion tensor. They represent the diffusivities along the
three principal directions of the tensor.
� the mean diffusivity (MD), defined by the first moment

of the diffusion tensor eigenvalues.
� the fractional anisotropy (FA). FA is a normalized mea-

sure of the shape of the diffusion tensor and defines a
distance to isotropy:

FA ¼
ffiffiffi
3
pffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
i¼1

ðki � �kÞ2
s

ffiffiffiffiffiffiffiffiffiffiffiP3
i¼1

k2
i

s ð6Þ

� the geodesic anisotropy (GA), defined in Section 2.3.

3.4. Towards cross-population studies

So far, the proposed fiber tract modeling applies to an
individual bundle. It provides a compact representation
of the geometry of a tract and of associated diffusion
properties. Ultimately, it aims at being used for inter-sub-
ject comparison and statistical analysis. This implies cor-
respondence issues that are currently investigated by arc
length parameterization and could include local shape
features of curves which have been shown to yield typical
patterns along major fiber tracts (Corouge et al., 2004).
Applications of the methodology, particularly for group
comparison in clinical studies, would require more
advanced statistical techniques, for instance for compari-
son of probability distributions of tensors and hypothesis
testing.

4. Experiments and results

We first apply our quantitative DTI analysis to a single
data set to demonstrate feasibility; second we proceed to a
validation study to assess the reproducibility of our
framework.

4.1. Experiments on a single data set

4.1.1. Data
We selected one case out of a 3 T high resolution

(2 · 2 · 2 mm3) DT MRI database of healthy controls
and applied tractography. The regions of interest are
specified following Mori et al. (2002) and Jellison et al.
(2004) and defined on the FA image using our SNAP tool
(Yushkevich et al., 2006). Nine fiber tracts were extracted.
They represent:

� Three commissural sub-bundles passing, respectively,
through the genu, the splenium and the body of the cor-
pus callosum (BCC);
� Two projection tracts part of the corona radiata, from

the internal capsule to superior central cortical areas
of the left (LIC) and right hemisphere (RIC);
� Four association bundles: the left and right cingulum
(LCG and RCG), and the left and right uncinate fascic-
ulus (LUF and RUF).

The extracted bundles were filtered to remove potential
outliers or streamlines impracticable for the subsequent
analysis, e.g., clusters composed of very short uncinate
fibers hooking around the lateral fissure were discarded.

4.1.2. Average of diffusion tensors in cross-sections along

tracts

The geometric model and associated diffusion tensor sta-
tistics are computed for each of the nine tracts as described
in Section 3. Fig. 4 illustrates the application of our meth-
odology on tract BCC. Fig. 5 shows the nine extracted bun-
dles after start and end points were placed at locations
where the fibers start dispersing towards various cortical
areas using cutting planes perpendicular to the bundle
directions. Fig. 6 shows the mean tensors along the esti-
mated mean shape for each selected fiber tract. For visual-
ization purposes, the mean curve has been translated back
to the center of mass of the corresponding bundle in the
original coordinate system. To assess the representativity
of the estimated mean curve shape, we reconstruct an
approximation to the initial fiber tract by applying to the
average curve the inverse rigid transformations estimated
by Procrustes analysis for each fiber. Given (4), the recon-
structed fiber tract fF is defined by

fF ¼ eFn ¼ F Ct
n þ gn; 1 6 n 6 N

n o
; ð7Þ

where F is the estimated mean fiber. Let us define the dis-
tance dðF; eFÞ between an original and a reconstructed fiber
as the mean point to point distance between the two fibers.
The mean and standard deviation of dðF; eFÞ are presented
in Table 1. For all tracts, the error is less than one voxel.
Fig. 7a shows the geodesic standard deviation for all mean
locations of tract BCC. Description of variability will be
important for hypothesis testing in group studies.

4.1.3. Diffusion properties along tracts

The diffusion properties computed from the mean ten-
sors are plotted in Fig. 4 for tract BCC and in Fig. 8 for
tract RIC and RUF. Fig. 8 top displays FA along the fiber
tract for all bundles. The FA plots clearly reflect the pat-
tern shown in the color display. Such visualizations demon-
strate that the diffusion properties vary significantly as a
function of location along the tract. This might be
explained by the coarse sampling of the underlying macro-
scopic structures, partial voluming and also natural varia-
tion of fiber density.

4.2. Validation study

4.2.1. Data

One subject is imaged six times using slightly different
head position. DTI imaging is done on a 3.0 T whole-body
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Fig. 4. Quantitative analysis is applied to tract BCC. (a) DTI data with fiber tract overlaid on a coronal slice of FA image (right-left orientation);
(b) Streamlines are reparameterized and associated tensors are computed by interpolation; (c) the fiber tract is aligned by Procrustes analysis; (d) the
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Fig. 5. Axial, coronal, sagittal and 3D views of the nine extracted fiber tracts on a single dataset. Yellow: tract BCC, red: genu, cyan: splenium, dark
yellow and orange: tracts LIC and RIC, dark cyan and green: LUF and RUF, dark blue and blue: LCG and RCG.

792 I. Corouge et al. / Medical Image Analysis 10 (2006) 786–798
MRI system (Trio, Siemens Medical Systems, Malvern,
PA, USA) using the 8-channel head coil. Diffusion tensor
axial images included six diffusion directions with a b value
of 1000 s/mm2, plus an acquisition, where b = 0 s/mm2,
using the parameters of 25.6 cm FOV; 2 mm slice, 0 gap;
Tr = 10000, Te = 80; 1345 Hz/pixel bandwidth; 128 · 128
matrix.
4.2.2. Evaluation framework

An average DTI is computed from all six scans after
alignment. One scan is arbitrarily chosen as a target. For
each of the five other scans, a rigid transformation (i.e.,
translation and rotation) towards this target is estimated
from the baseline images using the RView software (Rue-
ckert, 2002). The maximal translation and rotation were,



Fig. 6. Average tensors calculated in cross-sections displayed along central spine of each bundle. For visualization purposes, each central spine has been
translated back in the original coordinate system. Yellow: tract BCC, red: genu, cyan: splenium, dark yellow and orange: tracts LIC and RIC, dark cyan
and green: LUF and RUF, dark blue and blue: LCG and RCG.

Table 1
Mean and standard deviation of the distance (in voxels) between an
original and a reconstructed fiber for the nine tracts of the single data
set

Tract Average Standard deviation

BCC 0.33 0.10
Genu 0.53 0.12
Splenium 0.63 0.24
LIC 0.49 0.13
RIC 0.60 0.15
LUF 0.62 0.25
RUF 0.54 0.17
LCG 0.17 0.08
RCG 0.20 0.06

Voxel size is 2 · 2 · 2 mm3.
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respectively, 3 voxels and 0.5�. Baseline and sensitized to
diffusion images are then registered to the target coordinate
system and averaged. An average tensor field is then
computed.

For all six scans and the average DTI, a callosal bundle
connecting left and right motor cortices is extracted by
tractography as shown in Fig. 9. Regions of interest are
specified on the target scan and transformed by rigid regis-
tration onto the five other scans. The processing pipeline is
applied to each single scan and to the average DTI as
described in Section 3. Number of streamlines, mean shape
of the geometric model and diffusion properties derived
from the average tensors are compared.
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Fig. 9. DTI data sets used in the validation study: callosal fiber tracts extracted from the six repeated scans (left) and from the average DTI (right).
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Table 2
Number of streamlines obtained for each experiment

Scans Scan1 Scan2 Scan3 Scan4 Scan5 Scan6 Average

Number of streamlines 197 165 163 194 219 135 296

Table 3
Mean and standard deviation of the distance between the average curves
of the six scans (left), mean and standard deviation of the distance between
the average curve of one scan and of the average DTI (right)

d(scani, scanj) d(scani, average)

Mean 0.57 0.40
Standard deviation 0.16 0.10
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4.2.3. Results

Table 2 lists the number of streamlines obtained for each
experiment. Table 3 gives the mean and standard deviation
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Fig. 10. Diffusion properties derived from average tensors plotted as a function
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of the distance between the average curves of the six scans,
as well as the mean and standard deviation of the distance
between the average curve of one scan and of the average
DTI. The distance between two average curves is defined
as in Section 4.1.2, i.e., as the mean point to point distance
between the two curves.

Fig. 10 presents the diffusion properties derived from
tensors statistics along the bundle. The plots show the
mean and standard deviation calculated from the six scans
as a function of arc length. We also compare the mean val-
ues with results from the average DTI image. Results at the
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Table 4
Diffusion properties at the position of the midsagittal for each of the six scans and the average DTI

Scan1 Scan2 Scan3 Scan4 Scan5 Scan6 Mean Standard deviation %Std Average

MD 8.71 9.43 9.39 9.62 10.09 9.90 9.52 0.48 5.05 8.93
FA 0.60 0.58 0.54 0.53 0.51 0.53 0.55 0.03 5.90 0.60
GA 0.90 0.85 0.79 0.78 0.74 0.77 0.80 0.06 7.16 0.88
k1 14.54 15.12 15.08 15.58 16.09 15.68 15.35 0.54 3.55 14.97
k2 5.37 5.76 6.46 6.65 7.13 6.89 6.38 0.68 10.66 5.48
k3 4.68 5.43 5.49 5.80 6.22 5.87 5.58 0.52 9.39 5.01
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center, i.e., at the position of the midsagittal plane, are pre-
sented in Table 4.

4.2.4. Discussion

The number of obtained streamlines distinctly differs
from one scan to the other, and is the largest when tractog-
raphy is applied to the average DTI. This has to be
expected since fiber tract reconstruction is an ill-posed
problem and so, highly sensitive to noise and to partial vol-
uming effects. Consequently, the shape of the average curve
is also more variable: the standard deviation of the distance
between average curves appear relatively high in regards to
its mean which is small (less than a voxel). However, in
spite of the instability of tractography, the average diffu-
sion tensor values are approximately within 5%Std for
MD and FA and only 3.5%Std for the first eigenvalue at
the position of the midsagittal plane. It is interesting to
note that the second and third eigenvalues are the most
variable in the center area. Along the bundles, average dif-
fusion properties across the six scans appear quite stable
and are very close to the diffusion properties of the average
DTI.
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5. Conclusion

We have presented a new framework for fiber-tract
oriented quantitative analysis of DTI data. It combines
a geometric model of fiber tracts with diffusion tensor
statistics. We use non linear statistics for tensor interpo-
lation and averaging. Unlike most other statistical analy-
ses of DTI data, we do not compute statistics on scalar
measurements derived from tensors but we do compute
statistics on diffusion tensors followed by calculation of
tensor properties. The different behaviour of FA and
the new geodesic anisotropy, GA, which are both mea-
sures of anisotropy, is shown in Fig. 7b. GA, which is
a non-normalized measure, lies in a wider range of val-
ues. This indicates a higher sensitivity to anisotropy
changes and would suggest a higher discriminative power.
This will be further investigated in future work.

Results obtained on a single data set proves the feasibil-
ity of our pipeline on various white matter fiber tracts. The
validation study demonstrates a good reproducibility of
diffusion tensor measurements and statistics in regions
of interest defined by fiber tracts. Besides variability of
diffusion properties along fiber bundles is clearly shown.
It indicates that region of interest analysis is not sufficient
and might be very sensitive to the exact definition of
cross-sections.

Fiber tract modeling will potentially serve for improved
inter-individual registration and comparison of diffusion
tensor properties along and across fiber tracts. Clinical
research is interested in a quantitative analysis which
finally might lead to answer questions in regard to fiber
integrity or fiber disruption and its effect on brain connec-
tivity. Moreover, modeling of fiber tracts in healthy con-
trols will help to study geometric and diffusion changes
of white matter tracts in the presence of pathology, e.g.,
tumor and edema or white matter lesions.
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Appendix A. Glossary

PD(3) Space of diffusion tensors

GL+(3) G
 p of positive-determinant matrices

d(p1,p2)
 esic distance between two

s p1,p2 2 PD(3)

det(p) D
 minant of the tensor p
I3 3
 identity matrix

SO(3) R
 ion group for three-dimensional space

k1,k2,k3
 values of a tensor in decreasing order

MD M
 diffusivity

FA F
 ional anisotropy

GA G
 esic anisotropy

http://nihroadmap.nih.gov/bioinformatics
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Appendix B. Theoretical framework: mathematical details
Symmetric spaces (Helgason, 1978) arise from transfor-
mation groups on manifolds. The Riemannian metric is
chosen to be invariant under the group transformations.
The symmetric space structure of PD(3) arises from trans-
formations by GL+(3), the group of positive-determinant
matrices. The transformation of a diffusion tensor
p 2 PD(3) by a matrix g 2 GL+(3) is given by p ´ gpgT.
Because of the algebraic nature of the symmetric space
structure, distance and geodesic computations on PD(3)
are also algebraic in nature. For instance, the geodesic
distance between two tensors p1,p2 2 PD(3) can be com-
puted using singular-value decomposition (SVD) as
follows:

� Let p1 = UKUT be the SVD of p1, set g ¼ U
ffiffiffiffi
K
p

.
� Compute the action of g�1 on p2:y = g�1p2(g�1)T.
� Again using SVD, compute the eigenvalues ri of y.
� The geodesic distance is dðp1; p2Þ ¼

P3
i¼1 log ðriÞ2

� �1
2

.

B.1. Statistics of diffusion tensors

We now define the mean and variance of diffusion ten-
sors respecting the geometry of the space. Following Fré-
chet (1948), we define the average as the minimum mean
squared error estimator under the natural Riemannian
metric defined above. Given a set of diffusion tensors
p1, . . . ,pN 2 PD(3) the mean is defined as:

l ¼ arg min
p2PDð3Þ

XN

i¼1

dðp; piÞ
2
: ðB:1Þ

This minimization problem can be solved using a gradient
descent method as described in Fletcher and Joshi (2004).
This is analogous to the algorithm for computing the
intrinsic mean given by Pennec (1999). Having defined
the mean, we define the sample variance of the data as the
expected value of the squared geodesic distances from the
mean. Given a set of diffusion tensors p1, . . . , pN 2 PD(3),
we define the sample variance as

r2 ¼ 1

N

XN

i¼1

dðl; piÞ
2
: ðB:2Þ
B.2. Interpolation of tensors

For developing consistent interpolation between diffu-
sion tensors we extend the definition of the mean defined
above to weighted averaging. Using a least-squares crite-
rion, we define the weighted average of diffusion tensors
p1, . . . ,pN 2 PD(3) as

Aveðfwig; fpigÞ ¼ arg min
p2PDð3Þ

XN

i¼1

widðp; piÞ
2
; ðB:3Þ

where w1, . . . ,wN are positive real weights that sum to 1.
For interpolating tensors within a voxel, trilinear
weights may be used for the wi. In this paper, we only focus
on trilinear weights although higher order interpolation
may be defined using the same concept. This interpolation
is a natural generalization of trilinear interpolation of sca-
lar values, i.e., if we replaced the diffusion tensors in the
above definitions with real numbers, we would arrive at tri-
linear interpolation. It follows easily from the use of trilin-
ear weights that the interpolation function does indeed
interpolate the corner points. It can also be shown that
the interpolation function is continuous on [0,1]3 (see
Fletcher (2004) for a proof).

B.3. Geodesic anisotropy

As introduced in Section 2.3, the geodesic anisotropy of
a diffusion tensor p 2 PD(3) is the geodesic distance
between p and the closest isotropic diffusion tensor. Thus,
we define the geodesic anisotropy as:

GAðpÞ ¼ min
s

dðsI3; pÞ: ðB:4Þ

It turns out that the nearest isotropic diffusion tensor to p is
the one with the same determinant as p, i.e., the matrix
ðdetðpÞÞ

1
3 � I3. With this observation we can explicitly write

the GA of the tensor based on the eigenvalues. Let ki de-
note the eigenvalues of p, and let log k denote the average
of the logs of the eigenvalues. The geodesic anisotropy of p

can be written as:

GAðpÞ ¼ dððdetðpÞÞ
1
3 � I3; pÞ ¼

X3

i¼1

ðlog ðkiÞ � log kÞ2
 !1

2

:

ðB:5Þ
References

Alexander, D., Gee, J., Bajcsy, R., 1999. Similarity measures for matching
diffusion tensor images. In: Pridmore, T., Elliman, D. (Eds.),
Proceedings of the British Machine Vision Conference. Nottingham,
England, pp. 93–102.

Alexander, D., Pierpaoli, C., Basser, P., Gee, J., 2001. Spatial transfor-
mations of diffusion tensor magnetic resonance images. IEEE Trans.
Med. Imaging 20 (11), 1131–1139.

Arsigny, V., Fillard, P., Pennec, X., Ayache, N., 2005. Fast and simple
calculus on tensors in the Log-Euclidean framework. In: Proceedings
of Medical Image Computing and Computer-assisted Intervention,
Lecture Notes in Computer Science, vol. 3749. Springer, Palm Springs,
CA, USA, pp. 115–122.

Batchelor, P., Moakher, M., Atkinson, D., Calamante, F., Connelly, A.,
2005. A rigorous framework for diffusion tensor calculus. Magn.
Reson. Med. 53 (1), 221–225.

Beaulieu, C., 2002. The basis of anisotropic water diffusion in the nervous
system – a technical review. NMR Biomed. 15 (7–8), 435–455.

Cootes, T., Taylor, C., Cooper, D., Graham, J., 1995. Active shape models
– their training and application. Comp. Vis. Image Und. 61 (1), 38–59.

Corouge, I., Gouttard, S., Gerig, G., 2004. Towards a shape model of
white matter fiber bundles using Diffusion Tensor MRI. In: Proceed-
ings IEEE International Symposium on Biomedical Imaging, Wash-
ington, DC, USA, pp. 344–347.

Coulon, O., Alexander, D., Arridge, S., 2004. Diffusion tensor magnetic
resonance image regularization. Med. Image Anal. 8, 47–67.



798 I. Corouge et al. / Medical Image Analysis 10 (2006) 786–798
Ding, Z., Gore, J., Anderson, A., 2003. Classification and quantification
of neuronal fiber pathways using diffusion tensor MRI. Magn. Reson.
Med. 49, 716–721.

Fillard, P., Gerig, G., 2003. Analysis tool for diffusion tensor MRI. In:
Proceedings of Medical Image Computing and Computer-assisted
Intervention, Lecture Notes in Computer Science, vol. 2879. Springer,
Saint-Malo, France, pp. 967–968.

Fillard, P., Gilmore, J., Lin, W., Gerig, G., 2003. Quantitative analysis of
white matter fiber properties along geodesic paths. In: Proceedings of
Medical Image Computing and Computer-assisted Intervention,
Lecture Notes in Computer Science, vol. 2879. Springer, Saint-Malo,
France, pp. 16–23.

Fletcher, P.T., 2004. Statistical Variability in Nonlinear Spaces: Applica-
tion to Shape Analysis and DT-MRI. PhD thesis, University of North
Carolina.

Fletcher, P.T., Joshi, S., 2004. Principal geodesic analysis on symmetric
spaces: statistics of diffusion tensors. In: Proceedings of ECCV 2004
Workshop on Computer Vision Approaches to Medical Image Analysis
(CVAMIA)LNCS, vol. 3117. Springer-Verlag, pp. 87–98.
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