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Figure 1: Acetaminophen molecule rendered with Lambertian shading (left), using our NPR line renderer (middle), and a composite of both
renderings (right). Between any two bonded atoms, a line marks the intersection; around the outer edge of the molecule, silhouette edges are
visible.

Abstract

We present an algorithm for rendering high-quality line primitives
of controllable on-screen width within a ray tracing framework,
which can render simple NPR-style feature lines, including silhou-
ette edges, crease lines, and primitive intersection lines. The algo-
rithm is based on a variant of cone tracing, which measures dis-
tances in screen space and is used to detect and render feature lines.
This technique opens ray tracing up to previously difficult or im-
possible styles of rendering, such as mesh visualization, as well as
a variety of NPR techniques, such as apparent ridges.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms

Keywords: ray tracing, lines, creases, silhouettes, intersections

1 Introduction and Background

Though the goal of ray tracing and other physically-based rendering
techniques is ultimately to produce photorealistic images, it is often
helpful to use non-photorealistic rendering techniques [Gooch and
Gooch 2001; Strothotte and Schlechtweg 2002] to illustrate or high-
light certain features, such as the implied molecular bonds in Figure
1. In NPR techniques, line primitives are often used to more clearly
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express a particular idea or quality. For example, the abstract qual-
ity of confidence in architectural renderings can be expressed with
lines, using sketchier lines to indicate areas in a model requiring fur-
ther discussion and design [Potter et al. 2009]. Lines are also often
used to highlight geometric qualities. Carefully placed lines can ex-
press the shape of a complex model [Judd et al. 2007], even in cases
when physically-based lighting and material models might obscure
subtle details. More generally, lines can be combined with photore-
alistic rendering to enhance geometric features such as silhouettes
and creases [Saito and Takahashi 1990], acting as an additional cue
to structure and shape. In these cases and others, line primitives
make the abstract more concrete, and the subtle more obvious, and
as such they present a definite advantage in rendering systems.

Drawing lines in a raster graphics setting is a primitive operation
that uses line rasterization algorithms (e.g., the Bresenham algo-
rithm [Bresenham 1965]). The lines thus produced can be used to
highlight features such as sharp corners and silhouette edges. Fur-
thermore, they are drawn on-screen with a particular pixel-width,
regardless of the scale of the scene or the current viewing projec-
tion. Because three-dimensional geometry is also rasterized to the
screen, 3D primitives can be freely mixed with line primitives to
produce a variety of illustrative effects.

However, in ray tracing there is no obvious way to “rasterize” a line;
instead, all primitives are detected by intersecting camera rays with
scene geometry. Because lines are infinitely thin, they are trouble-
some for the ray tracing algorithm, which operates on “physical”
primitives that have at least two dimensions. It is possible to repre-
sent lines with, e.g., long, thin pipe-like primitives; however, such
primitives have world-space thickness, and therefore change their
appearance on-screen as the camera position or zoom level changes.

This paper presents a method for ray tracing feature lines within
scenes, using a scale-independent, user-controllable width. The
lines thus produced behave much like rasterized lines, maintaining
their apparent width when zooming in on a feature, for instance.
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Figure 2: The different types of feature lines our algorithm captures, illustrated schematically. (a) Silhouette edges, where the edge of
an object lies against the background (or a more distant object). (b) Self-occluding silhouettes, where an edge of an object lies against a
farther portion of the same object. (c) Intersection lines, where two objects intersect. (d) Crease edges, where an object’s normal changes
discontinuously.

Our method demonstrates how a variant of line rasterization can be
included in a ray tracer, avoiding the problems of approximating
line primitives with physical ones, thus allowing for the inclusion
of NPR-style enhancements. Including feature lines in a render-
ing gives the viewer additional cues to relative positions of objects
within the scene, and also enhances particular features within ob-
jects, such as sharp corners.

1.1 Feature Lines

Feature lines are linear manifolds that denote geometrically inter-
esting features of objects. The ones this paper focuses on are

• silhouette edges, where a primitive’s normal vector is perpen-
dicular to the viewing direction;

• intersection lines, marking the curves along which two prim-
itives intersect;

• and crease edges, indicating curves along which there is a dis-
continuity in a primitive’s normal field (e.g. the sharp corners
of a box).

Silhouette edges appear on the “boundaries” of objects, where their
surfaces turn away from the viewer and become occluded. They
are important visually because they set objects apart from one an-
other. Similarly, intersection lines also set objects apart by marking
places where two primitives “run into” each other, creating a seam
between them. Our technique does not use the normal and viewing
directions to compute silhouette edges, instead relying on the fact
that whenever two different primitives occupy a neighborhood of
the screen, either a silhouette edge or an intersection line must be
present in that neighborhood, and we do not distinguish between
the two types of line. Crease edges act more as a cue to an object’s
internal structure, indicating salient features such as the sharp edges
of a box. Such lines enhance the effect of shading on the faces of a
box, for instance, to indicate such edges and corners.

The visual cues offered by these feature lines are important when
understanding the relative positions of objects in a scene is the pri-
mary goal, such as in technical illustrations [Dooley and Cohen
1990], molecular graphics [Tarini et al. 2006], or particle data visu-
alization [Bigler et al. 2006b].

1.2 Ray Tracing, Cone Tracing, and Screen Space

Ray tracing is an image synthesis technique in which a camera
shoots rays through an image plane into a scene; each camera ray
interacts with scene geometry and may shoot one or more sec-

ondary rays to determine the effect of shadows, refraction, reflec-
tion, etc.

A ray R with origin O and direction D is defined by the set of
points

R(t) = O + tD, t ∈ [0,∞). (1)

The parameter t is called the propagation or parametric distance.
When the direction D has unit length, R(t) represents a point at
distance t units along the ray (starting at the origin point O). Image
generation proceeds by constructing a ray to go from the camera
into the scene through each image pixel, computing which object in
the scene the ray strikes first (i.e. which object’s intersection with
the ray admits the smallest t-value), then computing a color for
that pixel by using a shading model, the object’s normal vector at
the intersection point, and other possible effects such as shadow-
ing, refraction, and reflection. Further details about the ray tracing
algorithm can be found in several sources (e.g. [Whitted 1980]).

Ray tracing has several advantages over traditional raster graphics:
advanced shading effects such as shadows, specular reflection, and
refraction through transparent materials arise as a natural conse-
quence of how rays are traced; its computational complexity scales
sublinearly with the number of primitives, making it an attractive
choice for very large scenes such as those that can occur in sci-
entific visualization [Stephens et al. 2006]; and in principle it is
an “embarrassingly parallel” application that scales well on large
machines in practice. The major drawback to ray tracing is the dif-
ficulty of producing high-quality images quickly. However, there is
much current work on improving the real-time performance of ray
tracing [Ize et al. 2007; Wald et al. 2006; Wald et al. 2008].

Furthermore, as discussed above, ray tracing relies on primitives
with actual thickness, and as such, a “line primitive” of infinitesimal
physical width is impossible. Instead of drawing lines as explicit
primitives, however, we use a variation of cone tracing [Amanatides
1984] to scout the area in screen space for characteristics of the
various feature lines we wish to draw. The basic idea behind cone
tracing is to generalize a ray into a cone with its apex at the camera
position, widening in such a way that its intersection with the image
plane is a circle inscribed within the target pixel. Using a cone
instead of a ray gives information about what is happening across
the pixel, instead of only in the center of the pixel, and thus can
be used to anti-alias the scene, and to compute glossy reflections,
translucency, and soft shadows.

We are interested in how a given ray’s “neighbors” of some distance
in screen space behave. Depending on these rays’ behavior, we
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Figure 3: Examples of crease lines and self-occluding silhouette edges. (a) The shading on the cube faces hints at a discontinuous normal
field; the crease lines highlight the location of the discontinuity. (b) The shape of a torus is more strongly expressed when the self-occluding
silhouettes extending from the central hollow are shown. (c) A gaussian function is rendered with a self-occluding silhouette, emphasizing
the peak.

may detect a feature line. For example, in Figure 2(c), the center
ray (black) has struck the orange quad. But of the surrounding rays
(representing the ray’s neighbors), some of them (green) also strike
the quad but others (yellow) strike the sphere, indicating that the
black ray has sampled the scene near an intersection line. Because
the width of the cone is measured in screen space rather than world
space, any lines thus rendered will be drawn with the same width
regardless of the nature of the current view of the scene.

Because we are not interested in a general cone that can intersect
scene geometry and produce all of the effects mentioned above,
we take more of a brute-force approach: we approximate a cone
by constructing a ray stencil about a particular sample ray which
samples a disc in screen space (Figure 4).

1.3 Motivation and Contributions

As ray tracing is quickly becoming a viable rendering method, it
pays to investigate its capacity for certain non-photorealistic ef-
fects. Though the effects presented in this paper can be achieved
using standard image processing techniques, we believe the method
is useful to include directly in a ray tracer for several reasons. First,
it keeps the implementation simple by eliminating the need to cre-
ate extended framebuffers and then pass them to other phases of a
toolchain. Second, by creating the images first and passing them
downstream to another tool, we are stuck with prefiltered frame-
buffers which may not be as suitable for edge-finding and rendering.
As we will show in this paper, our line rendering algorithm takes ad-
vantage of the ray tracing framework to produce high-quality lines
at “run time,” which is more difficult to do if using external tools.
Finally, we believe it is valuable in itself to demonstrate that the
ray tracing framework is fully capable of rendering non-physical
primitives such as rasterized lines.

The central contributions of this paper stem from a novel ray trac-
ing algorithm that is able to detect and render feature lines, with
no modification to the underlying scene geometry. We summarize
some of the features of this algorithm, with detailed discussion to
follow:

• The feature lines drawn are high-quality because they are nat-
urally anti-aliased.

• They are of controllable on-screen pixel-width, as the user
can tune the screen space size of the ray stencil used to detect
feature lines.

• Feature line drawing opens ray tracing up to new styles of
rendering, e.g. mesh visualization (Figure 7), that were not
possible before.

• The general aspects of the approximate cone-tracing allows
for porting other NPR techniques to a ray tracer. As proof
of concept, we have implemented apparent ridges [Judd et al.
2007].

2 Related Work

The computer graphics literature shows a wealth of line rendering
techniques, mostly within the domain of non-photorealistic render-
ing. Here we review several examples in order to give a flavor of
the types of techniques, and to motivate their usefulness in general.

2.1 Wireframe Rendering

Perhaps the simplest way to include NPR-style lines in a rendering
is to use a simple two-pass rendering algorithm: first solid geom-
etry is rendered, then the geometry wireframes are overlaid. For
certain geometries, this process yields both crease and silhouette
edges (as for cubes or hexahedra). Refinements of this basic tech-
nique exist, such as a single-pass, fragment-shader based approach
that produces high-quality lines with little to no loss in performance
[Bærentzen et al. 2006], but such techniques cannot capture other
interesting features, such as intersection lines. In addition, for most
objects (e.g. tesselated spheres) simply rendering a wireframe will
show lines that are not feature lines.

2.2 Feature Line Drawing

When simple wireframe rendering fails, it is necessary to process
the scene geometry to compute where the feature lines lie. One
general technique for doing so is to collect depth and other values
into extended framebuffers, then compute edges, creases, and sil-
houettes by applying standard image processing techniques [Saito
and Takahashi 1990]. An alternative approach is to compute edges
directly from the geometry, by finding those edges that separate
back-facing from front-facing triangles [Raskar and Cohen 1999].

Several interesting approaches also make use of surface curvature
from scene geometry. Suggestive contours [DeCarlo et al. 2003]
are silhouette lines that may appear in a slightly different view of
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Figure 4: The details of how ray stencils work. (a) The ray stencil DN

h (s) samples a disc of radius h around the sample ray position s
(black). The samples lie in N concentric circles (dark gray, light gray/red) about s, where N is the quality parameter (in this example, N = 2
for two rings of samples). The largest circle has radius h. The red samples indicate a finite difference stencil that can be used to measure
gradients in searching for crease edges. (b) A ray stencil being used to measure foreign primitive area. s strikes some primitive below the
black line, and a different primitive lies above the line. The stencil (which excludes s) contains twenty four rays (M = 24), and nine of them
strike a foreign primitive (m = 9). Using the linear edge strength metric (Equation 2), which measures how close to half of the samples strike
a different primitive, we have es = eM (9) = 62.5%. (c) In the limit as N → ∞, a ray stencil becomes a circular disc, minus its center
point. The disc moves across a primitive boundary, from geometry ID g1 to g2, acting as an area indicator for the portion of the filter that lies
on a foreign primitive (shaded black, the foreign primitive is g2 for the top three discs, and g1 for the bottom three). For the six “snapshots”
shown in this example, the disc moves a distance in screen space of 2h, where h is the disc radius. The foreign area increases from zero to
one-half, “flips” to the left side as the center of the filter crosses the boundary, and then decreases back to zero. The foreign primitive area is
used to define an edge strength, which in turn is used to render feature lines.

geometry, and thus may express shape information in the current
view; ridge-valley lines [Ohtake et al. 2004] are lines along which
the surface curvature is extremal; and apparent ridges [Judd et al.
2007] are similar to ridge-valley lines, but they are drawn where the
view-dependent surface curvature is extremal.

2.3 Approaches for Ray Tracing

Silhouette edges can be useful for enhancing geometric features in
glyph-based scientific visualization of particle data sets. One ap-
proach [Bigler et al. 2006b] adds silhouettes to a ray traced image
by first creating a depth buffer (made up of the rays’ t-values) and
then convolving the depth values with a Laplacian kernel to detect
“edges” in the depth image (similarly to the approach of Saito and
Takahashi); finally, these values are compared with a threshold to
decide where to place the edges on top of the rendered image. By
varying the threshold, the silhouettes will capture either groups of
objects that are close together, or each object by itself.

In constrast, some approaches use ray tracing directly to compute
NPR images, such as in simulation of copper plate images [Leister
1994], in which objects are rendered with their silhouette edges, and
their interiors are hatched instead of shaded. The ray intersection
points are used to decide how to hatch such objects, with options for
combining several hatching styles onto one object. In this case, the
authors chose ray tracing as the rendering engine, as it was suited to
the underlying algorithm. Our work, on the other hand, specifically
strives to integrate line drawing and other NPR effects directly into
ray tracing.

Bigler et al.’s approach to rendering silhouettes in a ray traced im-
age is notable as one of the few techniques that combines a raster-
style algorithm with a ray traced image. The method presented
in this paper aims to demonstrate that, in general, such algorithms
can be adapted to work fully within a ray tracing framework. The
wealth of NPR techniques for raster graphics shows their usefulness
in many situations: we wish to incorporate the general machinery

underlying these techniques into the framework of ray tracers.

3 Computing and Drawing Feature Lines

Generally, a ray tracer shoots several sample rays from a camera
through an image plane into the scene being rendered. In the sim-
plest case, one sample ray is shot through the center of each pixel of
the target image. Each sample ray computes a color by interacting
with scene geometry (possibly shooting shadow or other secondary
rays); the sample colors are combined to yield colors for each pixel
in the final rendered image.

3.1 Tracing Ray Stencils

Detecting whether a sample ray strikes the scene near a feature line
requires knowing what happens in some neighborhood of the sam-
ple ray, i.e., how some cone about the sample ray interacts with the
scene. To approximate the cone for a sample ray s, a disc-shaped
ray stencil DN

h (s) is constructed about s with radius h in screen
space, and using a quality parameter N . The parameter N deter-
mines the number of rays M in the stencil (note that M does not
count the sample ray itself). Figure 4(a) describes the construction
of DN

h (s).

Within the disc sampled by the ray stencil, feature lines can be
found as follows. s strikes some primitive in the scene, or else it
strikes the background: in either case, it is associated with a geom-
etry ID gs describing what it has struck,1 and a parametric distance

1In the simplest setup, the geometry ID is identical with the “primitive
ID” of the primitive the ray has struck. However in some cases it may be
more meaningful to associate a more complex object made up on simpler
primitives (e.g. a ray striking a meshed object will actually strike a triangle
primitive, but the geometry ID can instead reference the mesh itself), hence
the use of the term geometry ID. Both primitive IDs and geometry IDs can
usually be identified with the unique pointer value specifying the appropri-
ate object in memory. Geometry IDs, when organized into a full image (as
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Figure 5: A scene rendered (a) normally, (b) with geometry IDs, (c) with colormapped normals, and (d) with depths (i.e. t-values). The
method presented in this paper essentially searches for zeroth and first order discontinuities in these images to compute feature lines.

ts to the intersection point. Each stencil ray r ∈ DN

h (s) is traced
and associated with its own geometry ID gr and parametric distance
tr .

Let m be the number of rays r in DN

h (s) for which gr 6= gs (i.e. the
number of rays striking geometry different from that struck by s).
Depending on the value of m, one of the following situations re-
sults:

1. The stencil straddles different geometry IDs (0 < m ≤ M ).
Some of the stencil rays strike different objects than the sam-
ple ray does so the sample ray is near either a silhouette edge
or an intersection line (Figure 1 demonstrates both types).

2. All the stencil rays strike the same geometry as the sample
ray (m = 0). When the entire ray stencil strikes the same
object, the possible feature lines are crease edges and self-
occluding silhouettes. A crease edge occurs when the surface
normal changes discontinuously (Figure 3(a)). Numerically,
we define a crease edge occurring on any sample whose ray
stencil indicates a very large magnitude normal gradient. The
normal gradient is computed using the finite difference stencil
contained withing the ray stencil (Figure 4(a)). If the gradi-
ent is larger than some threshold, then the sample lies near a
crease edge.

If a crease edge is not found, then the sample must be checked
for a self-occluding silhouette (Figure 3(b,c)). These oc-
cur when some of the stencil rays strike the object at a sig-
nificantly farther parametric distance than the sample ray
does. Define d to be the number of stencil rays r for which
|tr − ts| > T (where T is a threshold that depends on the
particular scene and primitive, but can usually be set to some
fraction of ts, allowing for some view dependence on how the
silhouette is drawn). If d > 0 then the sample lies near a
self-occluding silhouette.

When the feature type is determined, an edge strength metric is used
to compute how dark the associated feature line should be drawn.
The stronger the edge, the darker it will be drawn. An edge strength
metric is a function eM that maps some count of stencil rays to an
edge strength lying between 0 and 1. The edge strength es for the
sample ray s is eM (m) if the feature is a silhouette or intersection,
eM (d) if it is a self-occluding silhouette, and 1 for a crease edge.

A simple example of an edge strength metric, which is used for the

in Figure 5(b)) are similar to the ID reference image used to compute sur-
face visibility in certain applications [Kowalski et al. 1999; Northrup and
Markosian 2000].

examples in this paper, is

eM (i) = 1 −
|i − 1

2
M |

1

2
M

. (2)

This function rises linearly with i from zero to one for i ∈ [0, 1

2
M),

and then decreases linearly back to zero for i ∈ ( 1

2
M, M ]. It re-

flects the fact that when a ray stencil is situated with half its area
in one geometry region and half in another, it is measuring the
strongest possible edge between two regions (Figure 4(c)). In this
case, m = 1

2
M , and eM (m) = 1. The value of this function is

used to blend the sample color cs with black, thus rendering feature
lines.

The result of tracing and shading a sample ray, and then tracing the
associated ray stencil, is therefore a sample color cs and an edge
strength es.

3.2 Feature Line Rendering Algorithm

To find and draw feature lines, we use a modified version of the or-
dinary ray tracing algorithm. For a particular sample ray, the algo-
rithm runs as follows: the sample ray s is traced and shaded as nor-
mal with color cs. A ray stencil DN

h (s) is constructed about s and
the stencil rays are traced until they strike the scene geometry. De-
pending on m, one of the two cases in Section 3.1 is triggered, and
an edge strength es is computed. The sample color cs is blended
with black, using the edge strength as an interpolation factor, yield-
ing a darkened color cs(1− es), and this color replaces the original
sample color. For full edge strength, the sample will be black and
for zero edge strength it will be shaded as normal. Between these
extremes lies a spectrum of darkened colors, usually serving as a
“halo” for the darkest part of the line. By changing the radius of the
stencil h, the width of the line can be varied (demonstrated in Figure
10). Furthermore, because edge strength determines darkness, the
lines are inherently anti-aliased via prefiltering (in much the same
way as the wireframe technique discussed above [Bærentzen et al.
2006]).

4 Discussion

4.1 Ray Stencils and Image Filtering

The idea of a “ray cone” and its approximation with ray stencils is
the central concept of our method. By arranging the ray stencil in
screen space with a fixed radius, and allowing the rays the compute



scene information, a projection of the scene onto the disc sampled
by the stencil is accomplished. Through the stencil ray t-values,
geometry IDs, and normal vectors, the projection actually produces
three images: a geometry identification image, a depth image, and
a normal image (Figure 5).

In computing the silhouette and intersection lines, the counting pro-
cess described in Section 3.2 is essentially an area estimation, tak-
ing the area of the stencil covering “foreign” geometry IDs to be
a measure of how strong of an edge lies within the disc. The SU-
SAN edge detector from image processing [Smith and Brady 1997]
works in a similar manner, finding edges in an image at the cen-
ters of circular regions in which the pixel intensity across the circle
varies significantly from the intensity at the circle-center pixel.

As constructed, the ray stencils contain a first-order finite difference
stencil. This is used to compute the gradient of the normal image,
discontinuities of which indicate crease edges. First-order discon-
tinuities in the normal are related to second-order discontinuities in
the depth image (i.e. sudden changes in the normal direction are ac-
companied by sudden changes in the rate of change of depth values
with respect to some viewing direction).

For each type of feature line our algorithm detects, the action of the
ray stencil can be explained in terms of searching for zeroth, first,
or second order discontinuities in one function or another, along
the same lines as discussed in, e.g., [Saito and Takahashi 1990].
Our method demonstrates that general image filtering techniques
are possible, fully within the ray tracing framework.

4.2 Anti-Aliasing

One particular advantage of our method is that the lines drawn are
naturally anti-aliased. This arises from the nature of the area esti-
mation performed by the ray stencils. Ideally, as a ray stencil moves
across a line-like feature in image space, the foreign geometry ID
area increases from zero to fifty percent, and then falls back to zero
again. The edge strength metric derived from these values, when
used to determine darkness, produces a line that is dark in the mid-
dle and smoothly lightens toward white at distances equal to the
radius of the stencil. By increasing the quality parameter N in the
stencil construction, the area estimation becomes finer and more
levels of smoothness can be used at the cost of tracing more stencil
rays.

If lines with different qualities are needed, different edge strength
metrics can create different kinds of lines. For instance, exponenti-
ating the second term of Equation 2 will produce an edge strength
metric with a faster transition from light to dark, giving bolder,
sharper-edged lines (Figure 6):

eM (i) = 1 −

(

|i − 1

2
M |

1

2
M

)

10

. (3)

The stencil rays can also be used for scene anti-aliasing. Because
the stencil rays are used for essentially an image processing task
that depends on visibility and depth, they are intersected with scene
geometry but not shaded. However, traversing and intersecting rays
with the scene is the dominant cost in tracing them; for a small extra
cost the stencil rays can be shaded and used for multisampling, in
addition to computing feature lines (Figure 10(a,c,e)).

5 Results

The technique presented in this paper opens ray tracing to new
styles of rendering. In this section, we review several examples

(a)

(b)

Figure 6: The same scene rendered using a (a) linear edge strength
metric and (b) exponential edge strength metric. Note that the ex-
ponential line is bolder, with a faster transition from clear to black.
Because of the quicker transition, these lines may require super-
sampling of the scene to achieve high quality (both of these scenes
are rendered with 9 samples per pixel).

of the technique.

5.1 Primitive joints

Figure 1 shows a space-filling model [Corey and Pauling 1953] of
an acetaminophen molecule, with NPR lines shown by themselves
in the middle panel. In the space-filling model, spheres represent-
ing atoms always intersect to show atomic bonds; marking the lines
along which the atoms intersect can make the structure subtly more
apparent, aiding in the understanding of such images. Techniques
for approximating global illumination, such as ambient occlusion,
have been shown to be useful for certain visualization applications,
including particle data [Gribble and Parker 2006] and molecule ren-
dering [Tarini et al. 2006]. These methods are especially helpful in
understanding subtle three-dimensional placement. One of the ef-
fects of using ambient occlusion for a molecular model is to darken
the atomic joints; in this case, drawing the intersection lines serves
as a non-photorealistic way to indicate the darkened regions, evok-
ing some of the core effect of the ambient occlusion renderings.
Rendering intersection lines directly generalizes the darkening ef-
fect by drawing lines even for primitives that intersect at shallow
angles, in cases where ambient occlusion would not significantly



Figure 7: Our method reveals intersection lines between the trian-
gles in the bunny model, allowing for the visualization of meshes.

darken the joint between them.

5.2 Mesh visualization

Triangle meshes are a standard and widespread way to represent
three-dimensional geometry. In a raster graphics setting, wireframe
techniques can reveal the mesh structure by showing the triangle
joints. This can be useful for many purposes, such as debugging
mesh model geometry or evaluating triangle quality during design
and construction.

When ray tracing a mesh model (Figure 7), our technique offers
two choices for the stencil ray geometry IDs: either the ray can as-
sociate with the object representing the whole object, or with the
individual triangle primitive within the model. In the former case,
the technique treats the mesh as a single, whole object, and it will
show the silhouette of the meshed object.2 In the latter case, how-
ever, the joints between the triangles will also be drawn, revealing
the mesh structure and connectivity.

5.3 Particle data sets

Advanced shading models and NPR techniques have been shown
to be useful in examining particle data sets produced by the Ma-
terial Point Method (MPM) [Bigler et al. 2006b]. MPM simulates
solid mechanics by treating objects as collections of particles, each
of which represents a small piece of material; the particles move
in response to applied forces, deforming the objects they compose
[Sulsky et al. 1995]. The data sets are usually visualized using a
glyph to represent each particle; important insights come from un-
derstanding how the particles are arranged and how their arrange-
ment changes over simulated time.

In such data sets, silhouette edges can act as a cue to structure.
Figure 8 shows two renderings of a particle data set, each using

2If the normals are interpolated across the triangle faces for shading pur-
poses, then the technique will not pick up sharp corners at the triangle edges.

a different glyph geometry. By using the technique described in
this paper, we highlight not only silhouette edges but also places
where particles intersect (Figure 8(a)), while crease edges enhance
the individual hexahedral glyph shapes (Figure 8(b)). Seeing where
particles overlap is especially important for MPM data, as it usually
indicates error or instability in the simulation. As with the molecule
rendering (Figure 1), the NPR lines elaborate the primitives’ phys-
ical relationship to each other, which is important to understand in
a setting like scientific visualization.

(a)

(b)

Figure 8: A particle data set rendered using (a) spheres and (b)
hexahedral elements. In both images, our NPR technique is used to
render intersection lines, silhouette edges, and crease edges. The
intersection lines make clear the relative positions of the glyphs. In
particular, (a) each sphere is seen to overlap its upper and lower
neighbor, while (b) the hexahedral glyphs intersect very slightly
where the boundary lines appear not to be straight, indicating mis-
aligned glyphs and perhaps error in the simulation.



Figure 9: A rounded cube overlaid with apparent ridges, as com-
puted by a ray tracer using ray stencils.

No lines N = 1 N = 2 N = 3

No anti-aliasing 24.3 3.1 1.9 1.0
Stencil AA N/A 2.1 0.9 0.4

True multisampling N/A 0.4 0.1 0.02

Table 1: Frame rates for single-thread runs over several quality
parameters and choices of anti-aliasing strategies.

No lines N = 1 N = 2 N = 3

No anti-aliasing 147.0 30.1 14.3 7.8
Stencil AA N/A 16.7 6.8 3.5

True multisampling N/A 3.5 0.6 0.2

Table 2: Frame rates for eight-thread runs over several quality
parameters and choices of anti-aliasing strategies.

5.4 Other NPR Techniques

To demonstrate that our framework of ray stencils is useful for other
NPR algorithms as well, we have implemented apparent ridges
[Judd et al. 2007]. Figure 9 shows a “rounded cube” (actually a su-
perellipsoid) on which apparent ridges, which are the loci of points
at which the “view dependent curvature” is locally maximal, can be
seen.

The view dependent curvature is described by a rectangular ma-
trix Q that depends both on an object’s surface curvature, and the
viewing projection. It transforms vectors in screen space to normal
perturbation vectors in world space: in terms of ray stencils, this
means measuring the normal gradient in screen space is sufficient
to construct Q. The singular value decomposition of Q yields the
view dependent curvature for each sample ray, which in turn can be
used to render the apparent ridges.

This example demonstrates that the ray tracing framework, together
with ray stencils, is flexible enough to allow for “porting” NPR
techniques from a raster graphics setting to a ray tracer. Given the
large number of techniques discussed in Section 2, the apparent
ridges example shows that it is possible to use NPR methods within
ray tracers.

6 Performance and Interactivity

We have implemented our line rendering algorithm within Manta
[Bigler et al. 2006a], an interactive ray tracer whose flexible design
supports various ray tracing algorithms. Tables 1 and 2 show some

performance data to give a sense of the possible levels of interac-
tivity in the line renderer. The numbers in Table 1 show frame rates
from a single-thread run on a 2.8 GHz Intel Core 2 Duo machine,
while Table 2 represents an eight-thread run on a Dual 3 GHz Quad-
core Intel Xeon; in both cases, the acetaminophen molecule shown
in Figure 1 is being rendered. Each column represents a fixed qual-
ity parameter N over three different runs: one with no anti-aliasing
performed, one in which the stencil rays double as extra scene sam-
ples, and one in which an equivalent number of multisamples is cast
and used to anti-alias.3

For the purposes of this discussion, we define an interactive frame
rate to be one that is above 1fps. Though somewhat arbitrary, this
threshold is chosen with the idea that frame rates falling below
it quickly make it difficult to even reposition the camera reliably,
hence putting the user into a non-interactive regime.

We note that for the common case of a single-threaded run on
common desktop hardware (Table 1), the base example of a ray-
traced scene with no anti-aliasing runs at an interactive, as do four
of the other examples, while for combinations of true multisam-
pling with N ≥ 2, performance falls into non-interactive frame
rates. These numbers strongly reflect the primary tradeoff in us-
ing our line renderer: achieving high-quality images requires large
amounts of computation. However, because lower-fidelity sessions
run interactively, it is possible to prototype images and experiment
with camera views and scene composition before settling on a set of
parameters and producing the high-quality final image. In addition,
the returns in line quality diminish quickly for increasing values
of N (the images in this paper are rendered for the most part with
N = 1). Large values of N may only be necessary when the lines
being drawn are very thick, or if rapidly changing edge strength
metrics (such as the “exponential” lines defined in Equation 3) are
used.

On the other hand, if even a few more computing resources are
available, the situation becomes brighter. For the eight-thread run
on a dual quad-core machine (Table 2), all of the frame rates im-
prove, pushing four more examples into interactive frame rates.
Generally speaking, desktop machines are able to run our algorithm
at interactive rates, with more computing time required for only the
highest quality images. The ability to run interactively is impor-
tant, as much of the utility of our method comes from the added
understanding possible from seeing feature lines.

7 Conclusions and Future Work

We have presented a method for computing and rendering fea-
ture lines, using only the machinery of a ray tracing engine. The
method searches for indications of such feature lines in the screen
space vicinity of a sample ray, allowing for the ray tracer to ren-
der custom-width lines, emulating methods that already exist in the
raster graphics literature. The technique is useful for drawing atten-
tion to specific geometric features, such as the relative placement
and grouping of primitives, which can promote better comprehen-
sion of certain images.

One major area of future work for our method lies in searching
for optimizations. Currently, we trace stencil rays independently;
however, because stencil rays are, by definition, more likely to be
coherent, there should be ways to leverage that coherence to com-
pute their scene intersections more quickly. In addition, because
of the stencil rays’ geometric regularity, there may be opportunities

3e.g. N = 1 gives eight stencil rays plus one sample ray, so the “True
multisampling” case uses nine samples per pixel; in general, a quality pa-
rameter N uses (2N + 1)2 rays (including the sample ray).



for re-using results from previous instantiations of ray stencils as
well.

We may also be able to reduce computation and increase the ac-
curacy of our results by analytically intersecting a cone with the
scene and noting how it interacts with scene primitives. This would
be a major generalization of our use of stencils and it is not clear
whether there is a good way to do so.

Currently we use a numerical threshold for deciding whether a
large-magnitude normal gradient represents a discontinuity. Be-
cause of the all-or-nothing nature of this operation, we are forced
to set the edge strength for all detected crease lines to 1. It is not
clear how to make the threshold criterion continuous in a reasonable
manner, but doing so would increase the quality of crease edges.

It remains an open question for us whether our method should ren-
der feature lines in reflected and refracted images; currently we
have opted not to extend the method to secondary rays in order
to reduce computation. However, if such effects are need, it is a
straightforward extension of the same algorithm described in Sec-
tion 3 to secondary stencils all striking the same reflective or refrac-
tive object.

Ray tracing is a useful technology, but until now the techniques of
the NPR community have largely been alien to it. By demonstrat-
ing feature lines and the possibility of expressing traditional NPR
algorithms in a ray tracer, we hope to see both the ray tracing and
NPR communities benefit.
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(a) No anti-aliasing (b) Doubly thick lines with no anti-aliasing

(c) Ray stencil anti-aliasing (d) Doubly thick lines with ray stencil anti-aliasing

(e) Multisampling (nine samples per pixel) (f) Doubly thick lines with multisampling (nine samples per
pixel)

Figure 10: Demonstrations of different effects within our line renderer. The right column is the same as the left column, except the lines
are set to be drawn twice as thick. The second row shows how we can anti-alias the scene using the rays in the ray stencil as additional
scene samples. For comparison, the third row shows scene anti-aliasing using a traditional multisampling strategy. Though the multisampled
images are of higher quality than the stencil anti-aliased images, they take significantly longer to render.


