
Eurographics/ IEEE-VGTC Symposium on Visualization 2008
A. Vilanova, A. Telea, G. Scheuermann, and T. Möller
(Guest Editors)

Volume 27(2008), Number 3

Interactive Visualization for Memory Reference Traces

A.N.M. Imroz Choudhury, Kristin C. Potter and Steven G. Parker

Scientific Computing and Imaging Institute, University of Utah, USA

Abstract
We present the Memory Trace Visualizer (MTV), a tool that provides interactive visualization and analysis of the
sequence of memory operations performed by a program as it runs. As improvements in processor performance
continue to outpace improvements in memory performance, tools to understand memory access patterns are in-
creasingly important for optimizing data intensive programs such as those found in scientific computing. Using
visual representations of abstract data structures, a simulated cache,and animating memory operations, MTV can
expose memory performance bottlenecks and guide programmers toward memory system optimization opportu-
nities. Visualization of detailed memory operations provides a powerful andintuitive way to expose patterns and
discover bottlenecks, and is an important addition to existing statistical performance measurements.

Categories and Subject Descriptors(according to ACM CCS): I.6.9 [Simulation and Modeling]: Program Visualiza-
tion

1. Introduction and Background

Processor performance is improving at a rate in which mem-
ory performance cannot keep up. As such, careful manage-
ment of a program’s memory usage is becoming more im-
portant in fields such as high-performance scientific comput-
ing. Memory optimizations are commonplace, however, the
most efficient use of memory is not always obvious. Opti-
mizing a program’s memory performance requires integrat-
ing knowledge about algorithms, data structures, and CPU
features. A deeper understanding of the program is required,
beyond what simple inspection of source code, a debugger,
or existing performance tools can provide. Attaining good
performance requires the programmer to have a clear under-
standing of a program’s memory transactions, and a way to
analyze and understand them.

The deficit between processor and memory speeds has
been increasing at an exponential rate, due to a differing rate
of improvement in their respective technologies. The speed
gap represents a “memory wall” [WM95] computer develop-
ment will hit when the speed of computing becomes wholly
determined by the speed of the memory subsystem. The pri-
mary mechanism for mitigating this diverging speed prob-
lem is the careful and efficient use of the cache, which works
as fast temporary storage between main memory and the
CPU. Current software practices, however, stress the value
of abstraction; programmers should write correct code to ac-

complish their goals, and let the compiler and hardware han-
dle performance issues. Unfortunately, not all optimizations
can be accomplished solely by the compiler or hardware, and
often the best optimizations, such as source code reorgani-
zation, can only be completed by the programmer [BDY02].
Therefore, optimizing high-performance software must in-
volve the programmer, which in turn requires the program-
mer to have information about a program’s interaction with
memory and the cache.

This paper presents the Memory Trace Visualizer (MTV),
a tool that enables interactive exploration of memory oper-
ations by visually presenting access patterns, source code
tracking, cache internals, and global cache statistics. A
screenshot of MTV can be seen in Figure1. A memory ref-
erence traceis created by combining a trace of the memory
operations and the program executable. The user then filters
the trace by declaring memory regions of interest, typically
main data structures of a program. This data is then used
as input to the visualization tool, which runs a cache simu-
lation, animates the memory accesses on the interesting re-
gions, displays the effect on the whole address space, and
provides user exploration through global and local naviga-
tion tools in time, space, and source code. By exploring code
with MTV, programmers can better understand the memory
performance of their programs, and discover new opportuni-
ties for performance optimization.

c© 2008 The Author(s)
Journal compilationc© 2008 The Eurographics Association and Blackwell PublishingLtd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

A. N. M. Choudhury & K. Potter & S. Parker / Interactive Visualization for Memory Reference Traces

Figure 1: Screenshot of the Memory Trace Visualizer.

1.1. Cache Basics

A cache is fast, temporary storage, composed of several
cache levels, each of which is generally larger, but slower
than the last. In turn, each cache level is organized intocache
blocksor lines which hold some specific, fixed number of
bytes. A given memory referencehits if it is found in any
level of the cache. More specifically, the referencehits to
Ln when the appropriate block was found in thenth cache
level. A referencemissesif it is not found in a cache level,
and must therefore retrieve data from main memory. When
many references are hitting in a given level of the cache, that
level iswarm; conversely, if references miss often (or if the
cache has not yet been used and thus contains no data from
the process), it iscold. Collectively this quality of of a cache
is called itstemperature.

1.2. Memory Reference Traces

A memory reference traceis a sequence of records repre-
senting all memory references generated during a program’s
run. Each record comprises a code denoting the type of ac-
cess (“R” for a read and “W” for a write) and the address
at which the reference occurred. A reference trace carries all
information about the program’s interaction with memory
and therefore lends itself to memory performance analysis.
Figure2, left, shows a small portion of an example trace file,
which demonstrates that such a dataset is nearly impossible
to inspect directly.

Collecting a reference trace for a program requires run-
ning the program, intercepting the load and store instruc-
tions, decoding them, and storing an appropriate refer-
ence record in a file. Several tools exist for this task.
Pin [LCM∗05] runs arbitrary binary instrumentation pro-
grams, including ones that can intercept load and store in-
structions, along with the target address. Apple provides the
Computer Hardware Understanding Development (CHUD)
Tools [App], which can generate instruction traces, and from
them, reference traces. Our software examines both an in-
struction trace (as generated by CHUD) and the program ex-
ecutable, and produces a reference trace that includes source
code line number information.

Figure 2: A portion of a reference trace (left) and its visual-
ization. The access pattern is stride-1 in region v1 (top), and
stride-2 in region v2 (bottom).

2. Related Work

To better understand performance, researchers have devel-
oped tools to provide analysis of overall program perfor-
mance and the effects of program execution on caches, while
cache and execution trace visualization methods provide in-
sight into specific program behaviors.

2.1. Performance Analysis Tools

Shark [App] is Apple’s runtime code profiler, from its
CHUD suite, which collects information from hardware per-
formance counters as a program runs. It also measures the
amount of time spent by the program in each function and
on each line of source code. All of this information is dis-
played textually, allowing a user to search for performance
bottlenecks. While Shark does allow the user to count cache
misses, it does not focus on the memory subsystem enough
to enable a much deeper investigation into memory behavior.

VAMPIR [NAW∗96] and TAU [SM06] are examples of
systems that display the events encoded in an execution trace
from a parallel program, while also computing and display-
ing associated performance measurements. Such tools oper-
ate at a high level, identifying bottlenecks in the communica-
tion patterns between computing nodes, for example. They
do not observe low-level behavior of programs occurring at
memory and thus occupy a role different from that of MTV.

2.2. Cache Simulation

The fundamental way to process a reference trace is to use
it as input to a cache simulator [UM97], yielding miss rates
for each cache level. Simulation gives a good first approxi-
mation to performance, but itsummarizesthe data in a trace
rather than exposing concrete reasons for poor performance.
Such a summary illustrates a reference trace’s global behav-
ior, but in order to understand a program’s performance char-
acteristics, programmers require more fine-grained detail,
such as the actualaccess patternsencoded in the trace, as
well as the specific, step-by-step effects these patterns cause
in a simulated cache.

c© 2008 The Author(s)
Journal compilationc© 2008 The Eurographics Association and Blackwell PublishingLtd.

A. N. M. Choudhury & K. Potter & S. Parker / Interactive Visualization for Memory Reference Traces

Valgrind [NS07] is a framework for investigating run-
time memory behavior, including a tool called Cachegrind, a
cache simulator and profiler. Cachegrind runs a program and
simulates its cache behavior, outputting the number of cache
misses incurred by each line of program source code. While
it provides useful information about local performance char-
acteristics in a program, it does not generate a record of
cache events that can be used to construct a visualization.
To this end, we have written a special purpose cache simula-
tor that describes the cache events occurring in each step of
the simulation. With this information, we can perform step-
by-step visualization of cache internals.

2.3. Cache Visualization

The Cache Visualization Tool [vdDKTG97] visualizes
cache block residency, allowing the viewer to under-
stand, for instance, competition amongst various data struc-
tures for occupancy in a specific level of the cache.
KCacheGrind [WKT04] is a visual front end for Cachegrind,
including visualizations of the call graph of a selected func-
tion, a tree-map relating nested calls, and details of costs as-
sociated with source lines and assembler instructions.

Cache simulation can be used to produce a static image
representing cache events [YBH01]. For each time step, a
pixel in the image is colored according to the status of the
cache (blue for a hit, red for a miss, etc.). The resulting im-
age shows a time profile for all the cache events in the simu-
lation. This method visualizes the entire sequence of events
occurring within the cache, which can lead to identification
of performance bottlenecks.

YACO [QTK05] is a cache optimization tool that focuses
on the statistical behavior of a reference trace. It counts
cache misses and plots them in various ways, including time
profiles. The goal is to direct the user to a portion of the trace
causing a heavy miss rate. YACO also plots miss rate in-
formation with respect to individual data structures, demon-
strating which areas in memory incur poor performance.

2.4. Execution Trace Visualization

Execution tracesare related to reference traces but include
more general information about a program’s interaction with
functional units of the host computer. JIVE [Rei03] and
JOVE [RR05] are systems that visualize Java programs as
they run, displaying usage of classes and packages, as well as
thread states, and how much time is spent within each thread.
These systems generate trace data directly from the running
program and process it on the fly, in such a way as to mini-
mize runtime overhead. Stolte et al. [SBHR99] demonstrate
a system that visualizes important processor internals, such
as pipeline stalls, instruction dependencies, and the contents
of the reorder buffer and functional units.

3. Memory Reference Trace Visualization

The novelty of the memory reference trace visualization pre-
sented in this work lies in the display ofaccess patternsas

Figure 3: A single memory region visualized as a linear se-
quence in memory (right) and as a 2D matrix (left). The read
and write accesses are indicated by coloring the region line
cyan or orange. Corresponding cache hits and misses are
displayed in blue and red. Fading access lines indicate the
passage of time.

they occur in user-selected regions of memory. Much of the
previous work focuses on cache behavior and performance,
and while this information is incorporated as much as possi-
ble, the main focus is to provide an understanding of specific
memory regions. To this end, MTV provides the user with an
animated visualization of region and cache behavior, global
views in both space and time, and multiple methods of navi-
gating the large dataspace.

3.1. System Overview

MTV’s fundamental goal is to intelligibly display the con-
tents of a reference trace. To this end, MTV creates on-
screen maps of interesting regions of memory, reads the trace
file, and posts the read/write events to the maps as appropri-
ate. In addition, MTV provides multiple methods of orien-
tation and navigation, allowing the user to quickly identify
and thoroughly investigate interesting memory behaviors.

The input to MTV is a reference trace, aregistration file,
and cache parameters. A registration file is a list of the re-
gions in memory a user wishes to focus on and is produced
when the reference trace is collected, by instrumenting the
program to record the address ranges of interesting memory
regions. A program can register a region of memory by spec-
ifying its base address, size, and the size of the datatype oc-
cupying the region. The registration serves to filter the large
amount of data present in a reference trace by framing it in
terms of the user-specified regions. For the cache simulation,
the user supplies the appropriate parameters: the cache block
size in bytes, a write miss policy (i.e., write allocate or write
no-allocate), a page replacement policy (least recently used,
FIFO, etc.), and for each cache level, its size in bytes, its
set associativity, and its write policy (write through or write
back) [HP03].

3.2. Visual Elements

MTV’s varied visual elements work together to visualize a
reference trace. Some of these elements directly express data
coming from the trace, while others provide context for the
user.

c© 2008 The Author(s)
Journal compilationc© 2008 The Eurographics Association and Blackwell PublishingLtd.

A. N. M. Choudhury & K. Potter & S. Parker / Interactive Visualization for Memory Reference Traces

3.2.1. Data Structures

MTV displays a specified region as a linear sequence of data
items, surrounded by a background shell with a unique, rep-
resentative color (Figure3, right). Read and write operations
highlight the corresponding memory item in the region using
cyan and orange, colors chosen for their distinguishability.
A sense of the passage of time arises from gradually fading
the colors of recently accessed elements, resulting in “trails”
that indicate the direction in which accesses within a region
are moving. Additionally, the result of the cache simulation
for each operation is shown in the lower half of the glyph,
using a red to blue colormap (see Section3.2.3).

To further aid in the understanding of the program, the re-
gion can be displayed in a 2D configuration, representing
structures such as C-style 2D arrays, mathematical matri-
ces, or a simulation of processes occurring over a physical
area (Figure3, left). The matrix modality can also be used
to display an array of C-style structs in a column, the data
elements of each struct spanning a row. This configuration
echoes the display methods of the linear region, with read
and write operations highlighting memory accesses. The ma-
trix glyph’s shell has the same color as its associated linear
display glyph, signifying that the two displays are redundant
views of the same data.

3.2.2. Address Space

Figure 4: Left: A visualization of the entire process address
space. Right: A single memory region and the cache (labeled
L1 and L2).

By also visualizing accesses within a process address
space, MTV offers a global analog to the region views (Fig-
ure 4, left). As accesses light up data elements in the indi-
vidual regions in which they occur, they also appear in the
much larger address space that houses the entire process. In
so doing, the user can gain an understanding of more global
access patterns, such as stack growth due to a deep call stack,
or runtime allocation and initialization of memory on the
heap. On a 32 bit machine, the virtual address space occu-
pies 4GB of memory; instead of rendering each byte of this
range as the local region views would do, the address space
view approximates the position of accesses within a linear
glyph representing the full address space.

3.2.3. Cache View

In addition to displaying a trace’s access patterns, MTV also
performs cache simulation with each reference record and
displays the results in a schematic view of the cache. As the
varying cache miss rate serves as an indicator of memory
performance, the cache view serves to connect memory ac-
cess patterns to a general measure of performance. By show-
ing how the cache is affected by a piece of code, MTV allows
the user to understand what might be causing problematic
performance.

The visualization of the cache is similar to that of linear
regions with cache blocks shown in a linear sequence sur-
rounded by a colored shell (Figure4). The cache is com-
posed of multiple levels, labeled L1 (the smallest, fastest
level) through Ln (the largest, slowest level). The color of the
upper portion of the cache blocks in each level corresponds
to the identifying color of the region which last accessed that
block, or a neutral color if the address does not belong to
any of the user-declared regions. The cache hit/miss status is
indicated in the bottom portion of the memory blocks by a
color ranging from blue to red—blue for a hit to L1, red for
a cache miss to main memory, and a blend between blue and
red for hits to levels slower than L1. To emphasize the pres-
ence of data from a particular region in the cache, lines are
also drawn between the address in the region view and the
affected blocks in the cache. Finally, the shells of each cache
level reflect the cache temperature: the warmer the tempera-
ture, the brighter the shell color.

3.3. Orientation and Navigation

Combining a cache simulation with the tracking of mem-
ory access patterns creates a large, possibly overwhelming
amount of data. Reducing the visualized data to only impor-
tant features, providing useful navigation techniques, as well
as relating events in the trace to source code is very impor-
tant to having a useful tool.

3.3.1. Memory System Orientation

The first step in managing the large dataset is to let the user
filter the data by registering specific memory regions (for
example, program data structures) to visualize. During in-
strumentation, there is no limit on the number of memory
regions that can be specified, although in visualization, the
screen space taken by each region becomes a limitation. To
ease this problem, the user is given the freedom to move the
regions anywhere on the screen during visualization. Click-
ing on a individual region makes that regionactive, which
brings that region to the forefront, and lines that relate the
memory locations of that region to locations in the cache are
drawn (Figure4, right).

3.3.2. Source Code Orientation

MTV also highlights the line of source code that corresponds
to the currently displayed reference record (Figure5), of-

c© 2008 The Author(s)
Journal compilationc© 2008 The Eurographics Association and Blackwell PublishingLtd.

A. N. M. Choudhury & K. Potter & S. Parker / Interactive Visualization for Memory Reference Traces

Figure 5: The source code corresponding to the current
memory access is highlighted, providing a direct relation-
ship between memory access and source code.

fering a familiar, intuitive, and powerful way to orient the
user, in much the same way as a traditional debugger such as
GDB. This provides an additional level of context in which
to understand a reference trace. Source code directly ex-
presses a program’s intentions; by correlating source code
to reference trace events, a user can map code abstractions
to a concrete view of processor-level events.

Generally, programmers do not think about how the code
they write effects physical memory. This disconnect between
coding and the memory system can lead to surprising reve-
lations when exploring a trace, creating a better understand-
ing of the relationship between coding practices and perfor-
mance. For example, in a program which declares an C++
STL vector, initializes the vector with some data, and then
proceeds to sum all the data elements, one might expect
to see a sweep of writes representing the initialization fol-
lowed by reads sweeping across the vector for the summa-
tion. However, MTV reveals that before these two sweeps
occur, an initial sweep of writes moves all the way across the
vector. The source code viewer indicates that this view oc-
curred at the line declaring the STL vector. Seeing the extra
write reminds the programmer that the STLalwaysinitial-
izes vectors (with a default value if necessary). The source
code may fail to explicitly express such behavior (as it does
in this example), and often the behavior may appreciably im-
pact performance. In this example, MTV helps the program-
mer associate the abstraction of “STL vector creation” to the
concrete visual pattern of “initial write-sweep across a re-
gion of memory.”

3.3.3. Time Navigation and the Cache Event Map

Because reference traces represent events in a time series
and MTV uses animation to express the passage of time,
only a very small part of the trace is visible on-screen at
a given point. To keep users from becoming lost, MTV in-
cludes multiple facilities for navigating in time. The most
basic time navigation tools include play, stop, rewind and
fast forward buttons to control the simulation. This allows

Beginning of Cache Simulation

End of Simulation
Hit to fast cache level
Miss to main memory

Hit to slow cache level
Current time step

Figure 6: The cache event map provides a global view of
the cache simulation by showing the cache status for each
time step, and a clickable time navigation interface. The time
dimension starts at the upper left of the map and proceeds
across the image in English text order.

users to freely move through the simulation, and revisit in-
teresting time steps.

The cache event map is a global view of the cache simula-
tion, displaying hits and misses in time, similar to the tech-
nique of Yu et al. [YBH01]. Each cell in the map represents
a single time step, unrolled left to right, top to bottom. The
color of each cell expresses the same meaning as the blue-
to-red color scale in the cache and region views (see Section
3.2.3). A yellow cursor highlights the current time step of
the cache simulation. By unrolling the time dimension (nor-
mally represented by animation) into screen space, the user
can quickly identify interesting features of the cache simu-
lation. In addition, the map is a clickable global interface,
taking the user to the time step in the simulation correspond-
ing to the clicked cell.

4. Examples

The following examples demonstrate how MTV can be used
to illuminate performance issues resulting from code behav-
ior. For the first example, a simple cache is simulated: The
block size is 16 bytes (large enough to store four single-
precision floating point numbers); L1 is two-way set associa-
tive, with four cache blocks; L2 is eight-way set associative,
with eight cache blocks. In the second example, the cache
has the same block size but twice as many blocks in each
level. These caches simplify the demonstrations, but much
larger caches can be used in practice. The third example sim-
ulates the cache found in a PowerMac G5. It has a block size
of 128 bytes; the 32K L1 is two-way set associative, and the
512K L2 is eight-way set associative.

4.1. Loop Interchange

A common operation in scientific programs is to make a pass
through an array of data and do something with each data

c© 2008 The Author(s)
Journal compilationc© 2008 The Eurographics Association and Blackwell PublishingLtd.

A. N. M. Choudhury & K. Potter & S. Parker / Interactive Visualization for Memory Reference Traces

Figure 7: Striding a two dimensional array in different or-
ders produces a marked difference in performance.

item. Often, the data are organized in multi-dimensional ar-
rays; in such a case, care must be taken to access the data
items in a cache-friendly manner. Consider the following
two excerpts of C code:

/* Bad Stride (before) */
double sum = 0.0;
for(j=0; j<4; j++)
 for(i=0; i<32; i++)
 sum += A[i][j];

/* Good Stride (after) */
double sum = 0.0;
for(i=0; i<32; i++)
 for(j=0; j <4; j++)
 sum += A[i][j];

The illustrated transformation is calledloop inter-
change [HP03], because it reorders the loop executions.
Importantly, the semantics of the two code excerpts are
identical, although there is a significant difference in
performance between them.

The above source code demonstrates how MTV visualizes
the effect of the code transformation (Figure4.1). In each
case, theA array is displayed both as a single continuous
array (as it exists in memory) and as a 2D array (as it is
conceptualized by the programmer). The “Bad Stride” code
shows a striding access pattern resulting from the choice of
loop ordering, while the “Good Stride” code shows a more
reasonable continuous access pattern.

The “Bad Stride” code exhibits poor performance because
of its lack of data reuse. As a data item is referenced, it is
loaded into the cache along with the data items adjacent to
it (since each cache block holds four floats); however, by the
time the code references the adjacent items, they have been
flushed from the cache by the intermediate accesses. There-
fore, the code produces a cache miss on every reference. The
“Good Stride” code, on the other hand, uses the adjacent data
immediately, increasing cache reuse and thereby eliminating
three quarters of the cache misses.

MTV flags the poor performance in two ways. First, the
poor striding pattern is visually apparent: the accesses do not
sweep continuously across the region, but rather make mul-
tiple passes over the array, skipping large amounts of space
each time. Because the code represents a single pass through
the data, the striding pattern immediately seems inappropri-
ate. Second, the cache indicates that misses occur on every
access: the shell of the cache glyph stays black, and there-
fore cold, throughout the run. The transformed code, on the
other hand, displays the expected sweeping pattern, and the
cache stays warm.

4.2. Matrix Multiplication

Matrix multiplication is another common operation in scien-
tific programs. The following algorithm shows a straightfor-
ward multiplication routine:

for(i=0; i<N; i++)
for(j=0; j<N; j++){

r = 0.0;
for(k=0; k<N; k++)
r += Y[i*N+k] * Z[k*N+j];

X[i*N+j] = r;
}

MTV shows the familiar pattern associated with matrix mul-
tiplication by the order in which the accesses to theX, Y,
andZ matrices occur (Figure8, top). The troublesome ac-
cess pattern in this reference trace occurs in matrixZ, which
must be accessed column-by-column because of the way the
algorithm runs.

Figure 8: Naive matrix multiply (top) and blocked matrix
multiply (bottom).

In order to rectify the access pattern, the programmer may
transform the code to store the transpose of matrixZ. Then,
to perform the proper multiplication,Z would have to be ac-
cessed in row-major order, eliminating the problematic ac-
cess pattern. When certain matrices always appear first in a
matrix product and others always appear second, one possi-
ble solution is to store matrices of the former type in row-
major order and those of the latter type in column-major or-
der. In this example, the visual patterns encoded in the trace
(Figure8, top), suggested a code transformation. This trans-
formation also suggests a new abstraction of left- vs. right-
multiplicand matrices that may help to increase the perfor-
mance of codes relying heavily on matrix multiplication. A

c© 2008 The Author(s)
Journal compilationc© 2008 The Eurographics Association and Blackwell PublishingLtd.

A. N. M. Choudhury & K. Potter & S. Parker / Interactive Visualization for Memory Reference Traces

more general solution to improving matrix multiplication is
widely known asmatrix blocking, in which algorithms oper-
ate on small submatrices that fit into cache, accumulating the
correct answer by making several passes (Figure8, bottom).

4.3. Material Point Method

A more complex, real-world application of MTV is in inves-
tigating the Material Point Method (MPM) [BK04], which
simulates rigid bodies undergoing applied forces by treat-
ing a solid object as a collection of particles, each of which
carries information about its own mass, velocity, stress, and
other physical parameters. A simulation is run by modeling
an object and the forces upon it, then iterating the MPM al-
gorithm over several time steps.

Because each material point is associated with several
data values, the concept of a particle maps evenly to a C-
style struct or C++-style class. The collection of particles
can then be stored in an array of such structures. Accessing
particle values is as simple as indexing the array to select a
particle, and then naming the appropriate field. Although this
design is straightforward for the programmer, the scientific
setting around MPM demands high performance.

MTV’s visualization of a run of MPM code with the array-
of-structs storage policy demonstrates how the policy might
cause suboptimal performance (Figure9, top). The region
views show that the access pattern is broken up over the
structs representing each particle, so that the same parts of
each struct are visited in a sort of lockstep pattern. Though
these regions are displayed in MTV as separate entities, they
are in fact part of the same contiguous array in memory; in
other words, the access pattern is related to the poorly strid-
ing loop interchange example (Section4.1). The visual is
confirmed by the MPM algorithm: in the first part of each
time step, the algorithm computes a momentum value by
looking at the mass and velocity of each particle (in Fig-
ure 9, top, the single lit value at the left of each region is
the mass value, while the three lit values to the right of the
mass comprise the velocity). In fact, much of the MPM algo-
rithm operates this way: values of the same type are needed
at roughly the same time, rather than each particle being pro-
cessed in whole, one at a time.

MTV demonstrates a feature of the MPM implementation
that is normally hidden: the chosen storage policy implies a
necessarily non-contiguous access pattern. The simplest way
to rearrange the storage is to use parallel arrays instead of an
array of structs, so that all the masses are found in one array,
the velocities in another, and so on. Grouping similar val-
ues together gives the algorithm a better chance of finding
the next values it needs nearby. This storage policy results
in a more coherent access pattern, and higher overall perfor-
mance (Figure9, bottom).

This particular observation and the simple solution it sug-
gests are both tied to our understanding of the algorithm. By

making even more careful observations, it should be possi-
ble to come up with a hybrid storage policy that respects
more of the algorithm’s idiosyncrasies and achieves higher
performance. The example also stresses the value of abstrac-
tion, and in particular, the value of separating interfaces from
implementations. By having an independent interface to the
particle data (consisting of functions or methods with sig-
natures likedouble getMass(int particleId);),
the data storage policy is hidden appropriately and can vary
freely for performance or other concerns.

5. Conclusions and Future Work

The gap between processor and memory performance will
be a persistent problem for memory-bound applications un-
til major changes are made in the memory paradigm. We
have described a tool that is designed to explicitly examine
the interaction between a program and memory through vi-
sualization of detailed reference traces. Our work provides
a technique for the rich yet inscrutable reference trace data
by offering visual metaphors for abstract memory opera-
tions, leading to a deeper understanding of memory usage
and therefore opportunities for optimization.

In the future, we hope to mature our techniques by making
them more automatic; we want to make the process of col-
lecting, storing, and analyzing a reference trace transparent
to a user, so that MTV can become as useful as interactive
debuggers are today. A way to reduce or eliminate the need
for runtime instrumentation (or at least, render it completely
transparent) would help meet this goal, for instance.

We are also seeing a relatively new trend in computing—
multicore machines are on the rise, and programmers are
struggling to understand how to use them effectively. To
fully realize their potential, we need ways to keep all of the
cores fed with data: it is a central problem, and as yet, an
unsolved one. We believe visualization and analysis tools in
the spirit of MTV have an important place among multicore
programming techniques.

Whether processors continue to get faster, or more of them
appear in single machines (or both), memory will always be
a critical part of computer systems, and its careful use will
be critical to high-performance software. We hope that MTV
and the ideas behind it can help keep the growing complexity
of computer systems manageable.

References

[App] A PPLE CORPORATION: Perfor-
mance and debugging tools overview.
http://developer.apple.com/tools/performance/overview.html.

[BDY02] BEYLS K., D’H OLLANDER E. H., YU Y.:
Visualization enables the programmer to reduce cache

c© 2008 The Author(s)
Journal compilationc© 2008 The Eurographics Association and Blackwell PublishingLtd.

A. N. M. Choudhury & K. Potter & S. Parker / Interactive Visualization for Memory Reference Traces

Figure 9: MPM Horizontal (top) and Vertical (bottom).

misses. InIASTED Conference on Parallel and Dis-
tributed Computing and Systems(Nov 2002), pp. 781–
786.

[BK04] BARDENHAGEN S. G., KOBER E. M.: The gen-
eralized interpolation material point method.CMES 5, 6
(2004), 477–495.

[HP03] HENNESSYJ. L., PATTERSON D. A.: Computer
Architecture: A Quantitative Approach, third ed. Morgan
Kaufmann Publishers, 2003.

[LCM∗05] LUK C.-K., COHN R., MUTH R., PATIL H.,
KLAUSER A., LOWNEY G., WALLACE S., REDDI V. J.,
HAZELWOOD K.: Pin: Building customized program
analysis tools with dynamic instrumentation. InProgram-
ming Language Design and Implementation(Chicago, IL,
June 2005), pp. 190–200.

[NAW∗96] NAGEL W. E., ARNOLD A., WEBER M.,
HOPPEH.-C., SOLCHENBACH K.: VAMPIR: Visualiza-
tion and analysis of mpi resources.Supercomputer 12, 1
(1996), 69–80.

[NS07] NETHERCOTE N., SEWARD J.: Valgrind: A
framework for heavyweight dynamic binary instrumenta-
tion. InProgramming Language Design and Implementa-
tion (June 2007).

[QTK05] QUAING B., TAO J., KARL W.: YACO: A user
conducted visualization tool for supporting cache opti-
mization. InProceedings of HPCC(2005), pp. 694–603.

[Rei03] REISSS. P.: Visualizing java in action. InSoftVis
’03: Proceedings of the 2003 ACM symposium on Soft-
ware visualization(New York, NY, USA, 2003), ACM,
pp. 57–ff.

[RR05] REISS S. P., RENIERIS M.: Jove: java as it hap-
pens. InSoftVis ’05: Proceedings of the 2005 ACM sym-
posium on Software visualization(New York, NY, USA,
2005), ACM, pp. 115–124.

[SBHR99] STOLTE C., BOSCH R., HANRAHAN P.,
ROSENBLUM M.: Visualizing application behavior on
superscalar processors. InINFOVIS ’99: Proceedings of
the 1999 IEEE Symposium on Information Visualization
(1999), pp. 10–17.

[SM06] SHENDE S. S., MALONY A. D.: The TAU par-
allel performance system.International Journal of High
Performance Computing Applications 20, 2 (2006), 287–
331.

[UM97] UHLIG R. A., MUDGE T. N.: Trace-driven mem-
ory simulation: A survey.ACM Computing Surveys 29, 2
(June 1997), 128–170.

[vdDKTG97] VAN DER DEIJL E., KANBIER G., TEMAM

O., GRANSTON E. D.: A cache visualization tool.Com-
puter 30, 7 (July 1997), 71–78.

[WKT04] WEIDENDORFER J., KOWARSCHIK M.,
TRINITIS C.: A tool suite for simulation based analysis
of memory access behavior.ICCS 3038 of LNCS(2004),
440–447.

[WM95] WULF W. A., MCKEE S. A.: Hitting the mem-
ory wall: Implications of the obvious.Computer Archi-
tecture News 23, 1 (1995), 20–24.

[YBH01] Y U Y., BEYLS K., HOLLANDER E. H. D.: Vi-
sualizing the impact of the cache on program execution.
In Proceedings of the Fifth International Conference on
Information Visualisation(July 2001), pp. 336–341.

c© 2008 The Author(s)
Journal compilationc© 2008 The Eurographics Association and Blackwell PublishingLtd.

