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Abstract Ray tracing a volume scene graph composed of
multiple point-based volume objects (PBVO) can produce
high quality images with effects such as shadows and con-
structive operations. A naive approach, however, would de-
mand an overwhelming amount of memory to accommodate
all point datasets and their associated control structures such
as octrees. This paper describes an out-of-core system for
rendering such a scene graph in a scalable manner. In or-
der to address the difficulty in pre-determining the order of
data caching, we introduce a technique based on a dynamic,
in-core working set. We present a ray-driven algorithm for
predicting the working set automatically. This allows both
the data and the control structures required for ray tracing
to be dynamically pre-fetched according to access patterns
determined based on captured knowledge of ray-data inter-
section. We have conducted a series of experiments on the
scalability of the technique using working sets and datasets
of different sizes. With the aid of both qualitative and quanti-
tative analysis, we demonstrate that this approach allows the
rendering of multiple large PBVOs in a volume scene graph
be performed on desktop computers.

Keywords out-of-core · very large dataset visualization ·
octree · point-based modeling · point-based rendering · ray
tracing · volume scene graph

D. Chisnall and M. Chen
Department of Computer Science
University of Wales Swansea
Swansea SA2 8PP, UK
Tel.: +44-1792-295393
Fax: +44-1792-295708
E-mail: {csdavec, m.chen}@swansea.ac.uk

C. Hansen
School of Computing
University of Utah
Salt Lake City, Utah 84112, USA
Tel.: +1-801-581-3154
Fax: +1-801-581-5843
E-mail: hansen@cs.utah.edu

1 Introduction

Point-based modeling and rendering is a collection of tech-
niques that enable direct processing of complex geometric
objects represented by large discretely sampled point clouds
[28,30]. Point clouds are usually rendered directly, using
forward projection and image-space composition of point
splats [41,10,25]. In terms of computational costs, this ap-
proach is highly attractive, facilitating the use of graphics
hardware and stream-based data processing. However, by
minimizing the interaction between points in the object space,
it does not easily permit the generation of some visual ef-
fects, such as shadows, reflection and refraction, especially
when considering a complex and arbitrary scene composed
of multiple point-based objects.

An alternative direct rendering approach is to organize
point-based objects in a volume screen graph and synthe-
size images using discrete ray tracing [4]. Not only does
this approach address some of the shortcomings of splatting,
but it also facilitates combinational and comparative visu-
alization of volume and point datasets by allowing both to
co-exist in the same volume scene graph. For example, in
Fig. 1, a translucent bunny, built from a digitized point set,

Fig. 1 Combining the Stanford Bunny point set with a conventional
volume dataset (San Diego rabbit heart) in a volume scene graph.
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Fig. 2 A volume scene graph consisting of four dragons modeled using a point-set (Stanford Dragon) and artificial clouds represented by a
volume dataset (Erlangen Clouds).

is combined with a heart captured as a volume data set. In
Fig. 2, four dragons, also built from a digitized point set, is
immersed in artificial clouds that are modeled as a volume
dataset. Despite these benefits, the approach is yet to deliver
a real-time solution. Nevertheless, it can no doubt bring ben-
efits to some visualization and graphics applications; and
with the rapid advances in both hardware technology and
distributed computing, its usability will be further enhanced
in the coming years.

The fundamental bottleneck of ray tracing a volume scene
graph with multiple point clouds is that it demands an over-
whelming amount of memory to accommodate all point datasets
and their associate control structures such as octrees. Let
{P1,P2, . . . ,Pn} be a set of point clouds contained in a vol-
ume scene graph, and {C1,C2, . . . ,Cn} be their correspond-
ing control structures. To address the scalability of this ap-
proach, one needs to consider the following issues:

– The size of each individual point cloud, |Pi|— With mod-
ern digitization technology, Pi may easily contain mil-
lions, or even billions of points.

– The size of the control structure for each point cloud,
|Ci|— A discrete ray tracer benefits particularly from a
spatial partitioning scheme, such as an octree. However,
to achieve optimal speed efficiency, it is not uncommon
that the control structure for partitioning a point cloud
may consume more space than the corresponding raw
dataset, i.e., |Ci|> |Pi|.

– The number of point clouds in a volume scene graph, n
— The growth of n has a profound impact on the total
space requirement for both point datasets and their con-
trol structures.

– The complexity of ray path predication — For a sim-
ple ray-casting algorithm, it is possible to preprocess a
volume scene graph and predetermine a static data pre-
fetching strategy. The more visual effects the ray tracer
incorporates, the more difficult the ray path predication
will be. With some complex visual effects, it is likely that
static preprocessing would not yield much benefit.

This paper describes an out-of-core system for ray trac-
ing volume scene graphs in a scalable manner. We introduce
a technique based on a dynamic, in-core working sets, which
addresses the combined difficulties in pre-determining data

mixing patterns and ray paths, and hence data access pat-
terns. We assume that the number of points in each indi-
vidual point cloud is much larger than the number of point
datasets in a scene, i.e., |Pi|>> n. Hence we utilize octrees
to partition individual point datasets, and use the bounding
boxes of scene graph nodes to partition the scene. During
ray tracing, the point datasets and their octrees are stored
out-of-core, and the required octree nodes and point data are
pre-fetched automatically according to access patterns pre-
dicted based on captured knowledge of ray-data intersection.
Our testing results have shown that this technique is scal-
able, and enables volume scene graphs composed multiple
point clouds to be rendered directly on desktop computers.

The remainder of this paper is organized as follows. We
first give a brief review of point-based modeling and ren-
dering techniques, and out-of-core techniques, in Section 2.
In Section 3, we outline the basic in-core method for mod-
eling and rendering volume scene graphs with multiple point
clouds, and highlight the correlation between modeling qual-
ity and memory consumption. In Section 4, we present a
ray-driven technique for predicting the working set automat-
ically, and outline the dynamic algorithms for predicting oc-
tree access and for pre-caching octree nodes and the corre-
sponding point data. In Section 5, we describe our experi-
ments on the scalability of the technique using working sets
and datasets of different sizes, and present our qualitative
and quantitative analysis. This is followed by our conclud-
ing remarks in Section 6.

2 Related Work

There is a close relationship among volume visualization,
implicit modeling and point-based techniques. Points, as mod-
eling primitives, are extensively featured in all three classes
of techniques.

The advances in volume visualization have produced a
collection of methods for rendering volume datasets, includ-
ing isosurfacing [24], ray casting [20] and forward projec-
tion [41]. Though in most cases, point primitives, i.e., vox-
els, are organized into a grid or a mesh, in some cases, vol-
ume modeling with scattered data is necessary, (e.g., [26]),
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though existing approaches mostly involve the construction
of a mesh structure connecting these points together.

Implicit modeling [2,27,42] facilitates the composition
of complicated objects from elemental field functions, each
of which is often defined on a point primitive. The octree
method has been used for polygonizing implicit surfaces [3]
and computing ray-surface intersections [16]. Due to the com-
putational costs of polygonization and ray tracing, the em-
phasis has always been placed on the use of a small set of
point primitives or elemental field functions.

One of the major advances in recent years is point-based
modeling and rendering. The most significant examples of
this development include Surfels [28] and QSplat [30]. Other
important developments include [14,1,33,43]. In addition
to the splatting approach commonly adopted in point-based
rendering, ray tracing point clouds through intersection has
been examined [31,40,39].

Recently a number of researchers addressed the conver-
gence of these techniques, for example, approximating vol-
ume datasets with implicit models [15], building implicit
surfaces upon point clouds, using the point-based approach
for isosurfacing volume datasets [43,38,23], and combining
point clouds and volume datasets in volume scene graphs [4].

Many visualization processes involve datasets that are
much too large to fit into the internal memory of a com-
puter, and have to rely on external disk storage, usually un-
der the virtual memory management of an operating system.
The external disk access can become a serious bottleneck
in terms of rendering speed. Out-of-core algorithms (also
known as external memory algorithms) [37] are designed to
solve a variety of batch and interactive computational prob-
lems by minimizing disk I/O overhead.

Various out-of-core graphics and visualization algorithms
have been proposed to handle large structured and unstruc-
tured 3D data-sets, for instance, in the context of (i) isosur-
face extraction [9,7,8,6,34], (ii) terrain rendering [22], (iii)
streamline visualization [36], (iv) mesh simplification [21],
(v) rendering time-varying volume data [32], (vi) render-
ing unstructured volumetric grids [19,12,6], (vii) ray trac-
ing [29], and (viii) radiosity [35]. While some algorithms
rely little on internal memory (e.g., [7,12]), others utilize
preprocessed data structures, such as octree [36] and index-
ing [32] to optimize disk I/O operations. Use of Active Data
Repository for visualizing large volume datasets was also re-
ported [17].

While point datasets are usually excessively large, there
has been little existing work on out-of-core methods for han-
dling point datasets [13]. This motivates us to investigate the
feasibility of multiple large point sets in the context of dis-
crete ray tracing.

3 Modeling and Rendering Multiple Point Sets

This section describes the background problem in volume
modeling and rendering for the out-of-core algorithm to be
described in Section 4. While the latter is the main focus of

this paper, it is useful to highlight the technical merits and
issues associated with a generic approach for handling large
point clouds in volume scene graphs. In this section, we also
discuss the decision of using an octree over a kD-tree.

3.1 Point-based Volume Object (PBVO)

Volume objects can be defined procedurally as well as built
from discretely sampled datasets such as CT and MRI scans.
In particular, they can be defined on point clouds using ap-
propriate radial basis functions [4], and can therefore be in-
tegrated into a volume scene graph as elemental volume ob-
jects at terminal nodes. For example, consider a discretely
sampled point cloud P = {p1, p2, . . . , pm}, where each pi is
associated with a confidence value and an intensity value.
We can map the confidence value to a radius ri, and the in-
tensity value to an opacity value, oi. The former defines the
radius of influence of pi, and the latter contributes to the vis-
ibility of points within its radius of influence.

Consider a radial basis function, ω(q, pi,ri), such that,

ω(q, pi,ri) = 0,∀q,‖ q− pi ‖> ri

where ‖ q− pi ‖ denotes the Euclidean distance between q
and pi. For a collection of opacity values, o1,o2, . . . ,om, as-
sociated with p1, p2, . . . , pm respectively, a scalar field O is
therefore defined using a blending function as:

O(q) = ∑
1≤i≤m

ω(q, pi,ri)vi. (1)

Several blending functions were considered in [4]. Images in
this paper were rendered using either the function proposed
by Wyvill et al. [42] or that proposed by Chen [4].

O(q) in Eq. (1) in effect defines the opacity of every
point in a 3D volumetric domain which is the union of the
spherical bounding volumes of all points in P. Hence, O(q)
defines the essential component of a volume object and can
be rendered using discrete ray tracing. Such a volume object
is called a point-based volume object (PBVO). We can spec-
ify luminance properties of a PBVO using transfer functions,
or by building the relevant scalar fields in a similar manner
to O(q). Fig. 3 shows a PBVO defined on a very large point
cloud of over 14 million points. Its opacity field was con-
structed using a radial basis function with ri = 2,oi = 1, i =
1,2, . . . ,m.

3.2 Volume Scene Graphs

In the theoretic framework of Constructive Volume Geome-
try (CVG) [5], a volume scene graph is an algebraic expres-
sion, called a CVG term, which involves a class of spatial
objects and a family of constructive operations. In practice,
a CVG term can be represented by a tree, where construc-
tive operations are defined at non-terminal nodes, and ele-
mental volume objects are defined at terminal nodes of the
tree. Each subtree defines a composite volume object, while
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Fig. 3 A point-based volume object defined on the the Stanford Lucy
dataset of 14,027,872 points.

the root represents the final composite volume object, or the
scene. To facilitate the sharing of low level object data, we
allow a CVG term to be realized using a directed acyclic
graph with a single root, hence resulting in a volume scene
graph. Geometrical transformations and transfer functions
can be applied at each graph node.

Fig. 4 shows the results of applying CVG operations to a
PBVO, r, built from the Stanford bunny point set, and a pro-
cedurally defined cylindrical object, c. The example shown
in Fig. 1 involves the use of a union operation and a dif-
ference operation. The latter is used, in conjunction with a
cylindrical object, to remove part of bunny for exposing the
heart. The example in Fig. 2 demonstrates that multiple PB-
VOs in a volume scene graph can share the same point set.

3.3 Discrete Ray Tracing

So far, discrete ray tracing is still the most appropriate means
for directly rendering a volume scene graph which features
multiple volume objects, solid or translucent. The basic ray
tracing mechanism is to sample at regular intervals along
each ray cast from the view position. At each sampling po-
sition s, we recursively determine if s is inside the bounding
box of the current CVG subtree, until we reach a terminal
node. If s is inside the bounding box of the terminal node
which contains an elemental volume object, we evaluate its
opacity field O(s) and possible other luminance attributes.

When an opacity field is defined on a point cloud P =
{p1, p2, . . . , pm}, it is necessary to identify a subset of points,
P′ ⊆ P, such that

P′ = {p′i | p′i ∈ P and ‖ s− p′i ‖≤ ri}.

union (r,c) intersection (r,c)

difference (r,c) difference (c,r)

Fig. 4 Applying three basic CVG operations to a PBVO r and a pro-
cedurally defined cylindrical object c.

Given such a subset, we can sample the radial basis function
of each p′i ∈ P′, and obtain a scalar value by using the above-
mentioned blending function.

3.4 The Benefits and Costs of Using Octrees

For a large point cloud, the most expensive cost in rendering
a point cloud P is the identification of the subset P′, as it
involves a distance calculation against every point pi ∈ P,
thereby limiting the scalability when |P| increases.

For each large point cloud P in the volume scene graph,
we therefore utilize an octree structure for partitioning the
points in the local data coordinate system of P. In each level
of the hierarchy, a subtree contains only those points, which
have some influence in the bounding box of the subtree. It is
important to note that due to the non-zero radius of influence
of each point, and the likely overlaps among the ‘volumes of
influence’ of different points, a point element can belong to
more than one leaf nodes. We therefore store only indices,
rather than the records of points, in the leaf nodes of an oc-
tree.

In comparison with a brute force ray tracer, an octree-
based ray tracer can have almost linear speedup in relation
to the sizes of point clouds, if there is sufficient space for
an octree that provides a sufficiently fine partition of a point
cloud. Table 1 shows the speedup pattern in rendering three
point sets different sizes, where points are placed randomly
on a spherical surface.

However, Table 1 also shows that, for large point clouds,
the amount of space consumed by an octree can be quite
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height H # points I 1000 10000 100000

speedup 23.75 36.62 26.92
H = 3 space 20 MB 155 MB 1499 MB

ηmax 45 411 3895

speedup 49.91 318.84 446.81
H = 5 space 196 MB 741 MB 5708 MB

ηmax 15 89 739

speedup 46.61 429.01 1122.27
H = 7 space 901 MB 12189 MB 63634 MB

ηmax 9 48 348

Table 1 Testing results for ray casting three randomly generated point
clouds. The octree height is limited to 3, 5 and 7 respectively. ηmax is
the highest number of points that occupy a leaf node in the octree.

r = 0.25, m: 343MB r = 0.5, m: 350MB r = 1, m: 363MB

r = 2, m: 512MB r = 4, m: 676MB r = 6, m: 889MB

Fig. 5 Rendering of Lucy’s neck with varying radii for the radial basis
function, from 0.25 to 6. One can observe the improvement of image
fidelity proportionally to the increase of the radius (r), which also leads
to the additional consumption of memory (m).

noticeable, especially when points are densely placed, the
radius of influence is set to a relatively large value, or the
limit for octree height is generously set.

Note that the size of the octree can grow significantly
faster than the point set. This is due to the fact that each
point must be present in every octree leave node in which
there exists a point where its radial basis function evaluates
to a number greater than zero. Depending on the radial basis
function, the point value, and threshold value used, a single
point may have a radius of effect spanning a large number
of octree leaf nodes. This differs from the traditional use
of octrees for partitioning a volume dataset or a polygonal
mesh, where each voxel or vertex resides only in one leaf
node as the neighborhood connection is defined implicitly
(in the case of a volume dataset) or explicitly (in the case of
a polygonal mesh).

Fig. 5 illustrates the effect of varying the radius of the
radial basis function. It shows a zoomed-in section from the
neck of the statue shown in Fig. 3. As the radius is increased,
the points blend together more smoothly to form the ap-

pearance of an iso-surface, and at the same time, the octree
structure consumes more space for dealing with the increas-
ing ‘volume of influence’ of each point. In fact, when we
ran our in-core ray tracer on a desktop computer with 1GB
memory, any setting with r > 6 encountered some difficul-
ties, resulting in excessive virtual memory swapping and an
unreasonable amount of system time overhead. Additionally,
the octrees used in this set of examples are limited to only
six levels, no where near the optimal depth for such a large
dataset. Often some leaf nodes of the octree contained over
100,000 indices to points.

It has often been suggested that a kD-tree [18] could be
deployed instead of an octree in this application as it has
been successfully used in conjunction with many rendering
algorithms such as ray tracing (e.g., [39,40]). We found that
several features of the kD-tree make it unsuitable for this
application. Firstly a kD-tree is most effective when points
are considered to be unrelated or have the same small radius.
Neither condition holds in our application, as we assume that
points may have different radii (see Section 3.1 and [4]).
Secondly, a kD-tree, like a BSP tree, focuses the precise
order of primitives in relation to a given viewing (or ray)
direction. It relies on search to identify neighboring primi-
tives, for instance, in rendering point-based implicit surfaces
[40]. Hence, the fast detection of an opaque surface closest
to the viewing position minimizes the need for the search,
the cost of which depends on the radius of points. In vol-
ume rendering, translucent objects are a common feature,
which do not benefit from the precise ordering as much as
opaque surfaces. On the other hand, minimal search require-
ment at each sampling point is better suited for rendering
point-based volume objects.

Without considering the above constraints of a kD-tree,
it is possible to design a kD-tree structure to accommodate
overlapping radial basis functions in order to identify neigh-
boring points without search. In this case it would encounter
the same space issue as an octree. Hence, our study of out-
of-core methods is also applicable to other spacial partition-
ing strategies. Nevertheless, consider a set of points and a
sampling position in an octant and a kD-tree cell. Since the
radial basis functions are close to a regular cube than an
arbitrary cuboid, an octant represents a more cost-effective
shape for storing points that are relevant to the sampling po-
sition.

4 Out-of-core Rendering

4.1 Algorithm Overview

The concept of working set was first introduced in the con-
text of memory management in operating systems [11]. We
adaptively use the concept in this work as our approach to
the out-of-core management in some way resembles many
typical methods found in operating systems, such as antici-
patory paging.
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Consider the running of an algorithm as a series of al-
gorithmic steps {Λ1,Λ2, . . . ,Λi, . . .}, and each step is merely
a functional group of an arbitrary number of instructions.
A working set of an algorithm in execution is the subset of
the associated data structures being accessed during an al-
gorithmic step Λi. Note that unlike the definition commonly
used in the context of operating systems, here the duration
of a working set is not a constant time window. In general,
different algorithmic steps may require different execution
time.

In the case of our discrete ray tracer, the primary algo-
rithmic steps are sampling individual volume objects in a
volume scene graph. For an octree defined on a point-based
volume object (PBVO), the working set of a sampling oper-
ation is basically the leaf node of the octree that contains the
sampling point, and the points referenced by the leaf node.
Assuming that it is not possible to have all parts of the oc-
tree and the entire point set in-core at all times, the aim of
our data management strategy is therefore to ensure that the
working set for an algorithmic step Λi is located in-core, be-
fore and during Λi. Without such a data management strat-
egy, the renderer will quickly encounter a situation that the
working set for an incoming step Λ j is out-of-core, stalling
the renderer until it can be swapped in.

Fig. 6 gives an overview of the data environment of a
volume scene graph to be rendered by our out-of-core ray
tracer. For each individual point cloud, there is a complete
out-of-core copy of the entire point dataset and the corre-
sponding octree. Each out-of-core point cloud has an in-core
memory cache. The amount of in-core memory available for
each point cloud is set when an out-of-core copy is created,
and can be modified by the user. This allows the algorithm
to be easily scaled down in highly constrained memory situ-
ations.

Since we assume that the number of points in each indi-
vidual point cloud is much larger than the number of point
datasets in a scene, comparatively the actual memory re-
quirement for storing a volume scene graph (without the ac-
tual data for its elemental objects) is negligible. We thereby
maintain the data structure for the volume scene graph in-
core. Note that it is possible for different PBVOs to share
the same point clouds.

Our implementation consists of three main functional
components, namely the discrete ray tracer, an out-of-core
octree controller, and an out-of-core point set controller,
connected as shown in Fig. 7. The ray tracer sends requests
for discrete sampling points to the octree controller. This
then determines whether the node containing the requested
point is currently cached in-core. If it is, then it simply re-
turns it, and attempts to predict the next one to be accessed.
The prediction strategy will be detailed in 4.3.

Once the octree controller has determined the next node
or subtree most likely to be accessed, it attempts to pre-
emptively fetch it from disk. At the same time, it informs
the point set controller of the point list from the accessed
leaf node. On receipt of the point list, the point set controller
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Fig. 6 The data environment of a volume scene graph.
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Fig. 7 The main components of the out-of-core renderer.

checks that these are cached in-core, and if not attempts to
load them asynchronously.

The ray tracer then attempts to retrieve points identified
by the octree node from the point set. By this time, they
should already be cached in-core. Hence, it is the octree
controller and point set controller that try to make sure the
working set related to each sampling point is cached in-core
before the ray tracer progresses to the sampling point.

4.2 I/O Management during Rendering

Most modern hard disks have a sufficiently high sustained
transfer rate to keep the ray tracer fed with data, if it could
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be read in a linear fashion. Consider a single point cloud. In
our implementation, each octree node takes up to 244 bytes
on disk1 The maximum transfer rates for hard disks usually
rely on reads of consecutive blocks of 512 or more bytes,
making the required reads fairly inefficient.

The layout of the octree on disk is such that the child
nodes of a single node are contiguous, allowing them all to
be read with a single disk read. This has a negligible cost,
since the cost of a slightly longer read is insignificant com-
pared to cost of moving the disk head to the correct position
to read one node. This layout does not benefit very much the
navigation to a single leaf node, however it does increase
the probability that a neighboring leaf node will be cached,
giving a benefit when seeking the next leaf node.

In order to permit the fast traversal of the octree, the ac-
cess of any non-leaf node causes all of that node’s children
to be pre-emptively swapped in. Additionally, the path be-
tween a currently accessed node and the root node is locked
in-core, allowing movement up the tree to occur without re-
quiring any disk accesses. The disadvantage of this approach
is that it locks more nodes into in-core memory than are
strictly required, however for discrete ray tracing applica-
tions, where adjacent octree nodes are frequently required,
the benefit is worthwhile.

Individual nodes in the octree are accessed using a retain-
release mechanism. Retained nodes are locked in-core. Once
a node is released, and its reference count becomes zero, it
is not immediately swapped out. Instead, its priority is de-
cayed. No node is evicted until the allocated in-core space is
exhausted. Since the point set and octree data are not modi-
fied during rendering, and hence does not need to be written
back to disk, it costs little to free in-core nodes individually.

Unfortunately, it is not possible to group the points to-
gether on disk for linear reads. The reason for this is that
each individual point can be referenced by several octree
nodes, the number varying with the radius of the radial basis
function associated with each point.

Various parts of the discrete ray tracer, such as opacity
sampling and shadow sampling, trigger the pre-caching of
out-of-core data. Each of these assigns a priority value be-
tween 0 and 255 to the record, representing the confidence
of its prediction algorithm. When the allocated in-core space
has been exhausted, records are swapped out based on prior-
ity, with the least recently used record of the lowest priority
being accessed first.

The method provides two major benefits over the built-in
paging strategy in a conventional operating system:

– Fine grained access — The operating system relies on
the granularity of the paged memory system, and will

1 Each node stores the x,y,z extents of the node for fast bounding
volume tests, an address of the parent, and a type/status flag. In addi-
tion, each non-leaf node stores eight pointers to children but no ref-
erences to points. Each leaf node stores references to a set of points,
which have their volumes of influence overlap with the octant. As the
size of this subset is variable, we adapted the UNIX mechanism for
storing the block addresses in an i-node by having a fixed list of direct
references, and an secondary reference when there are more points.
The coordinates and attributes of points are not stored in the octree.
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Fig. 8 A performance comparison between the in-core only rendering
and the out-of-core approach with prefetching.

only swap entire pages in and out of main memory. This
means that, in order to load a single byte, an entire page
(typically around 4KB) must be swapped out to make
room for it. We are able to swap out only the relevant
working sets actually needed.

– Lower latency — The operating system will typically
wait until a page is accessed which is currently out-of-
core before acting. It will then issue a page fault, evict
the least recently used page, and then load the required
page. The problems with this are that the evicted page
may be the one needed next, and that the process access-
ing the page is stalled while it waits for the page to be
loaded.

Figure 8 shows a comparison of the time taken to render
a randomly generated point set using both in-core and out-
of-core approaches. The octree size is expressed as a mul-
tiple of the amount of RAM space available to the render-
ing process. For example, from Table 1, we can observe that
with 100,000 points, a 7-level octree tree would require 60
times more space than typical RAM space available on a PC.

In the pure in-core case, once this value of multiples
exceeded one, the demand-paging subsystem in the oper-
ating system is automatically invoked to handle swapping.
In fact, most everyday systems are configured with the size
of the swapping space set to between 50% and 100% of
the RAM space. This means, when the value of multiples
reaches about 1.5∼ 2, the allocatable physical address space
of the operating system will be exceeded and rendering will
be aborted. Thus relying on the demand-paging subsystem
is not scalable.

In order to observe the effectiveness of the prefetching
strategy described in this paper in comparison with the demand-
paging subsystem, we reconfigured an operating system by
allowing significantly more swapping space than a typical
configuration. It can be clearly seen that the out-of-core ap-
proach performs better in terms of raw speed. The in-core
approach, using the operating system for paging takes more
than twice as long to complete in all cases.
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4.3 Prediction Scheme

The prediction algorithm developed for the ray tracer re-
quires two out-of-core data structures, one representing the
octree and the other representing an array of points. The al-
gorithm detects octree access patterns based solely on its
captured knowledge of previous accesses. The array of points
has an internal predictor which predicts regular accesses,
and additionally accepts hints from an external source. The
first predictor is used when performing pre-processing —
the point set is streamed into in-core memory and each point
is processed in order. The second predictor is used during
rendering, with the hints being generated from the octree.

Algorithm 1 Predict Octree Access
Require: s: the new sampling point
Require: s1 and s2: the last two sampling points accessed
Require: c: a Boolean value indicating if the next cell for s′ is cached

N← the leaf node containing s
if s1 and s2 are set then

if s, s1 and s2 are not on the same line then
s′ ← the next sampling point on the ray (s, s2) but not in N
M← the node containing s′ {navigating from N to M}
c← conditional test if M is now in-core?

end if
else

s1← s2
s2← s
c← NO

end if

Algorithm 1 shows the basic outline of the prediction
algorithm. Accesses to nodes in the octree from a discrete
ray tracing algorithm are along the paths of rays. The algo-
rithm makes use of this fact, along with the fact that only
two points are required to uniquely identify a line.

Every time a point is accessed, the algorithm first deter-
mines whether it is on the same line as a previous access.
If this is the case, then it checks whether the last attempt to
pre-cache the node was successful. If not, then it tries again.
The attempted pre-caching is performed by Algorithm 2.

If the new point is not on the same line as previous ones,
then it attempts to predict a new line based on the last ac-
cesses. This works for a secondary ray from a point, but fails
for a new initial ray after the previous one terminates.

It is not difficult to extend this algorithm to record the
start positions of rays and generate new predictions based on
rays originating at these points. However doing so with cur-
rent hardware results in performance degradation. The com-
putation is relatively expensive, and the special case covered
is infrequent. If processing speeds continue to increase at a
rate faster than disk access times, then this may become a
more attractive proposition within a few years.

Algorithm 2 handles the pre-caching. It attempts to navi-
gate to the required node, without accessing any nodes stored
out-of-core. First, it navigates up the tree until it finds a node
which contains the point. This is guaranteed not to require
accessing any out-of-core nodes, since the path between the

root node and a currently retained leaf node is always locked
in-core.

Algorithm 2 Pre-cache an Octree Node
Require: s: the new sample point
Require: N: the starting node

while s is not in N do
N← the parent of N

end while
while N is not a leaf node do

M← the child of N containing s
if M is in-core then

N←M
else

pre-cache M
return NO

end if
end while
return YES

The second phase navigates down the tree towards the
node as far as it can without accessing a node that is not
stored in-core. If it reaches an out-of-core node, then it stops,
and pre-caches the node.

Fig. 9 illustrates this pre-caching mechanism. The node
marked as A is the original node, containing s, and the node
marked as B is the one containing the point s′. In other
words, the last search within the octree returned A, and the
next search along the same line which does not return A, will
return B.

If no pre-caching were accomplished, this access would
require three disk reads. To make matters worse, there is no
way of determining where each node is on disk until its par-
ent node has been read, and so none of these reads could be
initiated until the previous one has been completed. Given
common hard drive seek times of 8ms, this would stall the
algorithm for 24ms — 24,000,000 clock cycles on a 1GHz
CPU — when leaving an octree node in this way. Even ad-
jacent octree nodes would incur an 8,000,000 cycle penalty.

The first time a point inside A is accessed, the prefetch-
ing algorithm will navigate along the branches indicated by
the number ‘1’. Once it reaches the first node that is not
cached in-core, it will issue a request that this node be pre-
cached, and then return. The rendering algorithm can then

In−core node

Out−of−core node

Omitted subtree

1 2

11

1 3

A ... B ...

... ...
...

Fig. 9 Pre-caching nodes in an octree
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perform processing on the points in A while the node is
loaded. The second time a point in A is accessed, this node
should be in-core, and so it will get two levels down the tree,
to the end of the arrow indicated by a ‘2’, before encounter-
ing an out-of-core node. Again, this node will be marked for
fetching and the predictor will return. The third time, indi-
cated by a ‘3’, it will get to node B and cache this.

4.4 Prefetching Scheme

Prefetching data efficiently is very important to the overall
performance of the rendering. Moving from a pure in-core
implementation to an out-of-core approach caused a signif-
icant, yet unavoidable, performance hit. Previously, moving
to the next node in an octree was as simple as de-referencing
a pointer, something which can be accomplished in a very
small amount of time. In order to perform the same operation
in an out-of-core setting, the following steps are required:

1. Translate the record index to a disk location.
2. Calculate the hash of the location.
3. Determine whether the node is in-core.
4. Fetch it, if not.

The hashing technique is adapted from hardware cache
implementations — the lowest n bits of the record index (not
the disk address) are taken and used as the hash. This has the
advantage that it is very computationally cheap to perform,
and allows sequential accesses to fill the in-core hash table
without collisions.

With a fast and efficient hashing algorithm, the time taken
to determine whether a record is in-core is not high, how-
ever the access process still potentially takes several func-
tion calls — each of which has a cost associated with it —
making it far slower than a simple pointer access.

If the prediction algorithm fails, then the cost is very
high, since the data must be synchronously accessed from
disk. This may stall the process for several hundred clock
cycles while it waits for the disk access to return. In the case
of the pure in-core implementation, this is the situation en-
countered whenever the required memory exceeds the avail-
able physical memory — each access to out-of-core virtual
memory creates a page fault which stalls the process until a
page is read from disk.

The prefetching process makes use of the operating sys-
tem’s asynchronous I/O capabilities. When a record is iden-
tified as requiring loading in-core, an asynchronous read re-
quest is dispatched, and the rendering process continues.
When the record is accessed, or when the asynchronous I/O
buffers have all been used, the request is completed. In most
cases, the prefetch requests are dispatched sufficiently far in
advance that the asynchronous read has completed by the
time it is required.

In order to alleviate some of the system call overhead in-
curred from large number of small reads, the POSIX lio list
system call is used, which allows up to 16 asynchronous

reads2 to be initiated with a single system call. In many
cases, this allows all of the points contained within a sin-
gle octree leaf node to be loaded with a single system call.
An additional benefit of this is that it allows the kernel to
re-order the disk reads to reduce seek time on the disk.

Both the point set and octree make use of the same un-
derlying code for shifting data in and out of core. This code
receives the pre-caching requests and priority information
from the high level code, and evicts low-priority records
when their space is needed.

5 Experimental Results

5.1 Scene Graph Complexity

We have run a number of tests on different desktop com-
puters, including a legacy Alhlon 1.4 PC (1.4GHz, 70MB),
a Pentium 4 PC (3GHz, 1GB), a Pentium M 770 laptop
(2.13GHz, 0.5GB), an PowerMac G5 (2×2.5GHz, 2GB) and
an Apple G4 laptop (1.5GHz, 0.5GB).

Fig. 10 demonstrates that this technique can be used to
synthesize images from complex volume scene graphs on
a desktop computer. The volume scene graph is composed
of six point-based volume objects, built from two point sets
(Stanford Lucy of 14,027,872 points, and Stanford Bunny
of 35,947 points). They are partially immersed in artificial
clouds represented by a volume dataset (Erlangen clouds of
512×512×32 voxels). The scene is lit by three point light
sources, casting shadows in different directions. From Fig. 10,
we can observe hard shadows cast by the bunnies and the
Lucy statue, soft shadows by the clouds, and self-shadows
by Lucy’s arm. As the radial basis function used for the Lucy
point set has a much smaller radius, it requires much finer
sampling intervals.

5.2 Memory Usage

The memory usage of the algorithm is entirely configurable,
with the only constraint being that there must be enough in-
core space allocated to store the maximum number of nodes
which need to be processed at once. As discussed in 4.2,
the path between a current access node and the root node
of each octree is locked, this maximum number is thus re-
lated to height of the octree h and the number of individ-
ual point sets n. In terms of space complexity, this is of
Ospace(n·h) = Ospace(n·log m), where m is the average num-
ber of leaf nodes in each octree, which is related the average
size of each point set.

For example, in a single PBVO test with the Bunny point
set, the total memory used by the out-of-core ray tracer —
including the in-core data cache and all other memory allo-
cated by the process — was under 20MB. In contrast, the
in-core implementation used around 300MB. For larger data

2 This number is implementation dependent, however 16 is com-
mon.
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Fig. 10 A volume scene graph composed of six PBVOs (built from
two point sets, Stanford Bunny and Lucy), a volume dataset (Artificial
Clouds from Erlangen) and a procedurally defined floor.

sets, it is possible to keep the memory usage at a similar
level, however this comes at the expense of speed. In the
following section, the trade off between memory usage and
performance is examined in more detail.

5.3 Performance

The performance of the algorithm is dependent on the amount
of memory allocated to it. This can be controlled in two ways
— the amount allocated to each point set and the amount
allocated to each octree can be varied independently. Ta-
ble 2 shows how the performance varies as each of these
is changed.

The timing data in Table 2 gives the time, in seconds,
taken to render a scene containing a single PBVO (Stan-
ford Bunny of 35,947 points). It includes both preprocessing
time and rendering. The preprocessing times vary between
55-65 seconds. The results were taken from a PowerMac
G5 with 2×2.5GHz CPUs. Our current implementation cur-
rently only makes use of a single CPU directly, however the
second CPU is used to process asynchronous I/O requests.

The results in Table 2 indicate that increasing the size
of the point cache has a more noticeable impact on perfor-

Table 2 Performance (in seconds) as memory is constrained.

number of octree number of points in core
nodes in core H 32768 16384 8192 4096

131072 94.59 98.67 100.31 107.15
65536 90.67 96.25 96.62 101.63
32768 88.28 95.20 94.89 100.91
16384 88.78 96.58 95.84 103.38
8192 92.39 98.56 100.31 108.25

Fig. 11 A volume scene graph composed twenty point-based volume
objects (Stanford bunny), ray traced with three light sources.

mance than increasing the size of the octree cache. This is
due to the fact that the points required change dramatically
over short octree traversals, meaning that a small increase
in the point cache size can dramatically cut down the total
amount of disk I/O required.

Increasing the amount of memory allocated to the oc-
tree cache does not always give a performance benefit. The
pre-fetching algorithm requires very little space to ensure
that all of the required nodes are in-core before they are ac-
cessed. Once the cache reaches this size, increasing it deliv-
ers no benefit — the extra space is not required. Increasing
this amount further increases the length of time required to
find a single cache record, incurring a performance penalty.
For larger cache sizes, this penalty is sufficient that increas-
ing the allocated memory results in a performance penalty.

An in-core ray tracer would have a great difficulty in
dealing with multiple point sets, such as the volume scene
graph in Fig. 10. The out-of-core ray tracer can easily handle
such a volume scene graph in terms of memory allocation,
without experiencing inefficient disk I/O managed by the op-
erating system. The rendering process in this case involves
the full data environment as shown in Fig. 6.

To evaluate the performance under the condition of mul-
tiple point sets, we rendered the volume scene graph in Fig. 11
by associate the twenty bunnies to different numbers of point
sets. Though we are in fact using the same point set, for the
purpose of scalability test, we treat the repeated uses as in-
dependent point sets. For example, in the first test, one point
set is used for all bunnies. In the second, half use one point
set, and half use another. When we make ten repeated uses
of the Bunny point set, we let each point set to be shared by
two bunnies in the scene.
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Table 3 Performance for multiple point sets.

number of point sets I 1 2 4 8 10

Preprocessing 57.0 114.8 230.9 470.7 589.0
Rendering 13.8 13.9 14.5 16.8 16.8

Table 3 gives both preprocessing (i.e., octree building)
and rendering times in seconds. The preprocessing time scales
linearly as new point sets are added, but the actual rendering
time changes little and remains almost constant in relation to
the increasing number of point sets from 1 to 10. The results
are also shown graphically in Fig. 12. This clearly indicates
the effectiveness and efficiency of the out-of-core manage-
ment implemented in this work.
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Fig. 12 Graph showing performance for multiple point sets.

6 Conclusions

We have presented an out-of-core solution to a difficult prob-
lem for rendering multiple point-based volume objects us-
ing discrete ray tracing. Our I/O management involves a dy-
namic, in-core working set, and we use a ray-driven algo-
rithm for predicting the working set automatically. Our re-
sults have shown that the algorithm scales well to very low
memory conditions. Performance increases can be gained
by increasing the size of the point cache up to the size of
the point data set, and by increasing the size of the octree
cache up to a limit dependent on the structure of the data
and the number of in-core nodes required at any given time.
We have demonstrated that this approach allows the render-
ing of multiple large PBVOs in a volume scene graph on
common commodity desktop computers.

Our future work will focus on the development of a par-
allel out-of-core ray tracer. We are in the process of extend-
ing this approach to a distributed-memory architecture. Our
initial tests with limited algorithmic changes have shown a

great potential to achieve an interactive rate for some less
complicated scenes on a large cluster.
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